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Abstract—Label noise is ubiquitous in many real-world scenarios which often misleads training algorithm and brings about the
degraded classification performance. Therefore, many approaches have been proposed to correct the loss function given corrupted
labels to combat such label noise. Among them, a trend of works achieve this goal by unbiasedly estimating the data centroid, which
plays an important role in constructing an unbiased risk estimator for minimization. However, they usually handle the noisy labels in
different classes all at once, so the local information inherited by each class is ignored which often leads to unsatisfactory performance.
To address this defect, this paper presents a novel robust learning algorithm dubbed “Class-Wise Denoising” (CWD), which tackles the
noisy labels in a class-wise way to ease the entire noise correction task. Specifically, two virtual auxiliary sets are respectively
constructed by presuming that the positive and negative labels in the training set are clean, so the original false-negative labels and
false-positive ones are tackled separately. As a result, an improved centroid estimator can be designed which helps to yield more
accurate risk estimator. Theoretically, we prove that: 1) The variance in centroid estimation can often be reduced by our CWD when
compared with existing methods with unbiased centroid estimator; and 2) The performance of CWD trained on the noisy set will
converge to that of the optimal classifier trained on the clean set with a convergence rate O( 1√

n
) where n is the number of the training

examples. These sound theoretical properties critically enable our CWD to produce the improved classification performance under
label noise, which is also demonstrated by the comparisons with ten representative state-of-the-art methods on a variety of benchmark
datasets.

Index Terms—Label noise, Centroid estimation, Unbiasedness, Variance reduction.
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1 INTRODUCTION

T Raditional supervised machine learning algorithms usually
require that training examples are all correctly labeled, oth-
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erwise their performance will decrease significantly due to the
misleading supervision information. However, in many practi-
cal situations, the accurate labels of examples may be difficult
to obtain due to various subjective or objective factors such
as unavoidable human fatigue, limitation of human knowledge,
measurement error of instruments, unreliable automatic labeling
processes, etc. Therefore, it is highly desirable that some robust
learning approaches can be designed to make the training process
robust to noisy labels [1].

The existing methods for dealing with label noise can be
roughly classified into three types, namely correctly-labeled data
identification (or equivalently incorrectly-labeled data removal)
[2], [3], [4], [5], robust loss design [6], [7], [8], and label-flip-rate
based loss correction [9], [10], [11], [12]. Among them, correctly-
labeled data identification or incorrectly-labeled data removal is
perhaps the most straightforward way for tackling noisy labels,
which aims to find the accurately labeled or mislabeled data
to eliminate the negative impacts of noisy labels on training.
The early-staged methods usually follow this idea which focus
on noise detection and filtering [2], [13], namely the data are
preprocessed to remove the possible noise ahead of conducting
the standard algorithms. Due to the popularity of deep learning,
correctly-labeled data identification is also adapted to various
neural networks based on the “memorization” effect inherited
by networks [14]. That is to say, the neural networks will fit
correct and easy patterns in initial epochs and then move to the
incorrect and difficult patterns in later epochs. Therefore, examples
incurring small training loss values (a.k.a. small-loss data) can be
selected in each epoch to reliably update the network. The typical
methods include MentorNet [15], co-teaching [3], co-teaching+
[16], co-regularization [17], Search to Exploit [18], the curriculum
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loss [4], and SIGUA [19], etc. The main difference among these
methods lies in how to find possible correctly labeled training data.
For the identified mislabeled examples, some methods further
conduct label correction via semi-supervised learning [5], label
distribution learning [20], joint network optimization and true
label estimation [21], conditional random field [22], etc.

However, the data selection or filtering process mentioned
above are quite empirical and are short of theoretical guarantee,
so this type of methods cannot stably generate good performance.
Therefore, the second trend of research on label-noise learning
tries to devise various noise-robust loss functions. These methods
are usually largely based on the traditional cross entropy loss for
learning with clean data. For example, Ghosh et al. [6] presented
the Mean Absolute Error, which has been further extended by the
Generalized Cross Entropy loss [23] that employs a negative Box-
Cox transformation. Ma et al. [7] showed that the Mean Absolute
Error can be made more robust to label noise by applying simple
normalization, based on which they devised the Active Passive
loss. Besides, Wang et al. [8] found that the plain use of the Cross
Entropy loss can be class-biased, so they proposed the Symmetric
Cross Entropy loss inspired by the symmetric Kullback-Leibler
divergence. Recently, Hu et al. [24] devised Robust Clustering
loss to make the deep networks focus on clean examples instead
of noisy ones. Feng et al. [25] proposed the Taylor Cross Entropy
Loss by explicitly controlling the order of Taylor Series for the
cross entropy loss, so that the proposed loss function integrates
the advantages of various robust loss functions.

The last type of methods for tackling noisy labels is label-flip-
rate based loss correction, which has gained intensive attention
recently and aims to correct the conventional loss functions based
on the estimated label flip rate from one class to another. A pio-
neering work is [9] which proposed a simple weighted surrogate
loss that is provably noise-tolerant. A key problem in [9] was
to estimate the label flip rate, so [26] assumed that there exist
a handful of clean data known as “anchor points” and further
proposed an importance reweighing technique. Differently, [10]
devised a backward correction operation specifically for deep
neural networks to combat label noise. All the above methods
require the anchor points to accurately estimate the label flip rate
which may not be available in practical situations. Thereby, [27]
and [28] proposed to decompose the original label flip matrix to
some predictable matrices to relax such a requirement; and [29]
estimated the label flip matrix by resorting to the simplex formed
by its columns with the minimum volume. Other representative
works belonging to this type include [30], [31], [32], [33], [34].

Among label-flip-rate based loss correction approaches, an
important branch of works such as [11], [12], [35] aim to correct
the loss by recovering the centroid of the training dataset with
clean labels, in which an unbiased centroid estimator is critically
built to form the unbiased empirical risk. Concretely, [11], [12],
[35], [36] reveal that the commonly used loss functions (e.g.,
the squared loss and hinge loss) can be decomposed as a label-
independent term plus a label-dependent term, among which only
the latter is affected by the corrupted labels. By noting that the
label-dependent term is governed by the centroid of the training
dataset which is related to the label values, the only thing we
need to do is to precisely estimate the data centroid based on
the observed noisy training set. However, the above-mentioned
methods consider the noisy labels in all classes simultaneously
when devising the centroid estimator, so the local information of
individual class is not fully deployed, which often leads to the

degraded performance.

Therefore, in this paper, we propose a novel algorithm dubbed
“Class-Wise Denoising” (CWD) to progressively tackle the noisy
labels class by class so that the difficulty of entire denoising
process can be decreased. Taking binary classification as an
example, we respectively treat the positively labeled examples
and negatively labeled examples in the training set as clean, and
separately correct noisy labels in the negative class and positive
class via a class-wise way. By this way, two virtual auxiliary sets
are built with actually false positive and false negative examples.
After this, two unbiased centroid estimators based on these two
virtual auxiliary sets can be accordingly obtained which are
further combined in an appropriate way to form a final integrated
estimator. Theoretically, we prove that: 1) the variance of centroid
estimator involved in our CWD is often lower than that of the
unbiased centroid estimator in existing methodologies, which
means that the estimator of CWD is statistically more efficient than
existing methods; and 2) the performance of our method trained on
the noisy set will converge to that of the optimal classifier trained
on the clean set, and the convergence rate is O( 1√

n
) with n being

the number of training examples. Experimentally, we show that
CWD yields higher classification accuracy than existing typical
label-noise learning algorithms on a variety of benchmark and
real-world datasets under various noise types.

In fact, Lee et al. [37] also proposed to tackle the label
noise in different classes separately. However, their work was
based on an empirical observation that the hidden representations
generated by neural networks exhibit clustering property, and the
training examples with noisy labels were distributed like outliers.
Therefore, they estimated the distribution parameters of each
cluster by using minimum covariance determinant, which is very
different from our strategy that aims to devise an unbiased centroid
estimator. Besides, one recent work [12] also introduced two
virtual auxiliary sets to achieve unbiased and statistically efficient
centroid estimation. However, one of the virtual auxiliary sets
in [12] pre-labels all examples as positive, which may incur the
class imbalance problem and lead to the degraded learning results.
Differently, CWD developed in this paper carefully builds two
virtual auxiliary sets without introducing subjective pre-assumed
labels, so the disadvantage of [12] can be avoided. The advantage
of CWD over [12] is also observed in empirical studies (see
Section 6).

The main contributions of this paper are summarized as
follows:

1) We propose a new “Class-Wise Denoising” (CWD) algorithm
to tackle label noise, which favors to sequentially cleanse
the incorrect labels within different classes by establishing
corresponding virtual auxiliary sets.

2) We theoretically show that the risk estimator induced by the
proposed CWD is not only unbiased, but is also statistically
more efficient than the existing methods based on centroid
estimation.

3) We theoretically prove that the performance of our CWD
classifier trained on the noisy set will get close to that of
the optimal classifier trained on the corresponding clean set,
as long as the amount of noisily-labeled training examples
increases.
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TABLE 1: The decomposition of some common loss functions [12], [35], [36], where z = yh(x) is the functional margin, and [·]+ = max(·, 0).
The decomposition of the hinge loss is actually conducted on its upper bound as revealed by [36].

loss `(z) label-independent term label-dependent term g Q

squared loss (z − 1)2 z2 + 1 −2z h2 + 1 −2
logistic loss log(1 + e−z) 1

2
log(2 + ez + e−z) −z/2 1

2
log(2 + eh + e−h) −1/2

perceptron loss max(0,−z) 1
2
z · sgn(z ≥ 0) −z/2 1

2
h · sgn[h ≥ 0] −1/2

hinge loss [1− z]+ 1
2

([1− z]+ + [1 + z]+) 1
2

(1− z) 1
2

([1− h]+ + [1 + h]+) −1/2

TABLE 2: Summary of main mathematical notations.

Notation Mathematical meaning

(X,Y ), (X, Ỹ ) A pair of input random variables (X,Y )
and the observed contaminated counterpart
(X, Ỹ ).

S = {(xi, yi)}ni=1 The unobserved clean sample S with n data
points (xi, yi).

S̃ = {(xi, ỹi)}ni=1 The observed noisy sample S̃ with n possible
mislabeled training data (xi, ỹi).

SP̃, SÑ The two introduced virtual auxiliary pseudo-
labeled sets with actually false positive exam-
ples and false negative examples, respectively.

µ̂(S), µ̂(S̃),
µ̂(SP̃), µ̂(SÑ)

Empirical centroids of samples S, S̃, SP̃, and
SÑ, respectively.

˜̂µ(S), ˜̂µ(SP̃),
˜̂µ(SÑ)

Estimators of µ̂(S), µ̂(SP̃), and µ̂(SÑ), re-
spectively.

R̂(h, S), R̃(h, S̃) Empirical risks of hypothesis h on clean sam-
ple S and noisy sample S̃, respectively.˜̂R(h, S̃) Estimator of R̂(h, S) based on the noisy sam-
ple S̃.

ηP, ηN Label flip rates.
πP, πN Class priors for positive and negative classes,

respectively.

2 EMPIRICAL RISK UNDER NOISY LABELS

In our paper, the superscript “ ˜ ” means that the variable is
estimated or noisy, and the variable with superscript “ ˆ ” means
that it is an empirical quantity. The main notations that will be later
used for algorithm description are listed in Table 2. In traditional
supervised learning with clean labels, we let D be the underlying
joint distribution of a pair of random variables (X,Y ) ∈ X × Y ,
where X ∈ Rd (d denotes the dimensionality) is the input feature
space and Y = {1,−1}1 is the output label space. In this case, a
sample set S = {(xi, yi)}ni=1 of (X,Y ) containing n examples
can be drawn independently and identically from D, where all
{yi}ni=1 are correct. However, in the task of classification under
noisy labels, we are only accessible to a sample of n i.i.d. data
points S̃ = {(xi, ỹi)}ni=1 from a noisy distribution D̃ of random
variables (X, Ỹ ) ∈ X × Y , where Ỹ is a contaminated version
of Y . Therefore, given the hypothesis space as H, our task is to
find a suitable decision function h ∈ H : X → Y parameterized
by w on S̃, such that h can precisely predict the label Y of any
X ∈ X .

By defining ` : R×Y → R as the loss function that penalizes
the difference between the model output h(X) and the groundtruth
label Y , the empirical risk of h on a clean set S for traditional

1. For notational simplicity, we first describe our method under binary case.
The extension to multi-class situations will be provided in Section 5.

supervised learning is represented as

R̂(h, S) =
1

n

n∑
i=1

`(h(xi), yi). (1)

Similarly to Eq. (1), due to the corruption of y to ỹ in the presence
of noisy labels, the empirical risk of any h on a noisy set S̃ is
written as

R̃(h, S̃) =
1

n

n∑
i=1

`(h(xi), ỹi), (2)

where R̃(h, S̃) may be deviated from the real R̂(h, S) because
of the unavailability of groundtruth labels {yi}ni=1.

Ideally, we hope to find an unbiased estimator ˜̂R(h, S̃) for
R̂(h, S) given S̃ so that the adverse impact caused by noisy
Ỹi can be removed. Following this idea, [11], [35] proposed to
decompose the loss function ` (e.g., the squared loss and logistic
loss) into a label-independent part and a label-dependent part (see
Table 1), where only the label-dependent part is influenced by
label noise and needs further investigation. They showed that
under loss decomposition and h(x;w) = 〈w,x〉2, Eq. (1) can
be reformulated as

R̂(h, S) =
1

n

[
n∑
i=1

g(h(xi;w)) +Q
n∑
i=1

yih(xi;w)

]

=
1

n

n∑
i=1

g(h(xi;w)) +Q〈w, µ̂(S)〉, (3)

where g : R → R is some Lg-lipschitz continuous function,
Q ∈ R is a constant, and µ̂(S) = 1

n

∑n
i=1 yixi is the empirical

dataset centroid of S. Here the specific forms of g and Q depend
on the adopted loss function as revealed in Table 1. Moreover,
we may define the centroid of the entire distribution D as
µ(D) = E(X,Y )∼D[Y X] with E[·] computing the mathematical
expectation.

From Eq. (3), we see that only the second term is related to
the label value yi. Consequently, if we want to find an unbiased˜̂R(h, S̃) to R̂(h, S) to combat noisy labels, the core is to
accurately estimate the dataset centroid µ̂(S) based on S̃, and
the resulting estimator for µ̂(S) is denoted by ˜̂µ(S) accordingly.
Consequently, we have an unbiased empirical risk under label
noise as ˜̂R(h, S̃) =

1

n

n∑
i=1

g(h(xi;w)) +Q〈w, ˜̂µ(S)〉. (4)

The model of CWD in this paper can finally be achieved by
combining the risk Eq. (4) with some techniques for preventing
overfitting, such as the `2 regularizer for linear models, and the
dropout operation [38] for neural networks.

2. In this paper, h, h(w) and h(x;w) refer to the same thing. We use their
different forms in different places to avoid possible confusion as well as to
simplify the notation.
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(a): Existing Strategy

observed noisy set ሚ𝑆

virtual auxiliary set 𝑆෩P

corrected

corrected
virtual auxiliary set 𝑆෩N

clean set 𝑆

observed noisy set ሚ𝑆 clean set 𝑆

ො𝜇( ሚ𝑆)
ො𝜇(𝑆)

estimator
𝑅(ℎ, 𝑆)

Ƹ𝜇(𝑆)
estimator

𝑅(ℎ, 𝑆)

(b): Our Strategy

𝐱1

𝐱2

𝐱3

𝐱4

𝐱5

𝐱6

𝐱7

Fig. 1: The pipeline comparison of (a) existing methods and (b) our
method. The existing strategy directly corrects all noisy labels in both
the positive and negative classes contained in the observed noisy
dataset S̃. In contrast, our strategy introduces two virtual auxiliary
sets SP̃ and SÑ as a bridge from noisy S̃ to clean S, and they help to
correct the labels of false negative and false positive data points in S̃,
respectively.

3 THE PROPOSED CENTROID ESTIMATOR

As mentioned earlier, given the observed noisy dataset S̃ as
illustrated in Fig. 1(a), most of existing methods aim to cleanse
the noisy labels in all classes simultaneously, and directly achieve
clean S which induces the real empirical risk R̂(h, S). In this
case, the class-conditional label flip rates between the positive
class and negative class can be defined as ηP = P (Ỹ = −1|Y =
1) and ηN = P (Ỹ = 1|Y = −1), where P (·) denotes the
probability in this paper. The class priors in D are defined by
πP = P (Y = 1) and πN = P (Y = −1) with πP + πN = 1.
Here πP can be estimated from ηP and ηN due to the following
derivations:

P (Ỹ = 1)

= P (Ỹ =1|Y =1)P (Y =1) + P (Ỹ =1|Y =−1)P (Y =−1)

= ηN + (1− ηP − ηN)πP, (5)

which leads to πP = P (Ỹ=1)−ηN
1−ηP−ηN where P (Ỹ = 1) can be

estimated from the given noisy dataset. By following [9], [11],
[12], in this paper, we also assume that ηP and ηN are known.
Practically, they can be easily estimated by some off-the-shelf
methods such as [26], [27], [28], [29], [31].

In contrast, our CWD proposes to deal with the label noise
in different classes one by one in order to acquire the improved
estimation for the actual empirical risk R̂(h, S) (see Fig. 1(b)). To
be specific, starting from the observed noisy S̃, we respectively
regard that the positively labeled data and negatively labeled data
in S̃ are correctly labeled, and arrive at two virtual auxiliary
sets SP̃ and SÑ accordingly. Note that due to label noise, not
all positively labeled data in S̃ are correctly labeled actually,
therefore SP̃ indeed contains false positive examples. Similarly,
SÑ also contains false negative examples as some positive data
are erroneously labeled as negative in S̃. Here we say SP̃ and SÑ
are “virtual” as we do not explicitly construct these two datasets.
Instead, they are simply fictitious with assumed labels and will
not take additional storage space. Then we estimate their centroids
µ̂(SP̃) = 1

n

∑n
i=1 (yP̃)ixi and µ̂(SÑ) = 1

n

∑n
i=1 (yÑ)ixi based

on µ̂(S̃) = 1
n

∑n
i=1 ỹixi, where µ̂(S̃) is the centroid of S̃;

and yP̃, yÑ and ỹ are the (assumed) labels of examples in SP̃,
SÑ and S̃ correspondingly. After that, the estimated µ̂(SP̃) and
µ̂(SÑ) are further combined to acquire the centroid of clean
S (i.e., µ̂(S)) for recovering R̂(h, S). In this process, the two
intermediate virtual auxiliary sets SP̃ and SÑ serve as a bridge
from the centroid of noisy S̃ to that of clean S, which help to
progressively remedy the incorrect labels in the positive class and
negative class inherited by the observed S̃. It can be proved3 that
for any SP̃, SÑ and S̃ degenerated from S, their centroids have
the following relationship:

µ̂(S) = µ̂(SP̃) + µ̂(SÑ)− µ̂(S̃), (6)

where µ̂(S̃) = 1
n

∑n
i=1 ỹixi is directly computable as S̃ is

available. Therefore, to find ˜̂µ(S) that is the estimator of µ̂(S),
the core is to find estimators of µ̂(SP̃) and µ̂(SÑ), which are
subsequently denoted by ˜̂µ(SP̃) and ˜̂µ(SÑ), respectively.

Firstly, we presume that all positive examples annotated in S̃
are indeed positive, and only pay attention to correct the noisy
labels in negatively labeled data. That is to say, we treat the
virtual auxiliary set SP̃ in Fig. 1(b) as clean and only the labels
of false-negative data in S̃ (e.g., x3) are expected to be corrected.
Therefore, we know that the positive class prior

πP̃ = P (YP̃ = 1)

= P (Y =1)P (YP̃ =1|Y =1)+P (Y =−1)P (YP̃ =1|Y =−1)

= πP + πNηN, (7)

where P (YP̃ = 1|Y =−1) = P (Ỹ = 1|Y = −1) = ηN. As a
result, the label flip rates from SP̃ to S̃ are

P (Ỹ = 1|YP̃ = −1) =
P (Ỹ = 1, YP̃ = −1)

P (YP̃ = −1)
= 0 (8)

P (Ỹ = −1|YP̃ = 1) =
P (Ỹ = −1, YP̃ = 1)

P (YP̃ = 1)

=
πPηP

πP + πNηN
, η′P. (9)

Therefore, by considering Eqs. (8) and (9), we have

EỸ [Ỹ X|(X,YP̃)]

= πP̃EỸ [Ỹ X|(X,YP̃ = 1)]

+ (1− πP̃)EỸ [Ỹ X|(X,YP̃ = −1)]

= πP̃(1− 2η′P)YP̃X + (1− πP̃)YP̃X

= (1− 2πP̃η
′
P)YP̃X, (10)

which indicates that an unbiased estimate of µ̂(SP̃) using S̃ is
˜̂µ(SP̃) = 1

1−2πP̃η
′
P
µ̂(S̃).

Secondly, we presume that all negative examples annotated
in S̃ are indeed negative, and only focus on correcting the noisy
labels in positively labeled data. In other words, we treat the virtual
auxiliary set SÑ in Fig. 1(b) as clean and the labels of false-
positive data in S̃ (e.g., x4 and x7) are expected to be corrected.
Thereby, we have the positive class prior in SÑ as

πÑ = P (YÑ = 1)

= P (Y =1)P (YÑ =1|Y =1) + P (Y =−1)P (YÑ =1|Y =−1)

= πP(1− ηP), (11)

3. The detailed proof is deferred to supplementary material.
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Algorithm 1 Summarization of our CWD algorithm for binary
classification.

1: Input: label flip rates ηP, ηN; noisy set S̃ = {(xi, ỹi)}ni=1.
2: Compute πP = P (Ỹ=1)−ηN

1−ηP−ηN and πN = 1− πP;
3: Compute η′P and η′N via Eqs. (9) and (12), respectively;
4: Compute πP̃ = πP + πNηN and πÑ = πP(1− ηP);
5: Compute µ̂(S̃), ˜̂µ(SP̃), and ˜̂µ(SÑ);
6: Compute the estimated centroid of S via ˜̂µ(S) = ˜̂µ(SP̃) +

˜̂µ(SÑ)− µ̂(S̃);

7: Compute the unbiased risk estimator ˜̂R(h, S̃) via Eq. (4);
8: Use any off-the-shelf solver to optimize the model (e.g., SVM

and CNN) by employing ˜̂R(h, S̃) as the loss function.
9: Output: The optimal classifier parameter w∗.

where P (YÑ = 1|Y = −1) = P (Ỹ = −1|Y = 1) = ηP.
Consequently, the label flip rates from SÑ to S̃ are

P (Ỹ = 1|YÑ = −1) =
P (Ỹ = 1, YÑ = −1)

P (YÑ = −1)

=
(1− πP)ηN

1− πP + πPηP
, η′N, (12)

P (Ỹ = −1|YÑ = 1) =
P (Ỹ = −1, YÑ = 1)

P (YÑ = 1)
= 0. (13)

By invoking Eqs. (12) and (13), we have

EỸ [Ỹ X|(X,YÑ)]

= πÑEỸ [Ỹ X|(X,YÑ = 1)]

+ (1− πÑ)EỸ [Ỹ X|(X,YÑ = −1)]

= πÑYÑX + (1− πÑ)(1− 2η′N)

= [1− 2(1− πÑ)η′N]YÑX, (14)

which indicates that an unbiased estimate of µ̂(SÑ) based on S̃ is
˜̂µ(SÑ) = 1

1−2(1−πÑ)η′N
µ̂(S̃).

Therefore, by recalling Eq. (6), we learn that the centroid of S
can be unbiasedly estimated as

˜̂µ(S) = ˜̂µ(SP̃) + ˜̂µ(SÑ)− µ̂(S̃)

=

(
1

1− 2πP̃η
′
P

+
1

1− 2(1− πÑ)η′N
− 1

)
µ̂(S̃)

=

(
1

1− 2πPηP
+

1

1− 2πNηN
− 1

)
µ̂(S̃),

(15)

which leads to an unbiased empirical risk estimator ˜̂R(h, S̃) by
substituting Eq. (15) to Eq. (4). From Eq. (15), we see that if the
training set is noise-free, namely ηP = ηN = 0 and S̃ = S, our
proposed CWD model will directly degenerate to the traditional
supervised model. Therefore, even we do not know whether the
training set is clean before running our algorithm, our method can
be safely used and the generated performance will not become
too bad. The pseudo-code of our developed CWD algorithm is
displayed in Algorithm 1.

4 THEORETICAL ANALYSES

In this section, we investigate theoretical aspects of the proposed
CWD algorithm. To be specific, Section 4.1 reveals that our

estimator is often statistically more efficient than existing meth-
ods, and Section 4.2 demonstrates that the expected risk of our
CWD trained on noisy set S̃ is upper-bounded under the clean
distribution D.

4.1 Statistical Efficiency
Here we theoretically study the superiority of our proposed CWD
to existing methods with unbiased centroid estimator in terms of
statistical efficiency.

The centroid estimator proposed by [11] is4

˜̂µ0(S) =
1

1− 2πPηP − 2πNηN
µ̂(S̃). (16)

Therefore, by respectively denoting the covariance matrices of
˜̂µ(S) and ˜̂µ0(S) as Σ[˜̂µ(S)] and Σ[˜̂µ0(S)], our target is to com-
pare the values of tr(Σ[˜̂µ(S)]) and tr(Σ[˜̂µ0(S)]) where “tr(·)” is
the trace operator. The result is displayed in the following theorem:

Theorem 1. Given the centroid estimators ˜̂µ(S) and ˜̂µ0(S)
respectively computed by Eq. (15) and Eq. (16), we have their
variances tr(Σ[˜̂µ(S)]) ≤ tr(Σ[˜̂µ0(S)]) with probability ln 2 (≈
0.693).

Theorem 1 is proved in the supplementary material, from
which we know that in most case with the probability ln 2 ≈
0.693, our method is statistically equally or more efficient than
[11].

4.2 Performance Bound
In this section, we show that although our classifier w∗ is trained
on the noisy set S̃, its expected error on the clean distribution
D can still be upper-bounded when compared with the optimal
classifier w∗∗ trained on the corresponding clean set S.

By respectively defining the expected risk of any h on
D̃ and D as R(h, D̃) = E(X,Ỹ )∼D̃

[
`(h(X;w), Ỹ )

]
and

R(h,D) = E(X,Y )∼D [`(h(X;w), Y )], the expected classifier
rendered by our CWD algorithm and the one trained on the
clean set can be obtained by w∗ = arg minwR(h, D̃) and
w∗∗ = arg minwR(h,D) accordingly, where h in this paper
is a Multi-Layer Perceptron (MLP) network parameterized by w.

Therefore, we may assume that the model h of CWD is
consisted of l layers with parameter matrices w(1), · · · ,w(l)

and activation functions σ(1), · · · , σ(l−1) with σ(i)(0) = 0 for
i = 1, · · · , l − 1. In this paper, we use ReLU as the activa-
tion function σ(i) for i = 1, · · · , l − 1. The size of the i-th
parameter matrix w(i) is m(i) × m(i+1) where m(i) denotes
the number of the nodes in the i-th layer, and m(1) = d.
Then w

(i)
jk , namely the (j, k)-th element of w(i), represents

the connecting weight from the j-th node of the i-th layer to
the k-th node of the (i + 1)-th layer. As a result, we have
h(x;w) = w(l)>σ(l−1)(w(l−1)>σ(l−2)(· · ·σ(1)(w(1)>x))) as
the real-valued network output. For simplicity, we compactly
denote the network parameters as w = {w(1), · · · ,w(l)} in this
paper.

Based on the above facts, we may have the following main
theorem:

4. The work [11] studied the case of ηP = ηN, and here we show the
extended expression for both ηP = ηN and ηP 6= ηN, which can be similarly
derived via the method in [11].
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Theorem 2. (Performance bound of CWD) Suppose the backbone
network for implementing CWD is MLP which has totally l layers
with the parameter matrices w(i) in the i-th (i = 1, 2, · · · , l)
layers satisfying

∥∥∥w(i)
∥∥∥
F
≤ M (i) < +∞, where ‖·‖F denotes

Frobenius norm. In MLP, the adopted activation function σ(·)
is ReLU which is 1-Lipschitz. Besides, the `2 norm of the input
feature vector x ∈ Rd is bounded by X̄ , namely ‖x‖2 ≤ X̄ <
+∞. The function g(·) in Eq. (3) is Lg-Lipschitz continuous. Then
for any δ > 0, with probability at least 1− 2δ, we have

R(h(w∗), D)−R(h(w∗∗), D)

≤ 2X̄√
n

l∏
i=1

M (i)

(
2 |ΩQ|

√
2d log

(
d

δ

)
+Lg(

√
2l log 2+1)

)

+ 6

√
ln(2/δ)

2n
,

(17)

where Ω = 1
1−2πPηP

+ 1
1−2πNηN

− 1.

The proof of this theorem can be found in the supplementary
material. Theorem 2 indicates that although h(w∗) is trained on
the noisy distribution D̃, its performance will converge to that
of the optimal classifier h(w∗∗) which is trained on the clean
distribution D, as long as the number of training data n increases,
and the convergence rate is O(1/

√
n).

5 EXTENSION TO MULTI-CLASS SITUATIONS

The basic binary model developed in Section 3 can be directly
extended to multi-class cases. Suppose there are C classes in
total, the key is to respectively treat the observed labels of each
of the C classes in S̃ as clean, such that C virtual auxiliary sets
S1̃, · · · , SC̃ are built, and then the noisy labels in these C classes
can be tackled via a class-wise way.

Suppose we have a noisy sample set S̃ = {(xi, ỹi)}ni=1 where
ỹi ∈ {0, 1}C is a C-dimensional label vector containing the one-
hot encoding of class labels for xi. Concretely, by defining ec
as a C-dimensional vector with zero elements except for the c-
th (c takes a value from 1, 2, · · · , C) element being 1, we have
ỹi = ec if xi has the observed noisy label c. The clean set is
correspondingly denoted as S = {(xi,yi)}ni=1. By deploying
the squared loss `(h(xi), ỹi) = ‖yi − h(xi)‖2 where h(xi) =
W>xi is decision function with W ∈ Rd×C being the coefficient
matrix, we may follow Eq. (3) and decompose the fully-supervised
empirical risk R̂(h, S) as

R̂(h, S) =
1

n

n∑
i=1

‖yi − h(xi)‖2

= 1 +
1

n

n∑
i=1

h>(x)h(x)− 2〈W, µ̂(S)〉, (18)

where we use the facts that y>i yi = 1 and y>i h(xi) =
tr
(
h(xi)y

>
i

)
= 〈W,xiy

>
i 〉; and µ̂(S) = 1

n

∑n
i=1 xiy

>
i is the

centroid to be critically estimated based on the centroid of noisy
set µ̂(S̃) = 1

n

∑n
i=1 xiỹ

>
i .

To this end, we extend the previous label flip rates ηP and
ηN to a label flip matrix η where the (i, j)-th element ηij =
P (Ỹ = ej |Y = ei) encodes the label flip rate from the i-th
class to the j-th class, therefore we have

∑C
j=1 ηij = 1. Here the

label flip matrix η can also be estimated by some existing works

such as [26], [27], [28], [29], [31]. The class priors of C classes
are respectively defined as π1 = P (Y = e1), π2 = P (Y =
e2), · · · , πC = P (Y = eC) with

∑C
j=1 πj = 1 which can also

be computed based on η. Specifically, similarly to Eq. (5), we may
have the following system of equations:

P (Ỹ = e1) = η11π1 + η21π2 + · · ·+ ηC1πC
...

P (Ỹ = eC) = η1Cπ1 + η2Cπ2 + · · ·+ ηCCπC

, (19)

from which the values of π1, π2, · · · , πC can be easily solved.
After this, we need to build C virtual auxiliary sets where the

c-th (c = 1, · · · , C) virtual auxiliary set Sc̃ is built by presuming
that the examples with label c are all correctly annotated. There-
fore, for a certain c-th virtual auxiliary set, its centroid is defined
by µ̂(Sc̃) = 1

n

∑n
i=1 xi(yc̃)

>
i where (yc̃)i is the one-hot label

vector of xi in the set Sc̃. Akin to Eq. (7), the class priors of
the j-th (j = 1, · · · , C) classes in Sc̃ (denoted as πc̃,j) can be
calculated as

πc̃,j = P (Yc̃ = ej)

= P (Y = e1)P (Yc̃ = ej |Y = e1) + · · ·
+ P (Y = ec)P (Yc̃ = ej |Y = ec) + · · ·
+ P (Y = eC)P (Yc̃ = ej |Y = eC), (20)

where P (Y = ek) = πk (k = 1, · · · , C) as defined before. If
j = c, Eq. (20) equals to

πc̃,j = πc +
∑C

k=1,k 6=c
πkηkj , (21)

where we use the facts that P (Yc̃ = ec|Y = ec) = 1 and P (Yc̃ =
ej |Y = ek) = ηkj under this situation.

If j 6= c, Eq. (20) equals to

πc̃,j =
∑C

k=1,k 6=c
πkηkj , (22)

where we use the fact that P (Yc̃ = ej |Y = ec) = 0 because we
aim to correct all noisy labels in the c-th class at this time.

Next we need to establish a label flip matrix η′c̃ from Sc̃ to S̃
encoding the label flip rates of pairs of classes, which acts as the
same role with Eqs. (8) and (9) (or Eqs. (12) and (13)). For j 6= c,
we have the label flip rates as

P (Ỹ = ec|Yc̃ = ej) =
P (Ỹ = ec, Yc̃ = ej)

P (Yc̃ = ej)
= 0 , η′jc (23)

P (Ỹ = ej |Yc̃ = ec) =
P (Ỹ = ej , Yc̃ = ec)

P (Yc̃ = ec)

=
πcηcj

πc +
∑C
j=1,j 6=c πjηjc

, η′cj (24)

P (Ỹ = ej |Yc̃ = ej) = 1 , η′jj . (25)

Here Eq. (23) can be understood as label flip-in probability from
other classes to the c-th class, while Eq. (24) can be understood
as label flip-out probability from the c-th class to other classes.
Based on Eq. (24), we further have

P (Ỹ = ec|Yc̃ = ec) = 1−
∑C

j=1,j 6=c
P (Ỹ = ej |Yc̃ = ec)

= 1−
πc
∑C
j=1,j 6=c ηcj

πc +
∑C
j=1,j 6=c πjηjc

, η′cc.

(26)
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Besides, for j 6= i 6= c, we have

P (Ỹ = ei|Yc̃ = ej) =
P (Ỹ = ei, Yc̃ = ej)

P (Yc̃ = ej)
= 0 , η′ji. (27)

Based on the η′jc, η
′
cj , η

′
jj and η′cc defined in Eqs. (23), (24),

(25) and (26) correspondingly, we obtain the label flip matrix η′c̃
formatted as

the c-th column
↓

η′c̃ =



1 · · · · · · 0 · · · · · · 0
0 1 · · · 0 · · · · · · 0
...

...
...

· · · η′cj · · · η′cc · · · · · · · · ·
...

...
...

0 · · · · · · 0 · · · 1 0
0 · · · · · · 0 · · · · · · 1


← the c-th row

.

(28)
Therefore, similarly to Eq. (14), we may compute the fol-

lowing conditional expectation based on the label flip matrix η′c̃,
namely

EỸ [XỸ >|(X,Yc̃)]

=
C∑
j=1

P (Yc̃ = ej)EỸ [XỸ >|(X,Yc̃ = ej)]

=
C∑
j=1

πc̃,j [η
′
j1X(Kj→1Yc̃)

> + · · ·+ η′jCX(Kj→CYc̃)
>]

=
C∑
j=1

πc̃,j

C∑
k=1

η′jkX(Kj→kYc̃)
>

= XY >c̃

C∑
j=1

πc̃,j

C∑
k=1

η′jkK
>
j→k, (29)

where πc̃,j can be computed by Eq. (21) or Eq. (22) depending
on whether j = c, and η′jk is the (j, k)-th element of η′c̃
in Eq. (28). Here Kj→k ∈ {0, 1}C×C is called elementary
row transformation matrix which is formatted by exchanging
the j-th row and the k-th row of an identity matrix, so that
the i-th row and the j-th row of the column vector Yc̃ can
be exchanged by computing Kj→kYc̃. As a sequel, by letting
Mc =

∑C
j=1 πc̃,j

∑C
k=1 η

′
jkK

>
j→k, we achieve the unbiased

estimate of µ̂(Sc̃) based on µ̂(S̃) as ˜̂µ(Sc̃) = µ̂(S̃)M†c where M†c
computes the pseudo inverse of matrix Mc. Thereby, similarly
to Eq. (15), the estimator of µ̂(S) (i.e., ˜̂µ(S)) based on ˜̂µ(Sc̃)
(c = 1, 2, · · · , C) is formulated as

˜̂µ(S) =
C∑
c=1

˜̂µ(Sc̃)− (C − 1)µ̂(S̃). (30)

The proof of Eq. (30) is similar to that of Eq. (6), which is also
put into the supplementary material.

The pseudo code of our proposed CWD under multi-class case
is presented in Algorithm 2.

6 EXPERIMENTAL RESULTS

In this section, we empirically investigate the performance of our
proposed CWD method in dealing with noisy labels. Specifically,
the compared methods include Unbiased Estimator (UE) [9],

Algorithm 2 Summarization of our CWD algorithm for multi-
class classification.

1: Input: noisy training set S̃ = {(xi, ỹi)}ni=1.
2: Estimate label flip matrix η via [29];
3: Compute class priors π1, · · · , πC by solving Eq. (19);
4: for c = 1 to C do
5: Compute class priors πc̃,j (j = 1, · · · , C) in the virtual

auxiliary set Sc̃ via Eqs. (21) and (22);
6: Compute the label flip matrix η′c̃ in Eq. (28) based on

Eqs. (23), (24), (25) and (26);
7: Compute Mc =

∑C
j=1 πc̃,j

∑C
k=1 η

′
jkK

>
j→k;

8: Compute µ̂(S̃) = µ̂(S̃)M†c;
9: end for

10: Compute the estimated centroid of S via Eq. (30);
11: Compute the unbiased risk estimator of R̂(h, S) via Eq. (18);
12: Use any off-the-shelf solver to optimize the model (e.g., CNN)

by employing R̂(h, S) as the loss function.
13: Output: The optimal classifier parameter W∗.

TABLE 3: The characteristics of five adopted UCI datasets.

Dataset n̄ d n+ n−

Heart 270 13 120 150
Blood 748 4 178 570

Diabetes 768 8 500 268
GermanCredit 1000 24 300 700
EEGEyeState 14980 16 8257 6723

µSGD [35], Labeled Instance Centroid Smoothing (LICS) [11],
Forward Correction (FC) [10], Determinant based Mutual Infor-
mation (LDMI) [39], Generalized Cross Entropy Loss (GCE) [23],
Symmetric Cross Entropy (SCE) [8], f -Divergence (f -Div) [40],
Sparse Regularization (SR) [41], and Centroid Estimation with
Guaranteed Efficiency (CEGE) [12]. Among them, UE, µSGD,
LICS and FC simply care about the unbiasedness of risk estimator,
while CEGE also considers the statistical efficiency in addition to
unbiasedness. Besides, LDMI, GCE, SCE, f -Div and SR also try
to design robust loss functions, so the comparison with them will
validate the superiority of our proposed CWD.

In the following, we will test the classification ability of
the compared approaches on five UCI benchmark datasets [42]
(Section 6.1), two real-world binary classification datasets (Sec-
tion 6.2), three real-world multi-class classification datasets (Sec-
tion 6.3), and then study the effect of variance reduction brought
by the consideration of statistical efficiency (Section 6.4).

6.1 Experiments on Benchmark Datasets
We first conduct the experiments on five benchmark datasets
regarding binary classification from UCI machine learning repos-
itory [42], which include Heart, BloodTransfusionServiceCenter
(“Blood” for short hereinafter), Diabetes, GermanCredit, and
EEGEyeState. The brief configurations of these datasets are pre-
sented in Table 3, which contains the information such as the total
number of examples n̄, the feature dimensionality d, the number
of positive examples n+, and the number of negative examples
n− for each dataset. Moreover, The features for all methods have
been normalized and standardized on every dataset. Five-fold cross
validation is applied to all compared approaches on all datasets,
and the mean test accuracy as well as standard deviation of the
five independent trials on each dataset are reported for algorithm
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TABLE 4: Comparison of the mean test accuracies (%) of various approaches on five adopted UCI datasets. The best two records on each
dataset are highlighted in red and blue, respectively. The “

√
” (“×”) denotes that our CWD is significantly better (worse) than the corresponding

existing methods revealed by the paired t-test with significance level 0.05.

Dataset (n̄, d) (ηP, ηN) LDMI [39] FC [10] GCE [23] SCE [8] f -Div [40] SR [41] LICS [11] µSGD [35] ULE [9] CEGE [12] CWD

Heart (270, 13)

(0.0, 0.0) 57.4 ± 8.8
√

50.5 ± 6.8
√

53.5 ± 8.7
√

82.6 ± 4.6 81.2±6.7 61.6±14.5
√

75.4 ± 4.8
√

57.3 ± 7.4
√

83.3 ± 3.3 73.9 ± 5.8
√

84.9 ± 4.1
(0.2, 0.2) 37.3 ± 6.4

√
47.1 ± 5.7

√
49.8 ± 8.0

√
76.2 ± 9.9

√
80.4±6.8 52.0±10.1

√
62.2 ± 10.1

√
59.2 ± 8.5

√
81.8 ± 4.0 75.4 ± 4.3

√
81.1 ± 6.3

(0.3, 0.1) 40.3 ± 7.9
√

53.9 ± 8.9
√

52.4 ± 11.0
√

60.0 ± 7.0
√

67.6±9.5
√

51.6±5.8
√

70.9 ± 9.2
√

55.8 ± 8.4
√

81.5 ± 7.8 75.8 ± 5.6
√

80.0 ± 8.5
(0.4, 0.4) 45.2 ± 5.8

√
44.9 ± 6.2

√
53.9 ± 9.5

√
63.3 ± 7.9

√
76.0±6.5 56.4±7.0

√
57.3 ± 11.1

√
64.9 ± 3.0

√
75.8 ± 3.2 72.0 ± 5.6

√
76.2 ± 3.4

Blood (748, 4)

(0.0, 0.0) 55.7 ± 24.9
√

78.7 ± 24.5 41.8 ± 23.5
√

75.0 ± 4.3 76.7±1.3 76.4±1.4 77.4 ± 2.4 76.2 ± 1.9 77.3 ± 2.4 76.2 ± 1.9 77.5 ± 2.4
(0.2, 0.2) 76.1 ± 4.6

√
76.2 ± 4.4

√
42.2 ± 24.4

√
76.2 ± 4.3

√
77.5±2.8 71.1±5.2

√
76.3 ± 4.7

√
75.9 ± 6.1

√
76.7 ± 5.5

√
76.9 ± 4.4

√
79.1 ± 5.1

(0.3, 0.1) 63.6 ± 22.5
√

76.1 ± 3.5
√

44.1 ± 24.2
√

76.1 ± 3.5
√

75.2±2.4 76.4±4.6 76.2 ± 2.2
√

75.7 ± 0.6
√

70.8 ± 7.0
√

76.5 ± 3.3
√

78.2 ± 2.9
(0.4, 0.4) 44.1 ± 26.0

√
76.1 ± 0.3

√
42.0 ± 22.9

√
76.3 ± 3.6 74.8±4.3 68.5±9.9

√
76.1 ± 3.4

√
71.0 ± 4.7

√
71.0 ± 8.3

√
76.1 ± 3.9 76.4 ± 3.6

Diabetes (768, 8)

(0.0, 0.0) 49.4 ± 15.4
√

58.8 ± 10.6
√

66.9 ± 3.7 65.3 ± 2.5
√

66.1±3.9
√

64.9±2.9 67.0 ± 2.6
√

65.2 ± 3.2
√

65.4 ± 3.6
√

74.1 ± 2.8 × 70.8 ± 6.3
(0.2, 0.2) 53.5 ± 15.4

√
57.2 ± 13.8

√
66.5 ± 4.8

√
71.5 ± 2.4

√
66.5±3.3

√
65.3±2.2

√
70.4 ± 3.5

√
65.2 ± 3.1

√
76.0 ± 3.1 73.9 ± 2.2

√
76.1 ± 2.0

(0.3, 0.1) 37.3 ± 5.6
√

40.7 ± 12.0
√

56.6 ± 11.0
√

69.9 ± 3.0
√

63.7±5.9
√

47.2±14.3
√

64.7 ± 4.2
√

50.1 ± 9.9
√

72.2 ± 2.5 70.7 ± 2.3
√

73.2 ± 4.0
(0.4, 0.4) 36.9 ± 13.2

√
39.2 ± 11.5

√
46.7 ± 13.3

√
66.9 ± 2.6

√
66.3±3.2

√
54.5±14.4

√
66.5 ± 6.4

√
65.2 ± 2.6

√
70.7 ± 3.0

√
67.8 ± 4.2

√
72.2 ± 4.2

GermanCredit (1000, 24)

(0.0, 0.0) 51.3 ± 17.7
√

69.9 ± 1.5
√

70.4 ± 1.7
√

75.7 ± 3.1 75.1±2.0 70.2±2.0
√

66.2 ± 4.8
√

69.8 ± 1.9
√

76.3 ± 3.1 54.5 ± 3.4
√

76.8 ± 3.1
(0.2, 0.2) 43.8 ± 17.3

√
68.1 ± 4.4

√
68.0 ± 4.1

√
70.5 ± 2.4

√
74.0±1.5 70.1±1.8 57.9 ± 5.9

√
70.0 ± 1.9

√
73.7 ± 3.7 71.5 ± 2.2

√
74.6 ± 3.3

(0.3, 0.1) 55.9 ± 18.8
√

63.9 ± 5.4
√

70.6 ± 5.1
√

70.3 ± 3.9
√

71.7±4.5 71.2±3.6 59.7 ± 3.5
√

70.1 ± 5.6
√

71.7 ± 2.3 72.6 ± 3.5 72.8 ± 2.9
(0.4, 0.4) 45.0 ± 15.2

√
62.2 ± 15.2

√
63.7 ± 14.2 × 67.9 ± 4.0 × 67.0±4.5 70.1±2.8 × 52.6 ± 3.8

√
69.8 ± 4.0 × 65.8 ± 4.7 62.3 ± 2.8

√
65.4 ± 4.2

EEGEyeState (14980, 16)

(0.0, 0.0) 54.6 ± 3.9
√

55.2 ± 0.5
√

55.4 ± 0.8
√

58.2 ± 0.4 59.9±1.0 57.4±0.9 52.6 ± 4.5 55.1 ± 0.6 56.8 ± 4.6 57.8 ± 0.2 57.9 ± 0.7
(0.2, 0.2) 51.1 ± 4.2

√
56.7 ± 1.3

√
55.0 ± 0.7

√
56.9 ± 0.9

√
58.5±1.4 55.3±0.7

√
55.1 ± 0.3

√
57.3 ± 0.3

√
47.4 ± 5.8

√
57.9 ± 1.0

√
61.5 ± 4.5

(0.3, 0.1) 47.1 ± 3.3
√

51.3 ± 5.7
√

44.8 ± 0.4
√

49.4 ± 0.6
√

55.3±0.6 46.5±2.3
√

44.8 ± 0.4
√

46.0 ± 0.4
√

50.8 ± 4.4
√

51.8 ± 0.6
√

53.6 ± 2.2
(0.4, 0.4) 46.8 ± 5.2

√
54.5 ± 2.9

√
55.6 ± 0.7

√
57.1 ± 0.9

√
56.7±0.8

√
55.5±0.8

√
55.1 ± 0.5

√
57.8 ± 0.3

√
48.9 ± 7.5

√
57.3 ± 0.3

√
60.2 ± 3.0

Average 49.5 55.2 54.9 68.1 69.5 62.1 64.1 63.8 69.6 68.7 72.4

evaluation. Besides, the paired t-test with significance level 0.05
is employed to check whether our method is statistically better
or worse than various baseline approaches. The test accuracies of
different methods are particularly reported under three label flip
rates including (ηP = 0.2, ηN = 0.2), (ηP = 0.4, ηN = 0.4),
and (ηP = 0.3, ηN = 0.1), among which the first two cases
are symmetric noise while the last case is asymmetric noise.
Besides, to show our method can well deal with the noise-free
situations as mentioned in Section 3, we also take the label flip rate
(ηP = 0.0, ηN = 0.0) into consideration. For fair comparison,
the contaminated examples in each fold are kept identical for all
compared methods on every dataset.

For some methods that require label flip rates as input
such as µSGD, LICS, ULE, FC and our CWD, we directly
send the real values of ηP and ηN to them. For LICS, the
trade-off parameter λ is carefully tuned via searching the grid
{10−2, 10−1, 100, 101, 102} on every dataset, and the hyper-
parameter β is set to 10−5 to achieve the top level perfor-
mance. For GCE, the hyper-parameter q for the negative Box-
Cox transformation is set to 0.7 as recommended by [23]. For
SCE, we follow [8] and tune the trade-off parameters α and β
within {10−2, 10−1, 100, 101, 102} and {10−1, 100}, respective-
ly. For SR, by following [41], we set the regularization parameter
p = 0.1, sharpening parameter τ = 0.5, and tune the trade-
off parameter λ from {0.1, 0.3, 1.0, 3.0, 5.0, 7.0, 10, 15, 20}. For
FC, LDMI, GCE, SCE, f -Div, SR, CEGE and our CWD, we
employ the same MLP with three layers as backbone network,
where the number of nodes in input layer equals to the data
dimensionality d, and the number of nodes in output layer is
1. Therefore, the amount of nodes in hidden layer is decided
as round(2/3 × (d + 1)) to achieve satisfactory performance.
The Adam optimizer [43] with weight decay factor of 10−4 is
employed for network training.

The experimental results of all methods on the adopted UCI
datasets are presented in Table 4, which reveals that the proposed
CWD generally ranks among the top two compared methods. For
the average accuracy over all five datasets under different label
flip rates, our CWD obtains a record of 72.4% which leads the
second best method ULE by a margin of 2.8%. Although the
average accuracies of CWD are lower than those of ULE on Heart
dataset when (ηP = 0.2, ηN = 0.2) and (ηP = 0.3, ηN = 0.1), we
see that the performances of these two methods are statistically

(a): MNIST-binary

5

8

airplane

automobile

(b): CIFAR-binary

Fig. 2: Example images of binary classification datasets. (a) presents
MNIST-binary, and (b) presents CIFAR-binary.

comparable as revealed by the t-test. The same phenomena can
also be observed on EEGEyeState dataset when comparing the
accuracies of f -Div and our CWD.

6.2 Experiments on Real-world Binary Datasets
To further validate the effectiveness of CWD, we study the
performances of CWD as well as the ten baseline methods (i.e.,
UE, µSGD, LICS, FC, LDMI, GCE, SCE, f -Div, SR, and CEGE)
on two practical two-class datasets, which include:
• MNIST-binary. This dataset originates from MNIST [44]

dataset, which cares about handwritten digit recognition. The
original MNIST contains 60,000 gray-scale images of size
28 × 28 belonging to the ten digits “0”∼“9”, and each digit
corresponds to a class. Here we follow [45] and select the
images of “5” and “8” for classification (see Fig. 2(a)), and
the size of dataset for our experiment is 12,000.

• CIFAR-binary. This dataset is a subset of CIFAR dataset [46],
which is related to natural image classification. The original
CIFAR consists of 60,000 colored natural images with size
32 × 32 × 3. For our experiment, we follow [45] and pick
up the image examples of two categories (i.e., “airplane”
and “automobile”) for conduct binary classification (see
Fig. 2(b)).

On both datasets, we also conduct five-fold cross validation to
investigate the performances of all methods, and their mean test
accuracies of five independent trials are particularly observed. To
create label noise, we randomly flip the groundtruth labels of the
images of every class to the opposite value under two symmetric
cases including (ηP = 0.2, ηN = 0.2) and (ηP = 0.4, ηN =

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 27,2022 at 14:51:50 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3178690, IEEE
Transactions on Pattern Analysis and Machine Intelligence

9

TABLE 5: Comparison of the mean test accuracies (%) of various approaches on MNIST-binary dataset. The best two records on each dataset
are highlighted in red and blue, respectively. The “

√
” (“×”) denotes that our CWD is significantly better (worse) than the corresponding

existing methods revealed by the paired t-test with significance level 0.05.

(ηP, ηN) LDMI [39] FC [10] GCE [23] SCE [8] f -Div [40] SR [41] LICS [11] µSGD [35] ULE [9] CEGE [12] CWD

(0.0, 0.0) 96.0 ± 0.6
√

96.1 ± 0.3
√

96.6 ± 0.3
√

97.0 ± 0.3
√

96.4 ± 0.3
√

98.5 ± 0.2 80.7 ± 3.2
√

86.5 ± 5.0
√

96.0 ± 0.2
√

89.8 ± 0.7
√

99.0 ± 0.1
(0.2, 0.2) 95.0 ± 0.7

√
95.0 ± 0.6

√
95.8 ± 0.4

√
94.5 ± 0.3

√
96.1 ± 0.4 95.9 ± 0.4 76.8 ± 3.4

√
86.2 ± 4.3

√
95.0 ± 0.5

√
89.8 ± 1.0

√
97.3 ± 0.1

(0.3, 0.1) 94.1 ± 0.6 92.0 ± 0.9
√

94.5 ± 0.8 91.5 ± 1.3
√

94.7 ± 0.6 83.9 ± 1.3
√

75.3 ± 1.4
√

68.0 ± 7.4
√

90.8 ± 0.6
√

89.5 ± 1.0
√

95.1 ± 0.2
(0.4, 0.4) 59.8 ± 11.5

√
91.4 ± 2.3

√
90.0 ± 1.3

√
85.0 ± 1.4

√
94.1 ± 1.0 88.6 ± 2.4

√
60.5 ± 2.4

√
76.0 ± 5.9

√
88.9 ± 1.5

√
87.5 ± 1.7

√
94.2 ± 0.1

Average 86.1 93.6 94.2 91.9 95.3 91.7 73.2 79.1 92.6 89.1 96.3

TABLE 6: Comparison of the mean test accuracies (%) of various approaches on CIFAR-Binary dataset. The best two records on each dataset
are highlighted in red and blue, respectively. The “

√
” (“×”) denotes that our CWD is significantly better (worse) than the corresponding

existing methods revealed by the paired t-test with significance level 0.05.

(ηP, ηN) LDMI [39] FC [10] GCE [23] SCE [8] f -Div [40] SR [41] LICS [11] µSGD [35] ULE [9] CEGE [12] CWD

(0.0, 0.0) 98.8 ± 0.3 64.1 ± 5.2
√

97.8 ± 0.2 98.6 ± 0.9 98.3 ± 0.2 96.4 ± 0.3
√

88.0 ± 9.5
√

98.4 ± 0.2 98.1 ± 0.4 96.5 ± 0.1
√

98.9 ± 0.1
(0.2, 0.2) 83.9 ± 17.0

√
66.9 ± 4.4

√
87.1 ± 1.2

√
86.5 ± 5.7

√
95.3 ± 0.2

√
96.1 ± 0.4 84.6 ± 1.7

√
94.7 ± 1.7

√
71.3 ± 4.2

√
96.2 ± 0.1 97.4 ± 0.2

(0.3, 0.1) 81.2 ± 15.0
√

65.3 ± 3.2
√

86.2 ± 0.5
√

85.7 ± 5.8
√

95.6 ± 0.3 95.7 ± 0.6 68.4 ± 2.9
√

75.1 ± 1.1
√

69.0 ± 9.6
√

96.3 ± 1.0 96.6 ± 0.2
(0.4, 0.4) 62.7 ± 4.3

√
55.5 ± 5.5

√
71.5 ± 3.5

√
71.3 ± 8.8

√
76.7 ± 0.7 74.2 ± 0.1

√
55.6 ± 2.6

√
65.1 ± 1.7

√
56.3 ± 4.3

√
65.5 ± 0.6

√
77.6 ± 4.9

Average 81.6 62.9 85.6 85.4 91.5 90.6 74.1 83.3 73.6 88.6 92.6

0.4), and one asymmetric case which is (ηP = 0.3, ηN = 0.1).
The situation of (ηP = 0.0, ηN = 0.0) is also investigated.

The hyper-parameters of various methods are tuned via
the similar way as in Section 6.1. Concretely, the trade-
off parameter λ in LICS is tuned via searching the grid
{10−2, 10−1, 100, 101, 102}, and it is set to 10−1 and 10−2 to
achieve the optimal results on MNIST-binary and CIFAR-binary,
respectively. For GCE, the hyper-parameter q for the negative
Box-Cox transformation is set to 0.7 as recommended by [23]
on both datasets. For SCE, the parameters α and β are also
tuned via grid search within {10−2, 10−1, 100, 101, 102} and
{10−1, 100}, respectively. For SR, we set λ = 3 and λ = 1 on
MNIST-binary and CIFAR-binary accordingly, and set p = 0.1
and τ = 0.5 on both datasets. For nonlinear methods such
as FC, LDMI, GCE, SCE, f -Div, SR, CEGE and our CWD,
we employ MLP with three layers as the backbone network on
MNIST-binary dataset, and adopt ResNet-34 [47] as the backbone
network on CIFAR-binary dataset. On MNIST-binary, the pixel-
wise gray-scale intensity values are taken as image features for
the input for all investigated methods. Differently, on CIFAR-
binary, the deep methods such as FC, LDMI, GCE, SCE, f -Div,
SR, CEGE and CWD can automatically extract CNN features
by ResNet-34. However, for other originally non-deep methods
such as LICS, µSGD and ULE, we use a ResNet-34 network
pre-trained on ImageNet dataset to extract image features, and
then send them to the corresponding algorithm for performance
evaluation. Adam [43] optimizer is deployed for training the MLP
or ResNet-34 network. Specifically, on MNIST-binary, our CWD
adopts the default parameters in Adam. On CIFAR-binary, we use
the Adam optimizer with weight decay factor of 10−4 for CWD.
The learning rate is 0.05 initially and is divided by 10 after 40 and
120 epochs (200 in total).

The experimental results of various methods on MNIST-binary
and CIFAR-binary are presented in Table 5 and Table 6, respective-
ly, which suggest that in most cases, our CWD obtains the highest
average accuracy when compared with other baseline approaches
on both datasets under different label flip rates. Particularly, we see
that because ULE, µSGD, LICS and FC only take the unbiased-
ness into consideration when constructing the risk estimator, their
acquired test accuracies are significantly lower than our CWD.
This validates the importance of statistical efficiency which is

considered by our CWD. Moreover, as mentioned in Introduction,
CEGE [36] also introduces two virtual auxiliary sets to achieve
unbiased and statistically efficient centroid estimation, but the way
of CEGE in establishing the virtual auxiliary sets is inferior to that
of the proposed CWD, so it yields worse performance than CWD
under different label flip rates. Finally, we see that under clean set
with (ηP = 0.0, ηN = 0.0), our method can achieve the accuracy
as high as 99.0% and 98.9% on MNIST-binary and CIFAR-binary
correspondingly, which are significantly better than some noise-
robust methods such as LDMI, FC, GCE and SCE. This is because
these noise-robust methods are designed under the assumption that
the training set should contain label noise, which is obviously not
satisfied when (ηP = 0.0, ηN = 0.0).

6.3 Experiments on Real-World Multi-Class Datasets

To test the ability of our CWD in tackling multi-class classification
with real-world label noise, here we adopt the following three
practical datasets for performance evaluation:

• Animal-10N [48]. This dataset contains totally 55,000 im-
ages of 10 different animals, where 50,000 images are for
training and 5,000 images are provided for testing. Since this
dataset intentionally collects some pairs of visually confusing
animals such as “cat” vs. “lynx” and “chimpanzee” vs.
“orangutan” (see Fig. 3(a)), labeling errors would be naturally
brought in during the annotation process.

• Clothing-1M [49]. This dataset contains 1 million clothing
images belonging to 14 classes such as “T-shirt”, “Jacket”,
and “Vest” (see Fig. 3(b)). Since the data is directly crawled
from several online shopping websites, and the labels are
automatically generated according to surrounding texts of
these images, this dataset inevitably contains label noise.

• CIFAR-100 [46]. This dataset consists of 60,000 colour im-
ages in 100 classes, with 600 images per class. There are
500 training images and 100 test images per class, and each
image is associated with a fine-grained label (see Fig. 3(c)).

Among the above three datasets, Animal-10N and Clothing-1M
contain the noisy labels naturally injected by human mistakes, and
the divisions of training and test sets are also directly provided.
For CIFAR-100, its original labels are all clean. To add label
noise, we follow [4], [23], [50] and investigate two types of label
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(c): CIFAR-100

(a): Animal-10N (b): Clothing-1M

chiffon downcoat dress hoodie jacket

windbreakervest

knitwear shawl

shirt suit sweater t-shirt underwear

apple

baby

bed

bear

bee

bus

Cat Jaguar Chimpanzee

lynx

HamsterCoyote

Cheetah Orangutan Wolf Guinea pig

Fig. 3: Example images of multi-class datasets. (a) presents Animal-10N, (b) presents Clothing-1M, and (c) presents CIFAR-100.

noise, namely: 1) symmetric noise with rates5 η = {20%, 40%}
(denoted as “Symmetry-η”), which means that the corrupted label
is uniformly assigned to one of C − 1 incorrect classes with
probability η/(C − 1); and 2) Pair flipping noise with rates
η = {20%, 40%} (denoted as “Pairflip-η”), which means that
the label of each class is flipped into the next class circularly with
probability η. Besides, the noise-free case with noise rate η = 0%
is also studied (denoted as “Clean-0%”).

The baseline methods in this section include the previously
used LDMI, FC, GCE, SCE, f -Div and SR. Here LICS, µSGD,
ULE and CEGE are not compared as they can only handle
binary classification. The hyper-parameters of various methods
are tuned via the similar way as before. For GCE, the hyper-
parameter q for the negative Box-Cox transformation is set to
0.6. For SCE, the parameters {α, β} are respectively adjusted to
{0.5, 0.5}, {3.0, 0.1} and {6.0, 0.1} on Animal-10N, Clothing-
1M and CIFAR-100 to achieve optimal performance. For SR, the
parameters p and τ are kept to 0.01 and 0.5 on the three datasets,
and λ is set to 3, 5 and 10 on Animal-10N, Clothing-1M and
CIFAR-100 correspondingly. The backbone networks employed
by all compared methods are VGG-19 for Animal-10N, ResNet-50
for Clothing-1M, and ResNet-34 for CIFAR-100. In our CWD, the
label flip matrix η is estimated via [29] according to Algorithm 2.

The experimental results of various methods on Animal-10N,
Clothing-1M and CIFAR-100 are presented in Tables 7 and 8.
For Animal-10N, we see that our CWD surpasses the second best
method LDMI by approximately 2% in terms of test accuracy.
For Clothing-1M dataset, here we follow the setting in [29] and
do not include validation set during training. This is because some
baseline methods such as FC, LDMI and f -Div rely on a validation
set with clean labels for boosting the performance, which is
usually not available in practice and will make the comparison not
fair. The experimental results reveal that the compared methods
achieve very similar performance, and f -Div is slightly better
than our CWD by a margin of 0.24%. Regarding CIFAR-100,
it can be observed that the proposed CWD is significantly better
than other competitors in most cases under both symmetric noise
and pair flipping noise with different noise rates. In a word, the
above experimental results indicate that CWD is also effective in

5. Here we slightly abuse the notation η by referring it to label noise rate
under multi-class case, as it will degenerate to the label flip rate under binary
classification defined above.

TABLE 7: Comparison of test accuracies (%) of various approaches
on Animal-10N and Clothing-1M datasets. The best two records on
each dataset are highlighted in red and blue, respectively.

Method Animal-10N Clothing-1M

LDMI [39] 80.62 70.22
FC [10] 80.08 69.82

GCE [23] 79.62 69.19
SCE [8] 79.51 69.89
f -Div [40] 77.22 70.65

SR [41] 75.32 68.60
CWD 82.52 70.41

dealing with multi-class classification problems with real-world
label noise.

6.4 Effects of Variance Reduction

In section 4.1, we have theoretically proved that our CWD often
has equal or lower variance on estimating the data centroid than
LICS [11], which is critical for our method to obtain the improved
results as illustrated in the above experiments. Here we empirically
show this by comparing the variances and centroid estimation
errors of LICS and our CWD on five adopted UCI datasets
appeared in Section 6.1.

To be specific, we study a symmetric noise case (ηP =
0.4, ηN = 0.4) and an asymmetric noise case (ηP = 0.3, ηN =
0.1), and compare the variances and errors of our CWD and LICS
in estimating the real centroid µ̂(S) of clean training set. The
results are displayed in Fig. 4. From the first column of Fig. 4,
we can see that our CWD consistently yields lower variance in
centroid estimation than LICS on all datasets under both noise
types, which coincides with the theoretical finding in Section 4.1,
and also verifies the necessity of considering statistical efficiency
by our method in reducing the variance of centroid estimation.
As a sequel, the proposed CWD obtains smaller or comparable
estimation error when compared with LICS as revealed by the
second column of Fig. 4, and this is beneficial for our method to
achieve good robustness and classification performance.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new “Class-Wise Denoising” (CWD)
algorithm for robust learning under label noise. The key of CWD
is to find an unbiased and statistically efficient data centroid
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TABLE 8: Comparison of the mean test accuracies (%) of various approaches on CIFAR-100 dataset. The best two records on each dataset are
highlighted in red and blue, respectively.

f -Div [40] SR [41] LDMI [39] FC [10] GCE [23] SCE [8] CWD

Clean-0% 66.6 71.4 68.4 70.3 64.1 65.7 72.9
Symmetry-20% 65.2 63.7 57.6 56.7 62.6 56.2 65.8
Symmetry-40% 64.2 48.7 46.3 46.3 56.7 51.4 53.3

Pairflip-20% 53.0 61.6 57.6 58.7 59.2 58.2 62.8
Pairflip-40% 38.4 45.6 44.1 41.4 43.4 42.3 46.5

Average 57.4 58.2 54.8 54.6 57.2 54.7 60.2

(a) (b)

(c) (d)

𝜂P = 0.4
𝜂N = 0.4

𝜂P = 0.3
𝜂N = 0.1

LICS

CWD

Fig. 4: Comparison of CWD and LICS on variance and error in centroid estimation, where the first row shows the case under label flip rate
(ηP = 0.4, ηN = 0.4), and the second row shows the case under label flip rate (ηP = 0.3, ηN = 0.1). The blue bar and orange bar indicate
LICS and CWD, respectively. The numerical values are annotated above the bars.

estimator to form a noise-robust empirical risk. To this end, CWD
corrects the noisy labels class by class via establishing a series
of intermediate virtual auxiliary sets, so that all attention is paid
to the corrupted labels in one class at a time. Thanks to the
progressive denoising strategy, the resulting centroid estimator
is not only unbiased, but also shows equal or lower variance
when compared with other state-of-the-art unbiased methods, so
our CWD can produce more accurate and reliable classification
results than them. The effectiveness of the proposed CWD has
been confirmed from both theoretical and empirical aspects.

Regarding CWD, there are several problems to be further
studied: 1) Theorem 1 suggests that the good statistical efficiency
of CWD can be achieved with a probability of ln 2 ≈ 0.693, so
whether there exists a better estimator that has a larger probability
to be statistically efficient remains unclear; and 2) More advanced
techniques are still needed to accurately estimate the label flip
rates (ηP, ηN) or label flip matrix η for the input of our CWD.
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