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Abstract

Medical image segmentation plays a crucial role in computer-aided diagnosis. However, exist-

ing methods heavily rely on fully supervised training, which requires a large amount of labeled

data with time-consuming pixel-wise annotations. Moreover, accurately segmenting lesions poses

challenges due to variations in shape, size, and location. To address these issues, we propose

a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-

supervised medical image Segmentation (DEC-Seg). First, we propose a Cross-level Feature

Aggregation (CFA) module that integrates cross-level adjacent layers to enhance the feature

representation ability across different resolutions. To address scale variation, we present a scale-

enhanced consistency constraint, which ensures consistency in the segmentation maps generated

from the same input image at different scales. This constraint helps handle variations in lesion

sizes and improves the robustness of the model. Furthermore, we propose a cross-generative

consistency scheme, in which the original and perturbed images can be reconstructed using

cross-segmentation maps. This consistency constraint allows us to mine effective feature repre-

sentations and boost the segmentation performance. To further exploit the scale information,

we propose a Dual-scale Complementary Fusion (DCF) module that integrates features from

two scale-specific decoders operating at different scales to help produce more accurate segmenta-

tion maps. Extensive experimental results on multiple medical segmentation tasks (polyp, skin

lesion, and brain glioma) demonstrate the effectiveness of our DEC-Seg against other state-of-

the-art semi-supervised segmentation approaches. The implementation code will be released at

https://github.com/taozh2017/DECSeg.
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1. Introduction

Accurate segmentation of organs or lesions from medical images is a crucial task within the

realm of medical image processing and analysis. The successful accomplishment of this task

holds immense significance for disease diagnosis, organ localization, and lesion segmentation. In

recent years, several deep learning models [1–4] have been developed and have shown promis-5

ing performance in medical image segmentation. However, these models often rely on a fully

supervised training strategy, which necessitates a substantial number of pixel-wise annotations.

Unfortunately, the annotation process for medical images is both time-consuming and costly

due to the need for specialized expertise. To address these challenges, researchers have turned

to semi-supervised learning (SSL) as an effective approach to leverage unlabeled data and en-10

hance the performance of segmentation models [5, 6]. By utilizing SSL techniques, models can

exploit the abundance of available unlabeled data in medical imaging datasets, reducing their

dependence on fully annotated data. This approach not only alleviates the burden of extensive

annotation requirements but also has the potential to improve the model’s accuracy in medical

image segmentation tasks.15

Recently, various semi-supervised medical image segmentation methods [7–9] based on deep

learning have been developed. Among these methods, the consistent constraint is a widely used

strategy, by ensuring that the perturbations on unlabeled data should not significantly vary

their outputs or predictions. One of the most representative frameworks is the mean teacher

(MT) [10], which designs a perturbation-based consistency loss between the teacher and student20

models on the unlabeled examples. Inspired by MT, several improved methods focus on designing

different perturbation strategies to achieve SSL segmentation. For instance, an uncertainty-

aware framework (UA-MT) [11] was proposed to make the student model gradually learn more

reliable targets and eliminate unreliable predictions by exploiting the uncertainty information.

Verma et al. [12] proposed an interpolation consistency training framework, which constrains the25

prediction at an interpolation of unlabeled points to be consistent with that of the predictions at

those points. Chen et al. [13] developed a cross-pseudo supervision strategy, which initializes two

identical networks with different weights and encourages high consistency between the predictions

of two different networks with different weights for the same input. Luo et al. [14] designed an

uncertainty rectified pyramid consistency (URPC) scheme to enable the segmentation model can30
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produce consistent predictions at different scales. Besides, CLCC [15] was proposed to fuse global

and patch-wise information by contrastive learning and consistency constraint. SLCNet [16] was

proposed to utilize shape information for the training by feeding pseudo-labels into the network

simultaneously. Despite the achievement made, semi-supervised medical image segmentation

remains challenging due to variations in the shape, size, and location of lesions. Therefore, it is35

crucial to develop effective and robust semi-supervised learning strategies that leverage a large

amount of unlabeled data to boost the medical image segmentation performance.

To this end, we propose a novel Dual-scale Enhanced and Cross-generative consistency learn-

ing framework for semi-supervised medical image Segmentation (DEC-Seg), which fully ex-

ploits multi-scale information from the labeled and unlabeled data to enhance segmentation40

performance. Specifically, we first propose a Cross-level Feature Aggregation (CFA) module to

integrate the adjacent layer features in the encoder, and the cross-level aggregated features are

further incorporated into the scale-specific decoder. Then, we present a scale-enhanced consis-

tency strategy to encourage the consistency of segmentation maps from the same inputs with

different scales. This consistency can guide our segmentation network to learn more power-45

ful features for handling scale variations. Moreover, a Dual-scale Complementary Fusion (DCF)

module is further proposed to filter the effective information from different scale features and fuse

them to boost segmentation performance. Meanwhile, a cross-generative consistency is presented

to constrain the original images and perturbed ones can be reconstructed by cross-segmentation

maps, which can effectively harness the knowledge from unlabeled data. Finally, we conduct the50

comparison experiments on three medical image segmentation tasks, and the results demonstrate

the superiority of the proposed model over other state-of-the-art semi-supervised segmentation

methods.

The main contributions of this paper are listed as follows:

• We propose a novel semi-supervised medical image segmentation framework, which lever-55

ages scale-enhanced consistency and cross-generative consistency to exploit the relation-

ships between labeled and unlabeled data for boosting the segmentation model.

• A cross-level feature aggregation module is proposed to fuse the cross-level features, which

can enhance the representation ability of features within different resolutions.

• We present a scale-enhanced consistency constraint to reduce the discrepancy between the60

predicted segmentation maps from different scale inputs. Besides, a cross-generative consis-

tency is designed to constrain that the original and perturbed images can be reconstructed

3
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Figure 1: Architecture of our DEC-Seg framework. Labeled data are fed to the model to achieve the segmentation

task under supervised learning. Unlabeled data and the corresponding perturbed versions are passed through the

model, which is constrained under scale-enhanced consistency, scale-aware perturbation consistency, and cross-

generative consistency. See Sec. 3 for details.

using cross-segmentation maps, which aims to mine effective feature representations and

boost the segmentation performance.

• A dual-scale complementary fusion module is proposed to benifit the better prediction65

generation through the complementation and fusion of different scale information from the

two scale-specific decoders.

The remainder of this paper is structured as follows. In Section 2, we briefly review some

related works to our model, consisting of medical image segmentation, semi-supervised learning,

and consistency learning. In Section 3, we give the overview framework and then provide the70

details of the proposed semi-supervised segmentation model. Then, we present the used datasets,

experimental settings, comparison results, and ablation study in Section 4. Finally, we conclude

this paper in Section 5.
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2. Related Works

2.1. Medical Image Segmentation75

Recently, numerous studies have proposed different deep learning architectures and tech-

niques to enhance the accuracy of medical image segmentation. The UNet framework, proposed

by Ronneberger et al. [17], has significantly advanced the field of medical image segmentation.

It incorporates skip connections between the contracting and expanding paths, enabling the

network to retain fine-grained spatial information while also capturing high-level contextual fea-80

tures. UNet has demonstrated state-of-the-art performance across various segmentation tasks,

including liver and tumor segmentation, cell segmentation, brain tumor segmentation, and polyp

segmentation. To further improve the accuracy of UNet-based models, researchers have devel-

oped several variants, such as attention UNet [18], UNet++ [1], and ResUNet++ [19]. For

example, Zhou et al. [1] presented UNet++ for medical image segmentation which designs a85

series of nested, dense skip pathways to reduce the semantic gap between the feature maps.

Jha et al. [19] developed a ResUNet++ architecture, which takes advantage of residual blocks,

squeeze and excitation blocks, atrous spatial pyramidal pooling, and attention blocks. Moreover,

the cross-level and multi-level feature fusion technique is widely recognized for enhancing seg-

mentation performance by integrating spatial information from low-level features with semantic90

information from high-level features. For instance, Li et al. [20] proposed a cross-level information

processing module that aggregates and processes multi-scale features transmitted by different en-

coder layers to improve polyp segmentation. Zhou et al. [21] designed a cross-level feature fusion

module to merge adjacent features from various levels, enabling the characterization of cross-level

and multi-scale information to address scale variations in polyps. Additionally, CFU-Net [22]95

incorporates a multi-level attention module to exploit interactions of contextual information, de-

cision information, and long-range dependencies, thereby enhancing feature propagation within

skip connections.

2.2. Semi-Supervised Learning

Existing SSL methods can be categorized into self-training, consistency learning, contrastive100

learning, and adversarial learning. Self-training [23, 24] methods use the predictions of the

fully-supervised algorithm to act as the pseudo labels of the unlabeled data and retrain the

model by mixing with the labeled data. Consistency learning methods [10, 13, 14, 25] enforce

agreement between different views to improve the model’s performance. By utilizing a consis-

tency loss, these methods ensure that the model’s predictions remain consistent across different105
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representations or augmentations of the same input. Contrastive learning methods [15, 26–29]

obtain better representation learning by contrasting similar features against dissimilar features.

Adversarial learning methods [30–32] employ a minimax game between a generator and a dis-

criminator to train the model. By generating new and realistic samples, these methods enhance

the model’s ability to generalize and produce accurate segmentation. Several SSL methods have110

been developed for the medical image segmentation task. For example, Li et al. [25] proposed

a segmentation model with multiple auxiliary decoders and encouraged the consistency of the

predictions made by the main decoder and the auxiliary decoders. Besides, contrastive learn-

ing [26, 33, 34] has been widely used in SSL medical image segmentation. Moreover, adversarial

learning [30, 31, 35] has also emerged to improve the robustness of the model. For example,115

Peiris et al. [30] equipped the network with a critic network to influence the segmentation net-

work to produce the resemble prediction map as ground truth. Lei et al. [31] proposed double

discriminators which are used to learn the prior relationship between labeled and unlabeled data.

However, these semi-supervised methods do not deeply explore the exploitability and importance

of scale information for semi-supervised learning.120

2.3. Consistency Learning

Consistency learning as one of the most popular methods in semi-supervised learning aims to

force the network to learn potential knowledge from different predictions by applying consistency

constraints, which may come from different views of the same input from the same network, or

may come from the same input from different networks. Currently, several methods [10, 13, 36–125

38] based on the mean teacher framework focus on designing different consistent and perturbation

strategies to achieve SSL segmentation. For instance, Tarvainen et al. [10] proposed to generate

two different augmented views of the same input and use the output of the teacher model to

supervise the student model. Chen et al. [13] proposed cross-pseudo supervision by enforcing the

pseudo supervision between the predictions of two models with different parameter initialization.130

Verma et al. [36] regularized semi-supervised learning by encouraging consistent predictions at

interpolations of different unlabeled points. Wu et al. [37] proposed three decoders and a different

upsampling module in each decoder to amplify the perturbation and impose consistency across

the three prediction maps. Zhong et al. [38] proposed a multi-attention tri-branch network

(MTNet) that each branch uses a different attention mechanism. Among these methods, the135

consistent constraint is a widely used strategy, aiming to ensure that perturbations applied to

unlabeled data do not drastically alter their outputs.

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: The detailed architectures of the encoder (i.e., E in Fig. 1) and scale-specific decoder (i.e., D1 and D2 in

Fig. 1) networks. “Conv” denotes a sequential operation that consists of a 3×3 convolution, batch normalization,

and a ReLU activation, and “Trans-Conv” denotes a transpose convolution.

3. Proposed Method

3.1. Overview

The proposed DEC-Seg framework, as depicted in Fig. 1, fully leverages multi-scale informa-140

tion from both labeled and unlabeled data for medical image segmentation. Our segmentation

network comprises a shared encoder (E), two scale-specific decoders (D1 processes features solely

from the original scale while D2 exclusively processes features from the downsampled scale), and

a scale-fused decoder (Df is used to fuse features from both scales). Additionally, two generative

networks (G1 and G2) assist in the segmentation process, enhancing the feature mining ability145

of our segmentation network through a cross-generation strategy. Specifically, the original and

downsampled images from the labeled data are fed into the model (i.e., the encoder E and

scale-specific decoders D1 and D2), and then the scale-enhanced consistency and supervised loss

are calculated to constrain the network. Then, the unlabeled data and its perturbed versions

are inputted into the model. Meanwhile, we conduct scale-enhanced consistency, scale-aware150

perturbation consistency, and cross-generative consistency for unlabeled data, to fully leverage

unlabeled samples to improve the segmentation performance. Moreover, to make use of multi-

scale information, we design the scale-fused decoder (i.e., Df ) to generate the final segmentation

maps. For convenience, we denote Xl =
{
x1
l , x

2
l , · · · , xnl

l

}
and Yl =

{
y1l , y

2
l , · · · , ynl

l

}
as the la-

beled dataset and the corresponding label set, respectively, where nl is the number of the labeled155

images. We use Xu =
{
x1
u, x

2
u, · · · , xnu

u

}
to denote the unlabeled dataset with nu images, and

we typically have nl ≪ nu. Given inputs X, they are fed into the encoder to learn five levels of

features, namely {Fi}5i=1.
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3.2. Cross-level Feature Aggregation Module

To fully exploit cross-level information from various receptive fields and provide more effective

supplementation from different convolutional layers, we propose the CFA module. This module

fuses features from every two adjacent layers, enhancing the understanding of context and rela-

tionships within the cross-level features. The aggregated feature is then incorporated into our

designed decoder, as depicted in Fig. 2. Specifically, as shown in Fig. 3, two adjacent features Fi

and Fi+1 first proceeded by a 1×1 convolution, and then the two features are concatenated (i.e.,

Fcat) to obtain F
′
cat = Bconv3×3(Fcat), where Bconv3×3(·) is a sequential operation that consists

of a 3 × 3 convolution, batch normalization, and a ReLU activation. To learn the cross-level

attention-based enhanced feature, we conduct a global average pooling (GAP) on the cascaded

feature F
′
cat and utilize the point-wise convolution (PWC) [39] to capture channel interactions

across different spatial positions. Therefore, we obtain the attention-based weights by

W = σ
(
Convpwc2(ζ(Convpwc1(Gave(F

′
cat))))

)
, (1)

where the kernel sizes of Convpwc1 and Convpwc2 denote as C
r ×C × 1× 1 and C × C

r × 1× 1 (C

is channel size and r is a reduction ratio), respectively. Besides, ζ(·) and σ(·) indicate ReLU and

Sigmoid activation functions, respectively, and Gave is a GAP operation. Next, an element-wise

multiplication is utilized to enhance F
′
cat with W , and then a residual structure is also adopted

to fuse the enhanced feature and the original cascaded feature. Finally, we obtain the aggregated

feature by

FCFA
i = Bconv3×3

(
F

′
cat ⊗W ⊕ F

′
cat

)
, (2)

where ⊕ and ⊗ represent element-wise addition and multiplication, respectively. It is worth160

noting that our CFA module can explore contextual information from the diversity of resolutions

to enhance the features’ representation ability.

3.3. Scale-enhanced Consistency

The scale variation is still a great challenge for medical image segmentation. As discussed

in [40], reducing the gap between the network outputs from different scale images can help

the model learn scale-correlated features. Motivated by this observation, we propose a scale-

enhanced consistency scheme to constrain the outputs of different scale images to be closed, in

which the different scale features can be refined by each other. To increase the perturbation, we

use two independent decoders for the single-scale prediction task, which are called scale-special

decoders (i.e., D1 and D2). Specifically, given unlabeled images Xu, Xu and its downsampled

8
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Figure 3: Illustrations of cross-level feature aggregation module. “GAP” denotes the global average pooling,

“PWC” denotes the point-wise convolution, and “U” denotes the upsampling using bilinear interpolation.

versions X2
u = Down(Xu) are fed to a weight-shared encoder to extract two sets of multi-level

features, and then we can obtain the predicted maps S1
u and S2

u, respectively. Specifically, the

two segmentation maps can be obtained by S1
u = D1(E(Xu)) and S2

u = D2(E(X2
u)), where E(·)

is the encoder, and Down(·) denotes a 1/2 downsampling operation. Furthermore, we employ the

mutual supervision approach outlined in [13] to ensure the consistency of S1
u and S2

u with different

sizes. Concretely, Ŷ 1
u = argmax

c
(S1

u) and Ŷ 2
u = argmax

c
(S2

u) are computed. Subsequently, Ŷ 1
u is

downsampled to the size of S2
u and utilized as a pseudo-label for S2

u, while Ŷ 2
u is upsampled to

the size of S1
u and employed as a pseudo-label for S1

u. Therefore, the scale-enhanced consistency

loss for unlabeled data is defined by

Lu
SC(S

1
u, S

2
u) = Lce(S

1
u, Up(Ŷ 2

u )) + Lce(S
2
u, Down(Ŷ 1

u )), (3)

where Lce denotes the widely used cross entropy loss and Up(·) denotes a 2× upsampling

operation. Similarly, for labeled images Xl, we can obtain the predicted segmentation maps S1
l165

and S2
l from Xl and its downsampled versions X2

l by S1
l = D1(E(Xl)) and S2

l = D2(E(X2
l )),

respectively. As a result, Ll
SC(S

1
l , S

2
l ) can be obtained in the same way.

3.4. Dual-scale Complementary Fusion Module

The two independent decoders, as designed in Section 3.3, are specialized for processing

information at two distinct scales. Throughout network training, these decoders acquire unique170

features based on the input image scale, with each emphasizing different aspects. Despite this

distinction, the features from both scales pertain to the same unlabeled image, indicating the

opportunity to combine and extract features from these two scale features further, potentially

resulting in an enhanced segmentation map. Consequently, to fully leverage information from

9
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Figure 4: Illustration of (a) the architecture of the scale-fused decoder (i.e., Df in Fig. 1) and (b) the proposed

dual-scale complementary fusion module. “U” denotes the upsampling using a bilinear interpolation.

different scales, in comparison to the scale-specific decoder, we also introduce the scale-fused175

decoder (Df in Fig. 1) to produce more reliable predictions as the final segmentation maps.

As shown in Fig. 1, the features from D1 and D2 are fused and then fed into the scale-fused

decoder. The feature flow of the scale-fused decoder is shown in Fig. 4(a), and the structure of

the scale-fused decoder is basically the same as that of the scale-specific decoder. To achieve the

fuse operation, we present a dual-scale complementary fusion (DCF) module to fuse the features

from the two scale-specific decoders. This module replaces the features transmitted from the

encoder through the skip operation. The proposed DCF module aims to fuse the multi-scale

features and enable the features from the original scale and downsampled scale to complement

each other (as shown in Fig. 4(b)). Taking the original scale feature as an example, we first

conduct a 3× 3 convolution on Up(h2
i ) and Sigmoid activation function to obtain a scale-aware

weight W2 = σ(Bconv3×3(Up(h2
i ))). Then, we multiply W2 by Bconv3×3(Up(h2

i )), and the re-

sultant feature is the complementary information (i.e., h2
com) which is encouraged to learn the

information required by the original scale. Finally, we add the complementary feature obtained

at the downsampled scale to the original scale and then smooth the feature by a 3 × 3 convo-

lution, thus we can obtain h1
rec = Bconv3×3(Bconv3×3(h

1
i ) + Bconv3×3(Up(h2

i )) ∗ W2). Similarly,

10
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operation that consists of a 3 × 3 convolution, batch normalization, and a ReLU activation, and “Trans-Conv”

denotes a transpose convolution.

we can obtain the complementary-enhanced downsampled feature h2
rec. Through a cross-scale

complementary-enhanced process, we learn more rich multi-scale feature representations. Fur-

ther, two features h1
rec and h2

rec are concatenated and then proceeded by a 1× 1 convolution to

two channels and a Softmax function to obtain two weight maps α1 and α2, where α1 + α2 = 1.

Finally, we obtain the multi-scale fused feature by

hdcf
i = h1

rec ⊗ α1 + h2
rec ⊗ α2. (4)

Subsequently, the fused features hdcf
i will concatenate with the features from the previous

layer and continue to propagate forward. Specifically, hdcf
5 is first passed through two convolu-

tional layers and a transpose convolutional layer to have the same resolution with hdcf
4 . Then,

the two features are concatenated and fed into the next two convolutional layers. Repeating the180

above process, we will obtain the final segmentation maps Sf . It is important to highlight that

the scale-fused decoder plays a vital role in fully integrating multi-scale information, consequently

enhancing the segmentation performance. Consequently, during the inference stage, the segmen-

tation predictions obtained from the scale-fused decoder are taken as the final segmentation

results.185

3.5. Scale-aware Perturbation and Cross-generative Consistency

To constrain the predictions of unlabeled data on the scale-fused decoder, we follow previous

works [25, 41, 42], and introduce scale-aware perturbation consistency to encourage the outputs

between the original version and perturbed version to be closed. Specifically, we impose the per-

turbation consistency on different scale images, i.e., S1
p = D1(E(P(Xu))), S

2
p = D2(E(P(X2

u))),

and Sf
p , where a random color jitter operation is adopted as the perturbation operation (i.e.,

P). Thus, Lp
SC(S

1
p , S

2
p) is obtained and the scale-aware perturbation consistency scheme can be

optimized by minimizing LSPC , which is defined by

LSPC = Lmse(S
1
u, S

1
p) + Lmse(S

2
u, S

2
p) + Lmse(S

f
u , S

f
p ). (5)

11
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Further, to utilize the rich information contained in different feature maps, we propose a

perturbation-based cross-generative consistency constraint to enhance the feature mining ability

of our segmentation network with information reconstruction and to correct the cognitive bias

on a single input version with cross-generation. Therefore, we design two generative networks

G1 and G2 (The detailed structure is shown in Fig. 5) for image reconstruction. For the genera-

tive network to accept richer information, produce better-reconstructed maps, and deliver more

valuable feedback to the segmentation network, the logit predictions zfu and zfp obtained from

the scale-fused decoder are fed into G2 and G1, respectively, and then we can obtain two recon-

structed images X̂p = G1(z
f
p ) and X̂u = G2(z

f
u). Finally, we form a cross-generative consistency

loss (LCC), which is given by

LCC = Lmse(X̂p, Xu) + Lmse(X̂u, Xp). (6)

It is worth noting that LCC can enforce X̂p and Xu to be consistent and X̂u and Xp to be

closed. Using the input image as a learning target provides unlabeled data with an authentic

constraint containing structural and semantic information. This empowers the segmentation

network to prioritize the structural and semantic details that are pertinent to category infor-190

mation during the generation of segmentation maps. The cross-generation process compels the

network to investigate inconsistent predictions caused by color variations, thereby rectifying the

network’s cognitive biases toward a single input and ensuring the accuracy of predictions for

both the original input and the perturbed input from different perspectives. Consequently, such

cross-generation can further enhance the robustness of our model, enabling it to learn powerful195

features and effectively leverage the knowledge from unlabeled data to enhance the proposed

segmentation model.

3.6. Overall Loss Function

In this study, the supervised loss for labeled data is the sum of the loss on the prediction

maps of the designed three decoders and its corresponding ground truth, and it is formulated by

LS = Lsup(S
1
l , Yl) + Lsup(S

2
l , Down(Yl)) + Lsup(S

f
l , Yl), (7)

where Lsup = (LCE + LDice)/2, LCE and LDice denote the cross-entropy (CE) loss and Dice

loss, respectively. Finally, the total loss can be given as follows:

Ltotal = LS + LSPC + LSC + LCC , (8)

12
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where LSC = Ll
SC +Lu

SC +Lp
SC is the sum of scale-enhanced consistency loss in labeled images,

unlabeled images, and perturbed images.200

4. Experiments and Results

4.1. Datasets

Colonoscopy Datasets: We carry out the comparison experiments on four public datasets,

i.e., CVC-ColonDB [43], Kvasir [44], CVC-ClinicDB [45], and ETIS [46]. Following the setting

in [47], 1, 450 images are randomly selected from the two datasets (i.e., CVC-ClinicDB and205

Kvasir) for the training set, and the remaining images from the two datasets and the other two

datasets (i.e., ETIS and CVC-ColonDB) to form the testing set. Besides, 10% (145 images) or

30% (435 images) from the training set are used as the labeled data, while the remaining images

are adopted as the unlabeled data.

Brain Tumor Dataset: This dataset contains brain MR images together with manual210

FLAIR abnormality segmentation masks and it comes from 110 patients included in The Cancer

Genome Atlas (TCGA) lower-grade glioma [48, 49]. In this study, we have 1, 090 images for the

training set and 283 ones for the testing set. In addition, 10% and 30% images from the training

set are adopted as the labeled data, respectively, while the remaining training images are taken

as unlabeled data.215

Skin Lesion Dataset: The dataset comes from ISIC-2018 challenge [50] and is used for

skin lesion segmentation. It includes 2, 594 dermoscopic images for training and 1, 000 images

for testing. In the same way, 10% or 30% images from the training set are used as the labeled

data, while the remaining images are formed as the unlabeled set.

4.2. Implementation Details and Evaluation Metrics220

Implementation Details: The proposed segmentation framework is implemented in Py-

Torch and trained on one NVIDIA GeForce RTX3090 GPU. The input images from the polyp

segmentation dataset and skin lesion segmentation dataset are uniformly rescaled to 352× 352,

and the inputs of the brain MRI segmentation dataset are uniformly rescaled to 256× 256. Our

model converges over 10, 000 iterations with a batch size of 6 including 3 labeled samples and225

3 unlabeled samples, and uses an SGD optimizer with an initial learning rate set to 1e-2 and a

poly learning rate strategy to update the learning rate.
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Table 1: Quantitative results on CVC-ClinicDB and Kvasir datasets with 10% or 30% labeled data.

Methods
10% labeled 30% labeled

mDice ↑ mIoU ↑ Fw
β ↑ Sα ↑ MAE ↓ mDice ↑ mIoU ↑ Fw

β ↑ Sα ↑ MAE ↓

C
V
C
-C

li
n
ic
D
B

MT [10] 0.747 0.662 0.741 0.830 0.028 0.772 0.689 0.763 0.852 0.028

DAN [32] 0.755 0.674 0.733 0.842 0.027 0.775 0.696 0.772 0.848 0.027

UA-MT [11] 0.749 0.676 0.742 0.839 0.027 0.790 0.715 0.787 0.853 0.025

URPC [14] 0.769 0.696 0.760 0.854 0.021 0.777 0.709 0.785 0.853 0.026

CLCC [15] 0.794 0.720 0.786 0.859 0.027 0.840 0.786 0.840 0.891 0.019

SLC-Net [16] 0.752 0.689 0.735 0.844 0.027 0.835 0.774 0.830 0.888 0.020

MC-Net+ [37] 0.767 0.702 0.751 0.856 0.025 0.845 0.783 0.844 0.891 0.020

CDMA [38] 0.759 0.676 0.750 0.837 0.025 0.803 0.728 0.802 0.863 0.024

SCP-Net [51] 0.776 0.703 0.758 0.854 0.024 0.839 0.786 0.837 0.888 0.020

MCF [52] 0.779 0.718 0.767 0.860 0.021 0.823 0.766 0.819 0.882 0.019

DEC-Seg (ours) 0.836 0.774 0.834 0.886 0.019 0.859 0.804 0.860 0.900 0.015

K
va
si
r

MT [10] 0.814 0.722 0.797 0.841 0.050 0.814 0.732 0.790 0.852 0.052

DAN [32] 0.808 0.723 0.786 0.839 0.059 0.841 0.760 0.828 0.866 0.043

UA-MT [11] 0.799 0.713 0.782 0.834 0.058 0.845 0.771 0.840 0.873 0.037

URPC [14] 0.811 0.728 0.796 0.842 0.057 0.849 0.778 0.846 0.874 0.040

CLCC [15] 0.806 0.724 0.796 0.844 0.052 0.864 0.804 0.853 0.892 0.034

SLC-Net [16] 0.840 0.773 0.830 0.868 0.042 0.867 0.805 0.856 0.890 0.034

MC-Net+ [37] 0.817 0.735 0.807 848 0.051 0.831 0.765 0.816 0.862 0.044

CDMA [38] 0.786 0.695 0.769 0.826 0.056 0.839 0.758 0.826 0.862 0.044

SCP-Net [51] 0.810 0.723 0.790 0.840 0.056 0.862 0.789 0.847 0.878 0.037

MCF [52] 0.822 0.751 0.816 0.852 0.051 0.856 0.794 0.847 0.882 0.039

DEC-Seg (ours) 0.859 0.787 0.853 0.877 0.044 0.893 0.830 0.886 0.902 0.032

Evaluation Metrics: To evaluate the effectiveness, we employ five commonly adopted met-

rics [19, 47], namely mean Dice (mDice), mean IoU (mIoU), Fw
β , Sα, and mean absolute error

(MAE).230

4.3. Comparison with State-of-the-arts

We compare the proposed DEC-Seg with ten state-of-the-art semi-supervised segmentation

methods, i.e., MT [10], DAN [32], UA-MT [11], URPC [14], CLCC [15], SLC-Net [16], MC-

Net+ [37], CDMA [38], SCP-Net [51] and MCF [52]. For a fair comparison, we change the

backbones of all compared methods to “Res2Net”, and then train all compared methods without235
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Table 2: Quantitative results on two unseen datasets (CVC-ColonDB and ETIS) with 10% or 30% labeled data.

Methods
10% labeled 30% labeled

mDice ↑ mIoU ↑ Fw
β ↑ Sα ↑ MAE ↓ mDice ↑ mIoU ↑ Fw

β ↑ Sα ↑ MAE ↓

C
V
C
-C

o
lo
n
D
B

MT [10] 0.589 0.497 0.581 0.743 0.048 0.600 0.510 0.597 0.749 0.045

DAN [32] 0.620 0.517 0.604 0.756 0.046 0.633 0.546 0.630 0.767 0.045

UA-MT [11] 0.553 0.471 0.551 0.727 0.051 0.648 0.563 0.635 0.771 0.046

URPC [14] 0.556 0.480 0.549 0.732 0.047 0.598 0.519 0.601 0.754 0.045

CLCC [15] 0.538 0.473 0.533 0.720 0.053 0.564 0.505 0.562 0.738 0.050

SLC-Net [16] 0.595 0.525 0.582 0.755 0.044 0.653 0.582 0.644 0.783 0.041

MC-Net+ [37] 0.562 0.486 0.543 0.725 0.055 0.589 0.518 0.578 0.745 0.050

CDMA [38] 0.507 0.419 0.494 0.691 0.054 0.624 0.536 0.609 0.756 0.047

SCP-Net [51] 0.577 0.495 0.559 0.739 0.049 0.694 0.615 0.683 0.802 0.039

MCF [52] 0.566 0.498 0.559 0.742 0.045 0.621 0.550 0.614 0.768 0.042

DEC-Seg (ours) 0.648 0.565 0.630 0.771 0.046 0.721 0.640 0.709 0.814 0.035

E
T
IS

MT [10] 0.356 0.288 0.337 0.636 0.035 0.495 0.420 0.462 0.706 0.039

DAN [32] 0.437 0.358 0.397 0.666 0.046 0.485 0.418 0.472 0.708 0.027

UA-MT [11] 0.459 0.393 0.441 0.693 0.029 0.541 0.473 0.523 0.738 0.024

URPC [14] 0.420 0.356 0.406 0.677 0.028 0.559 0.490 0.549 0.749 0.021

CLCC [15] 0.409 0.346 0.395 0.668 0.031 0.474 0.422 0.465 0.707 0.020

SLC-Net [16] 0.431 0.374 0.409 0.682 0.030 0.566 0.503 0.543 0.753 0.024

MC-Net+ [37] 0.439 0.369 0.403 0.684 0.035 0.535 0.470 0.505 0.735 0.026

CDMA [38] 0.309 0.254 0.296 0.611 0.031 0.531 0.446 0.494 0.724 0.024

SCP-Net [51] 0.394 0.323 0.355 0.656 0.045 0.571 0.500 0.543 0.747 0.023

MCF [52] 0.425 0.367 0.407 0.679 0.025 0.487 0.425 0.469 0.707 0.022

DEC-Seg (ours) 0.592 0.511 0.558 0.758 0.025 0.634 0.564 0.608 0.789 0.019

any data augmentation. All the compared methods undergo 10, 000 iterations, similar to our

approach, utilizing the same data and image dimensions. In the case of CLCC, we maintain

its original setting of 320 × 320 due to the specificity of the method. Moreover, the optimizer,

learning rate, and descent strategy all remain consistent with their original configurations across

the compared methods.240

4.3.1. Experiments on Polyp Segmentation

Quantitative comparisons are reported in Table 1 and Table 2. To validate the learning

ability of the two seen training datasets (CVC-ClinicDB and Kvasir), it can be seen from Table 1
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Table 3: Quantitative results on Brain MRI dataset with 10% or 30% labeled data.

Methods
10% labeled 30% labeled

mDice ↑ mIoU ↑ Fw
β ↑ Sα ↑ MAE ↓ mDice ↑ mIoU ↑ Fw

β ↑ Sα ↑ MAE ↓
MT [10] 0.491 0.404 0.512 0.705 0.015 0.674 0.561 0.704 0.792 0.012

DAN [32] 0.534 0.429 0.564 0.719 0.015 0.703 0.582 0.737 0.803 0.011

UA-MT [11] 0.549 0.435 0.584 0.721 0.015 0.703 0.586 0.736 0.807 0.011

URPC [14] 0.547 0.448 0.571 0.729 0.014 0.653 0.548 0.677 0.785 0.012

CLCC [15] 0.595 0.505 0.615 0.760 0.012 0.728 0.615 0.754 0.824 0.010

SLC-Net [16] 0.483 0.400 0.506 0.704 0.015 0.702 0.591 0.714 0.807 0.010

MC-Net+ [37] 0.580 0.481 0.595 0.749 0.015 0.746 0.640 0.766 0.834 0.009

CDMA [38] 0.495 0.408 0.508 0.705 0.015 0.627 0.526 0.647 0.775 0.011

SCP-Net [51] 0.559 0.467 0.571 0.741 0.014 0.643 0.544 0.660 0.783 0.012

MCF [52] 0.589 0.491 0.623 0.750 0.013 0.704 0.612 0.722 0.819 0.010

DEC-Seg (ours) 0.626 0.533 0.639 0.777 0.012 0.767 0.671 0.783 0.850 0.008

Table 4: Quantitative results on ISIC-2018 dataset with 10% or 30% labeled data.

Methods
10% labeled 30% labeled

mDice ↑ mIoU ↑ Fw
β ↑ Sα ↑ MAE ↓ mDice ↑ mIoU ↑ Fw

β ↑ Sα ↑ MAE ↓
MT [10] 0.822 0.738 0.809 0.811 0.104 0.844 0.760 0.822 0.825 0.087

DAN [32] 0.831 0.744 0.817 0.815 0.097 0.842 0.757 0.825 0.824 0.091

UA-MT [11] 0.839 0.752 0.818 0.820 0.094 0.845 0.762 0.829 0.829 0.086

URPC [14] 0.847 0.763 0.829 0.831 0.089 0.853 0.772 0.835 0.880 0.082

CLCC [15] 0.842 0.756 0.815 0.820 0.088 0.845 0.762 0.816 0.821 0.092

SLC-Net [16] 0.843 0.754 0.818 0.822 0.091 0.846 0.752 0.811 0.821 0.085

MC-Net+ [37] 0.848 0.767 0.829 0.832 0.087 0.862 0.782 0.841 0.842 0.076

CDMA [38] 0.858 0.777 0.842 0.839 0.083 0.868 0.788 0.848 0.846 0.073

SCP-Net [51] 0.852 0.770 0.835 0.835 0.085 0.853 0.769 0.831 0.834 0.083

MCF [52] 0.856 0.773 0.837 0.836 0.083 0.861 0.778 0.839 0.840 0.077

DEC-Seg (ours) 0.867 0.796 0.858 0.851 0.078 0.875 0.801 0.862 0.856 0.069

that while most methods learn well, our method performs better than other compared methods,

both on 10% and 30% of labeled data, which indicate that our DEC-Seg can fully leverage245

unlabeled data to improve the polyp segmentation performance. Additionally, we report the

comparison results on two unseen datasets (ETIS, and CVC-ColonDB) from Table 2 to verify

the generalization ability of our DEC-Seg. The CVC-ColonDB and ETIS datasets are difficult,
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Images GT our MT DAN UA-MT URPC CLCC SLC-Net MC-Net+ CDMA SCP-Net MCF

Figure 6: Qualitative results of our model and other ten compared semi-supervised segmentation methods on

polyp segmentation datasets.

as polyps are with large variations in size. As reported in Table 2, comparing the SCP-Net

method on the CVC-ColonDB dataset using 30% labeled data, our method achieves 3.9% and250

4.1% improvements on mDice and mIoU, respectively. Similarly, on the ETIS dataset, our

performance has a more significant superiority over other methods. The primary reason is that

our exploration and utilization of scale information enhance the model’s robustness to scale

variations. This capability allows it to small polyps, while other methods cannot identify them

accurately. Overall, the results indicate that our DEC-Seg has a better generalization ability255

and effectively utilizes unlabeled data to boost polyp segmentation.

Fig. 6 presents some of the visualization results of the test examples under 30% labeled

data. It can be seen that our method can accurately locate and segment polyps under different

challenging factors. For example, in the first row of Fig. 6, the polyps have very small sizes. It can

be seen that DAN, URPC, CLCC, and SLC-Net methods fail to locate polyps. Other methods260

produce over-segmented fragments and confuse the edges of polyps, while our method accurately

and completely segments polyps. In the 3rd row, the polyps are visually embedded in their

surrounding mucosa, thus it is very difficult to accurately locate and segment these polyps. From

the results, our method performs better than other comparison methods to accurately segment

polyps. In the 4th row, the polyps have relatively large sizes, making it challenging to complete265

locate the polyps. In this case, some methods (e.g., UA-MT, URPC, CLCC, CDMA, and MCF)

only locate some fragments of polyps, while our method can obtain promising segmentation

results and produce fine details of the boundary. This is mainly because our method makes

use of multi-scale information and cross-generative consistency to learn more powerful feature

representations, which help boost the segmentation performance. In addition, we also show270
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Images GT our MT DAN UA-MT URPC CLCC SLC-Net MC-Net+ CDMA SCP-Net MCF

Figure 7: Qualitative results of our model and other ten compared semi-supervised segmentation methods on

brain tumor segmentation dataset.

Images GT our MT DAN UA-MT URPC CLCC SLC-Net MC-Net+ CDMA SCP-Net MCF

Figure 8: Qualitative results of our model and other ten compared semi-supervised segmentation methods on skin

lesion segmentation dataset.

some segmentation results containing multiple polyps (see the 5th row). Compared with other

methods, the segmentation of multiple polyps by our method is more complete and accurate. It

can be also observed that our method can effectively locate and segment polyps under different

challenging factors, such as scale variation, homogeneous regions, non-sharp boundaries, and

multiple polyps.275

4.3.2. Experiments on Brain Tumor Segmentation

As shown in Table 3, our DEC-Seg achieves significant improvement in five metrics, and

compared to the second best, our method achieves 5.2% and 5.5% improvements in terms of

mDice and mIou with 10% labeled data, and the corresponding improvements are 2.8% and

4.8% with 30% labeled data. Moreover, it can be seen in Fig. 7 that our method can segment280

the glioma completely and coherently. In the 2rd row, the segmentation maps of other methods

are discrete, while our method produces more coherent segmented fragments. In addition, in the

4th row, some methods (e.g., URPC, CLCC, and SLC-Net) do not find glioma regions, while our

method accurately locates and segments glioma regions.
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Table 5: Ablative results on the Kvasir and CVC-ColonDB datasets with 30% labeled data.

Settings
Kvasir CVC-ColonDB

mDice mIoU Fw
β Sα mDice mIoU Fw

β Sα

(No.1) Baseline 0.850 0.778 0.829 0.873 0.612 0.539 0.600 0.760

(No.2) Baseline + SC 0.873 0.812 0.865 0.894 0.637 0.572 0.632 0.773

(No.3) Baseline + SC + DCF 0.882 0.818 0.874 0.892 0.675 0.599 0.658 0.790

(No.4) Baseline + SC + DCF + CC 0.888 0.827 0.882 0.900 0.702 0.626 0.694 0.807

(No.5) Baseline + SC + DCF + CFA 0.888 0.824 0.878 0.898 0.698 0.621 0.688 0.804

(No.6) Baseline + SC + DCF + CC + CFA (ours) 0.893 0.830 0.886 0.902 0.721 0.640 0.709 0.814

4.3.3. Experiments on Skin Lesion Segmentation285

Table 4 shows the performance on skin lesion segmentation dataset with 10% and 30% labeled

ratios. DEC-Seg surpasses all state-of-the-arts. Our method achieves 1.3% and 3.0% improve-

ments over MCF in terms of mDice and mIou with 10% labeled data, and the corresponding

improvements are 1.6% and 3.0% with 30% labeled data. Besides, Fig. 8 shows the visual seg-

mentation results in the skin lesion segmentation dataset. Compared with other methods, our290

DEC-Seg achieves better and more accurate segmentation in blurred boundaries.

4.4. Ablation Study

To verify the effectiveness of each key component in DEC-Seg, we conduct ablation studies

with 30% labeled data on Kvasir and CVC-ColonDB datasets. The ablative results are shown

in Table 5, where “Baseline” denotes the semi-supervised framework with only scale-aware per-295

turbation consistency.

Effectiveness of SC. To investigate the importance of scale-enhanced consistency (SC), we

add the SC loss to encourage the consistency of predictions from the same inputs with different

scales. From Table 5, we observe that No.2 (Baseline + SC) outperforms No.1 and obtains a

4.1% improvement in mean Dice. This result indicates that scale-enhanced consistency is very300

helpful in improving polyp segmentation performance and is robust to scale variation.

Effectiveness of DCF. As shown in Table 5, No.3 (using the proposed DCF module)

outperforms No.2 on two datasets. This indicates that the fusion of multi-scale features can

further improve the segmentation performance. In addition, to further validate the effectiveness

of the dual-scale complement fusion strategy in the proposed DCF module, we construct a305

“Basic” strategy, which conducts a concatenation operation followed by two convolution layers

to integrate the two features from different scales. The comparison results are shown in Table
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Table 6: Ablative results of our DCF module and a basic fusion strategy on the Kvasir and CVC-ColonDB

datasets. The labeled ratio is set to 30%.

Settings
Kvasir CVC-ColonDB

mDice mIoU Fw
β mDice mIoU Fw

β

Basic 0.885 0.823 0.878 0.710 0.633 0.703

DCF 0.893 0.830 0.886 0.721 0.640 0.709

6. From Table 6, it can be observed that our DCF performs better than the “Basic” strategy,

indicating the effectiveness of the designed dual-scale complementary fusion module. Moreover,

we visualize the segmentation results by using three different decoders, i.e., the scale-specific and310

scale-fused decoders, and the comparison results are shown in Fig. 9. It can be observed that our

method can not accurately locate the boundaries of the polyps when only using the original scale

features or the downsampled scale features. However, we integrate the features from the two

scales and then propagate them into the scale-fused decoder, which can produce more accurate

segmentation maps (as shown in Fig. 9 (c)). This further confirms that integrating features from315

different scales enhances segmentation performance.

Effectiveness of CC. We further study the contributions of cross-generative consistency

(CC). As shown in Table 5, it can be seen that No.4 improves the No.3 performance on the

CVC-ColonDB dataset, as the mean Dice is improved from 0.675 to 0.702. Therefore, these

improvements indicate that introducing cross-generative consistency loss can help accurately320

segment polyp tissues in the learning of details and textures.

Effectiveness of CFA. We then examine the significance of the proposed CFA module. To

do this, we integrate the CFA into configurations No.3 and No.4 by aggregating the features of

adjacent layers in the encoder before passing them to the decoder. As shown in Table 5, No.5

outperforms No.3, and No.6 shows a substantial improvement over No.4 on the CVC-ColonDB325

dataset, which has significant scale variation. This demonstrates that the CFA module effectively

captures scale information and enhances segmentation performance.

4.5. Limitation and Future Work

The qualitative and quantitative evaluations confirm the effectiveness and superiority of our330

model. However, DEC-Seg encounters challenges in accurately segmenting polyps when dealing

with ambiguous areas and unclear boundaries. Some failure cases generated by our model are
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Images (a) (b) (c)

Figure 9: Visualization results of the three decoders. (a) predictions of the decoder (i.e., D1) using the original

scale features; (b) predictions of the decoder (i.e., D2) using the downsampled scale features; (c) predictions of

the scale-fused decoders (i.e., Df ) using the multi-scale integrated features. The red and blue lines denote the

ground truth and predictions, respectively.

depicted in Fig. 10. In the 1st and 2nd rows, while the prominent polyp regions are segmented

accurately, there are inaccuracies in parts areas of the segmentation. In the 3rd and 4th rows, it

is evident that the polyp regions are notably small and masked within the background, featuring335

very unclear boundaries, which presents a significant challenge in accurately segmenting the

polyp regions. It is apparent that under these circumstances, our DEC-Seg struggles to identify

and segment the polyps. Therefore, dealing with ambiguous areas and segmenting polyps with

unclear boundaries is desired to be investigated in future work. Additionally, unlike a simple

UNet framework, our model may have higher complexity due to incorporating three decoders and340

two generative networks. Furthermore, our model has only been validated on 2D segmentation

tasks. Moving forward, we intend to address and overcome these limitations in our future research

endeavors.
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Images GT Ours

Figure 10: Some failure cases generated by our DEC-Seg.

5. Conclusion

In this paper, we have presented a novel semi-supervised learning framework (DEC-Seg) for345

medical image segmentation. The proposed cross-level feature aggregation module integrates

the adjacent features from different resolutions, to enhance the features’ representation ability.

Then, a scale-enhanced consistency is proposed to handle scale variation and learn more scale-

aware features. Meanwhile, we design the scale-fused decoders and a dual-scale complementary

fusion module to aggregate the features from the scale-specific decoders and produce the final350

segmentation maps. Moreover, multiple consistency strategies, i.e., scale-aware perturbation

consistency and cross-generative consistency, are presented to enhance the learning process and

fully leverage unlabeled data to boost the segmentation performance. Experimental results on

multiple datasets from three medical image segmentation tasks show that our DEC-Seg is superior

to state-of-the-art semi-supervised segmentation methods.355
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1)  We  propose  a  novel  semi-supervised  medical  image  segmentation  framework,  leveraging  scale-

enhanced consistency and cross-generative consistency to boost the segmentation model. 

2) A cross-level feature aggregation module (CFA) is proposed to fuse the cross-level features, which can

enhance the representation ability of features within different resolutions.

3) We present a scale-enhanced consistency constraint and cross-generative consistency to boost the

ability of feature representations. 

4) A dual-scale complementary fusion (DCF) module is proposed to generate better predictions through

the complementation and fusion of different scale information from the two scale-specific decoders.

5) Extensive experimental results show the effectiveness of the proposed method. 
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