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Abstract—This paper studies instance-dependent Positive and Unlabeled (PU) classification, where whether a positive example will
be labeled (indicated by s) is not only related to the class label y, but also depends on the observation x. Therefore, the labeling
probability on positive examples is not uniform as previous works assumed, but is biased to some simple or critical data points. To
depict the above dependency relationship, a graphical model is built in this paper which further leads to a maximization problem on the
induced likelihood function regarding P (s, y|x). By utilizing the well-known EM and Adam optimization techniques, the labeling
probability of any positive example P (s = 1|y = 1,x) as well as the classifier induced by P (y|x) can be acquired. Theoretically, we
prove that the critical solution always exists, and is locally unique for linear model if some sufficient conditions are met. Moreover, we
upper bound the generalization error for both linear logistic and non-linear network instantiations of our algorithm, with the convergence
rate of expected risk to empirical risk as O(1/

√
k+1/

√
n− k+1/

√
n) (k and n are the sizes of positive set and the entire training set,

respectively). Empirically, we compare our method with state-of-the-art instance-independent and instance-dependent PU algorithms
on a wide range of synthetic, benchmark and real-world datasets, and the experimental results firmly demonstrate the advantage of the
proposed method over the existing PU approaches.

Index Terms—Instance-Dependent PU Learning, Labeling Bias, Maximum Likelihood Estimation, Solution Uniqueness, Generalization
Bound.
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1 INTRODUCTION

T He recent years have witnessed a surge of research interest
in Positive and Unlabeled learning (i.e., PU learning) [1],

[2], [3], [4], [5], [6], [7], [8], [9], of which the target is to find a
suitable classifier simply based on a set of positive and unlabeled
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training data. Note that each of the unlabeled data here can be
positive or negative, but its groundtruth label is undiscovered
during the training stage. Up to now, PU learning has found its
wide application in various fields such as visual anomaly detection
[10], [11], disease gene identification [12], hyperspectral image
classification [13], [14], etc.

Existing PU learning methodologies usually follow two dif-
ferent settings, one is “case-control PU learning” [15], and the
other is “single-training-set PU learning” [16]. Given x ∈ Rd
(d is the dimensionality) as the input random variable in the
feature space X and y ∈ R be the output random variable in
the binary label space Y = {1, 0} (“1” denotes positive class,
and “0” represents negative class), the class-conditional density
on positive data and the marginal density of x are respectively
P (x|y = 1) and P (x), where P (·) denotes the probability
throughout this paper. Case-control PU learning assumes that the
positive set SP = {xi}ki=1 that consists of k positive examples
is independently and identically generated from the conditional
distribution P (x|y = 1), and the unlabeled set SU = {xi}ni=k+1

that contains n − k unlabeled examples is independently and
identically generated from the marginal distribution P (x), where
n is the total number of positive and unlabeled examples in the
training set S = SP ∪ SU .

In contrast to the case-control PU learning which follows
a two-sample setting, single-training-set PU learning follows a
one-sample setting which simply assumes that all n examples in
S = {xi}ni=1 are randomly drawn from P (x). After that, if the
hidden groundtruth label of xi (i.e., yi) is 1, its label is observed
with probability η (i.e., xi ∈ SP ), and remains undisclosed with
probability 1 − η (i.e., xi ∈ SU ). If the groundtruth label of xi
is 0, its label will never be observed and it belongs to SU with
probability 1. The single-training-set PU methods can be regarded
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Fig. 1: Setting comparison of our PU method and existing methods.
(a) shows the existing instance-independent models, and (b) illustrates
our instance-dependent setting.

as a special case of class-conditional label noise learning problem
[17] by treating the unlabeled data as noisy negative examples.
In other words, the examples in SU with groundtruth label 1 are
mistakenly labeled as negative, while the labels of x ∈ SP are all
clean.

Although a certain amount of methods [1], [3], [4], [5], [6],
[18] belonging to the above two settings have been developed for
PU learning, they all assume that whether a positive data will be
labeled is irrelevant to its feature, so every positive data receives
an equal probability η to be observed. In other words, if we use a
random variable s = {0, 1} to indicate whether an example x is
observed as positive (i.e., s = 1) or not (i.e., s = 0), the existing
methods are all built on the fact that P (s = 1|y = 1,x) =
P (s = 1|y = 1) = η (see Fig. 1(a)). However, this is not true
in real-world problems as the labeling bias often exists during the
practical labeling process [19], [20]. For example, the doctors are
more likely to annotate the CT images that they are sure about the
result in medical diagnosis, and the annotators prefer to label the
objects that they are familiar with in crowdsourcing scenario. That
is to say, the positive examples in PU learning should not have an
equal probability η to be labeled, and whether a positive example
will be labeled should not only depend on its label y, but also
depend on its feature representation x. This fact is mathematically
depicted as P (s = 1|y = 1,x) 6= P (s = 1|y = 1) and P (s =
1|y = 1,x) = η(x) where η(x) is a value related to x. Therefore,
this paper aims to study the instance-dependent PU learning1 with
a labeling bias on positive data.

Due to the dependency of η(x) on x in instance-dependent
PU learning, the probability estimation in our problem is much
more difficult than that in the conventional instance-independent
setting illustrated in Fig. 1(a). Concretely, if η is a constant and is
irrelevant to x, it can be easily estimated by η = P (s = 1|y =

1) = P (s=1,y=1)
P (y=1) = P (s=1)

P (y=1) where P (s = 1) and P (y = 1)
can be directly estimated from data [16], [24], [25]. However, if
every x has its own η(x) as investigated in this paper, we have
η(x) = P (s = 1|y = 1,x) = P (s=1,y=1|x)

P (y=1|x) = P (s=1|x)
P (y=1|x) , from

which we observe that the value of η(x) and the class posterior
probability P (y = 1|x) co-occur. Therefore, we need to find a
new way to jointly estimate these two probabilities.

1. Instance-dependent PU learning is also known as “Selected At Random”
(SAR) setting in some prior works such as [21]. In this paper, we follow
[22], [23] and use the term “instance-dependent PU learning” to refer to our
problem.

In this paper, we present a probabilistic approach named
“Labeling Bias Estimation” (LBE) via graphical model to ex-
plicitly establish the relationship among the input feature variable
x ∈ Rd, groundtruth label y ∈ {0, 1}, and labeling condition
s ∈ {0, 1} (see Fig. 1(b)), from which we see that the generation
process of biased positive data can be clearly described. Notably,
the groundtruth label y is related to feature x, and the labeling
situation s is conditioned on both x and y. Given θ1 and θ2 re-
spectively being the parameters of score function P (y = 1|x;θ1)
and labeling model η(x;θ2), they can be easily estimated by the
method of Maximum Likelihood Estimation (MLE). Specifically,
the joint conditional probability P (y, s|x;θ) with θ = {θ1,θ2}
can be maximized by using the Expectation Maximization (EM)
algorithm, and then the parameters θ can be easily identified.
In our LBE, both the score function P (y = 1|x;θ1) and the
labeling probability η(x;θ2) can be instantiated by different
models according to different practical requirements of users. In
this paper, we present a non-deep and a deep implementations of
our LBE, where the non-deep model formats P (y = 1|x;θ1)
and η(x;θ2) as a linear-in-parameter Logistic Function (denoted
“LBE-LF”), and the non-linear deep model employs a Multi-Layer
Perceptron for realizing P (y = 1|x;θ1) and η(x;θ2) (denoted
“LBE-MLP”). Theoretically, we reveal that our model can be
regarded as a rectified Logistic regression governed by η(x;θ2),
and the performance of our model will approach to that of a fully-
supervised classifier when η(x;θ2) → 1. Besides, the existence
and uniqueness of the solution yielded by MLE in our method are
proved, which demonstrates the validity of the obtained model.
Furthermore, the generalization error of LBE is also theoretically
proved, which suggests that our method can achieve accurate
classifications on unseen test examples if η(x;θ2) is accurately
estimated. Intensive experimental results on both synthetic and
real-world datasets indicate that our LBE is very effective in
dealing with the instance-dependent PU learning with a labeling
bias.

2 RELATED WORK

As a new branch of weakly-supervised learning [26], PU learning
has drawn intensive research interests in recent years. Most of the
existing PU models can be categorized into two types, namely
“case-control PU learning” and “single-training-set PU learning”,
according to the assumptions on how the unlabeled data are
generated.

Case-control PU learning [15] assumes that the positive data
and unlabeled data are generated from P (x|y = 1) and P (x),
respectively. Specifically, Liu et al. [1] propose a “spy” technique
which inserts a fraction of positive data into the unlabeled set
to identify some definite negative examples. By employing the
spy technique as the first step, Liu et al. [27] further design a
two-step method in which a biased SVM with different penalty
weights on positive and negative classes is specifically devised. A
similar two-step method can also be found in [28] which utilizes
the Rocchio method [29] to pick up the reliable negative examples
and then uses a traditional SVM for the subsequent classification.
However, the identification of negative examples in above methods
can be inaccurate, which may heavily degrade the performance in
some practical situations. Therefore, recent works mainly focus
on design various unbiased or consistent loss functions to resist
the negative impact of the absence of negative training data. For
example, [30] shows that the conventional loss function such as
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hinge loss will bring about incorrect decision boundary, and then
reveals that the non-convex loss function such as ramp loss is
helpful for PU learning. After that, du Plessis et al. [3] discovered
that the convex risk estimator can also be applied to PU learning as
long as we use different loss functions for positive and unlabeled
samples. Based on this finding, they design a double hinge loss
which is convex and is also statistically unbiased to the loss value
under fully supervised case. However, the empirical version of
the theoretically-sound loss function in [3] may be negative and
lead to the overfitting problem, so [4] makes an improvement on
[3] which requires the loss value to be nonnegative. Differently,
Hou et al. [31] made the first attempt to deal with PU learning
via generative adversarial networks. However, the implementation
of case-control PU learning often needs to pre-estimate the class
prior P (y = 1), which is very difficult under PU data. Although
several methods [24], [25], [32] have been proposed to make
such estimation, the effect is often far from perfect in real-world
situations, especially when the data dimensionality is high.

Single-training-set PU learning assumes that both the positive
data and unlabeled data are generated from P (x), in which
the labels of a set of originally positive examples are covered.
Therefore, one common way to tackling single-training-set PU
learning is to regard the unlabeled set as noisy negative set with
false negative examples, and then transform PU learning as a
one-sided label noise learning problem. For example, Lee et al.
[18] firstly treat all unlabeled data as negative, and then develop
a weighted logistic regression in which the weights are selected
from a validation set to reduce the disturbance of noisy labels.
Similar idea can also be found in [16], where Elkan et al. propose
a weighted SVM methodology and decide the weights based on
the principle of “selected completely at random”. Inspired by [33],
[5] and [6] decompose the upper bound of the traditional hinge
loss into a label-independent term and a label-dependent term,
where only the latter is influenced by the label noise. Furthermore,
they find an unbiased estimate of the label-dependent term by
exploiting the centroid of unlabeled set, therefore the centroid and
classifier parameters can be jointly estimated. Recently, Li et al.
[34] employ reinforcement learning to jointly estimate the label
noise rate and classifier parameter.

Other typical PU learning works include [7] established on
label calibration, [14] based on multi-manifold data structure,
[8] utilizing label disambiguation, [35] based on positive margin
shrinkage, etc. A more thorough literature review on PU learning
can be found in the surveys [36], [37]. As mentioned in the
Introduction, the PU models mentioned above did not consider
the labeling bias and thus are instance-independent. Therefore,
recently there are some preliminary works that investigate the
instance-dependent PU learning problem, e.g., [21], [22], [38].
Among them, [38] is a case-control PU learning algorithm. To
make the class prior P (y = 1|x) partially identifiable, the authors
of [38] introduce the assumption of “invariance of order” which
means that P (s = 1|y = 1,x) and P (y = 1|x) induce the same
ordering on the input space. Different from [38], [21] and [22]
follow the single-training-set PU learning setting. Specifically,
[21] considers that whether a positive example will be labeled
depends on a subset of “propensity features”, and [22] defines a
“probabilistic gap” and then relates the likelihood of an example
being labeled to such probabilistic gap.

In contrast, our work assumes that the labeling probability
η(x;θ2) is less than 0.5 for x ∈ SU , so that the labeling
probability η(x;θ2) and classifier parameter θ1 can be directly

learned from the given PU data. Regarding this aspect, our work
is similar to [21], as both of them introduce the labeling probability
η(x;θ2) (a.k.a. propensity score in [21]), and also contain two un-
known variables which are optimized via the iterative EM method.
However, there are also some differences between them. First-
ly, [21] presents a propensity-weighted estimator which weights
every example by using the propensity score, while our method
starts from a graphical model to describe the data generation
process regarding the variables x, y and s, and then maximize
the resulting likelihood function. Secondly, since different models
are developed, the specific formulations for E step and M step in
solving the model are also different.

It is also worth mentioning that our algorithm is designed
under the single-training-set PU learning framework, and the main
reasons are two-fold. Firstly, as suggested by [38], the case-control
PU setting usually needs an assumption of “invariance of order”
such that some probabilities are identifiable. When we do not have
any domain knowledge on a practical task, this assumption is
sometimes strong and may be inconsistent with the underlying
labeling mechanism. Secondly, the single-training-set PU learning
setting provides an easy way to define and model the positive data
labeling condition (i.e., the variable s) which is the main focus of
our work.

3 THE PROPOSED METHOD

This section explains our proposed LBE algorithm in a detailed
way, which includes the general graphical model construction
(Section 3.1), model instantiations (Section 3.2), and parameter
learning (Section 3.3). In our method, each training datum
is represented by a triplet (x, y, s), where x ∈ X ⊂ Rd,
y ∈ Y ⊂ {0, 1} and s ∈ {0, 1} have been defined in the
Introduction. Therefore, the entire training set that consists
of n training data can be represented by S = {SP ;SU} =
{(x1, y1, s1),· · ·,(xk, yk, sk); (xk+1, yk+1, sk+1),· · ·, (xn, yn, sn)}
where SP = {(xi, yi, si)}ki=1 is the positive set with size k
and SU = {(xi, yi, si)}ni=k+1 denotes the unlabeled set with
size n − k. According to the definition of single-training-set PU
learning mentioned above, we have yi = si = 1 for xi ∈ SP ,
and yi = unknown, si = 0 for xi ∈ SU . Then our target is to
find a suitable probabilistic score function h : X → [0, 1] on S,
such that the unobserved test example x can obtain the correct
label sgn(h(x)− 0.5) assigned by h.

3.1 General Graphical Model Construction

The relationship among x, y and s can be depicted by the
graphical model as illustrated in Fig. 1(b). Firstly, the real label
y should obviously depend on the features x of data. Secondly,
whether the label of an input datum will be observed is related to
two factors: one is the real label y, and the other is the properties
or representations x. Note that almost all existing PU models only
considers the relationship y → s, but our method also considers
the dependency x → s in addition to y → s, and that is the
reason that our method is instance-dependent. In fact, x → s
critically models the labeling bias in realistic situations caused
by various factors such as the labeling difficulty of data and the
professional specialty of labeler. That is to say, we do not assume
that all positive examples have an equal probability to be labeled,
and how likely they are labeled should depend on the observed
features.
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Based on above definitions, we have the following generative
formulation regarding x, y and s according to Fig. 1(b), which is

P (y, s|x) = P (y|x)P (s|y,x). (1)

In Eq. (1), the term P (y|x) outputs a probabilistic value of an
example to be class y, so it can be used to construct the score
function h(x;θ1) parameterized by θ1. Besides, the probability
P (s|y,x) explicitly describes the labeling process of x. The
detailed formations of P (y|x) and P (s|y,x) will be specified
in Section 3.2.

By denoting {x1, · · · ,xn}, {y1, · · · , yn} and {s1, · · · , sn}
as the observations of x, y and s correspondingly, and assuming
that the n training examples {xi, yi, si}ni=1 are independently
and identically sampled, then the joint conditional distribution in
accordance to Eq. (1) is expressed as

P (y, s|x) =
n∏
i=1

P (yi, si|xi) =
n∏
i=1

P (yi|xi)P (si|yi,xi). (2)

3.2 Model Instantiations
Eq. (1) provides a hybrid formation for the general graphical
model, next we need to define the forms of the conditional
probabilities P (y|x) and P (s|y,x) to make our model tractable.

For P (y|x), it is the posterior probability on the input x
determined by some score function h(x;θ1) with parameter θ1.
For P (s|y,x), since only the positive examples will have a
probability to be labeled, and the labels of negative examples will
never be observed, we have the following facts:

P (s = 0|y = 0,x) = 1, (3)

P (s = 1|y = 0,x) = 0, (4)

P (s = 1|y = 1,x) = η(x;θ2), (5)

P (s = 0|y = 1,x) = 1− η(x;θ2), (6)

where η(x;θ2) is the probability of x with y = 1 to be labeled
as defined in the Introduction, and it relates to x by parameter θ2.
Note that η(x;θ2) is also called “propensity score” in [21]. The
above Eqs. (3)∼(6) can be concisely rewritten as:

P (s = s′|y,x) =

{
(1− η(x;θ2))1−s′η(x;θ2)s

′
, y = 1

1− s′, y = 0
.

(7)
In this paper, we provide two expressions for realizing

h(x;θ1) and η(x;θ2). The first one is based on the linear-in-
parameter Logistic Function (termed “LBE-LF”), which results in

h(x;θ1) = P (y = 1|x) =
(

1 + exp(−θ>1 x)
)−1

(8)

and

η(x;θ2) = P (s = 1|y = 1,x) =
(

1 + exp(−θ>2 x)
)−1

. (9)

The second one is based on a typical neural network named Multi-
Layer Perceptron (MLP), and the induced model is dubbed as
“LBE-MLP”. As a deep model, LBE-MLP offers more flexibility
for modeling h(x;θ1) and η(x;θ2) than the non-deep LBE-LF,
as it can handle more uncertain and complex mappings from x
to h(x;θ1) and η(x;θ2) practically. One may also use Convo-
lutional Neural Networks (CNN) for implementing h(x;θ1) and
η(x;θ2), but considering the applicability to different types of
data beyond images, in this paper we choose to use MLP for
model establishment.

Here we want to remark that our algorithm does not require the
explicit value of class prior P (y = 1) which actually needs to be
pre-estimated in many PU learning methods such as [3], [4], [38].
In fact, the estimation for P (y = 1) is practically non-trivial. The
reason for our LBE in avoiding such estimation is that we directly
estimate h(x;θ1) = P (y = 1|x) and η(x;θ2) = P (s = 1|y =
1,x) which implicitly contains P (y = 1).

3.3 Parameter Learning

In our model, we have to estimate the parameters θ = {θ1,θ2}
where θ1 is the parameter in classifier h(x;θ1) and θ2 is the
parameter in labeling function η(x;θ2). To this end, we need to
solve the following maximization problem, namely:

arg maxθ

n∏
i=1

P (si|xi;θ) = arg maxθ

n∏
i=1

∑
yi

P (si, yi|xi;θ).

(10)
By taking the logarithm on the right-hand side of the above
equation, the maximization problem on likelihood function is
equivalent to

arg maxθ L(θ) =
n∑
i=1

log
∑
yi

P (si, yi|xi;θ). (11)

Here we have the groundtruth labels yi (i = 1, 2, · · · , n)
as latent variables, so we naturally employ the EM algorithm to
solve the optimization problem (11), which alternates between the
E-step and M-step until convergence.
E-step: In E-step, we compute the latent variables yi (y =
1, 2, · · · , n) which is the class posterior probability for every
data point, namely P̃ (yi) = P (yi|xi, si). Since P (yi, si|xi) =
P (si|xi)P (yi|xi, si), we obtain the updating rule for E-step as

P̃ (yi) = P (yi|xi, si) ∝ P (yi, si|xi) = P (si|yi,xi)P (yi|xi),
(12)

where the parameters of P (si|yi,xi) and P (yi|xi) are found by
the following M-step. Note that in Eq. (12), the “∝” notation
is used and the term P (si|xi) is dropped, as we do not need
to explicitly compute P (si|xi) for practical implementation.
Specifically, we first compute the values of P (yi = 1, si|xi)
and P (yi = 0, si|xi), and then conduct normalization on them
in which P (si|xi) actually plays a role as a normalization factor.
Therefore, P̃ (yi) is accurately computed and there are no approx-
imations in Eq. (12).
M-step: M-step aims to optimize the parameters of the model in
the presence of the training data and the new data assignments out-
put by the E-step. That is to say, the parameter θ should be updated
by maximizing the expectation

∑
i EP̃ (yi)

[logP (yi, si|xi;θ)],
which leads to

max
θ
J (θ) (13)

with

J (θ) =
∑
i

EP̃ (yi)
[logP (yi, si|xi;θ)]

=
∑
i

EP̃ (yi)
[logP (yi|xi;θ1) + logP (si|yi,xi;θ2)].

(14)

Since there is no closed-form solution for Eq. (13), here we
adopt the Adam optimization algorithm [39] to update θ. For
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LBE-MLP, the gradients∇θ1
J (θ) and∇θ2

J (θ) are respectively
computed as

∇θ1
J(θ)=

∑
i

∇θ1
EP̃ (yi)

[logP (yi|xi;θ1)]

=
∑
i

∇θ1
[P̃ (yi = 0) logP (yi = 0|xi;θ1)

+ P̃ (yi = 1) logP (yi = 1|xi;θ1)]

=
∑
i

∑
yi

P̃ (yi)

P (yi|xi;θ1)
∇θ1P (yi|xi;θ1)

(15)

and

∇θ2
J(θ)=

∑
i

∇θ2
EP̃ (yi)

[logP (si|yi,xi;θ2)]

=
∑
i

∇θ2
[P̃ (yi = 0) logP (si|yi = 0,xi;θ2)

+ P̃ (yi = 1) logP (si|yi = 1,xi;θ2)]

=
∑
i

∑
yi

(−1)si+11{yi = 1}P̃ (yi)

P (si|yi,xi;θ2)
∇θ2

η(xi;θ2)

(16)

where “1{·}” is the indicator function which equals to 1 if the
argument inside the bracket holds, and 0 otherwise.

For LBE-LF, by plugging ∇θ1h(xi;θ1) =
h(xi;θ1)(h(xi;θ1) − 1)xi and ∇θ2η(xi;θ2) =
η(xi;θ2)(η(xi;θ2)− 1)xi for logistic function into Eq. (15) and
Eq. (16) accordingly, we obtain the gradient expressions as

∇θ1
J (θ)

=
∑
i

P̃ (yi = 1)

P (yi = 1|xi;θ1)
∇θ1P (yi = 1|xi;θ1)

+
P̃ (yi = 0)

1− P (yi = 1|xi;θ1)
∇θ1

(1− P (yi = 1|xi;θ1))

=
∑
i

P̃ (yi = 1)(h(xi;θ1)− 1)xi + P̃ (yi = 0)h(xi;θ1)xi

=
∑
i

∑
yi

P̃ (yi)(h(xi;θ1)− yi)xi

(17)

and

∇θ2
J (θ)

=
∑
i

∑
yi

(−1)si+11{yi=1}P̃ (yi)

P (si|yi,xi;θ2)
η(xi;θ2)(η(xi;θ2)−1)xi.

(18)

Above E-step and M-step iterates until convergence. The entire
algorithm is summarized in Algorithm 1. When the optimal model
parameter θ∗1 is obtained, one can make label inference on the
unseen test data according to the score function h(x;θ∗1).

4 MODEL INTERPRETATION

In this section, we reveal that the proposed LBE algorithm can
be understood as a rectified logistic regression on noisily labeled
training data.

Algorithm 1 An outline of our LBE algorithm.

Input: The training set S = {SP ;SU}; the initial parameters
θinit1 and θinit2 ; the parameters in Adam including step size
τ and exponential decay rates ρ1, ρ2.

Output: The optimal parameters θ∗1 for the classifier h(x;θ1);
the optimal parameters θ∗2 for estimating η(x;θ2).

1: Initialize θ1 = θinit1 and θ2 = θinit2 ;
2: while Not Converged do
3: # E-step (predict the class posterior probability)
4: Compute P̃ (yi) ∝ P (si|yi,xi)P (yi|xi) for i =

1, · · · , n via Eq. (12);
5: # M-step (update model parameters)
6: Call Adam [39] to update θ1 and θ2, where∇θ1

J (θ) and
∇θ2
J (θ) are computed via Eq. (17) and Eq. (18) if LBE-LF,

and are computed via Eq. (15) and Eq. (16) if LBE-MLP;
7: end while
8: θ∗1 = θ1; θ∗2 = θ2;
9: return θ∗1 and θ∗2 .

According to the logarithm of likelihood function shown in
Eq. (11), we may derive

L(θ)=
n∑
i=1

log
∑
yi

P (si|yi,xi;θ2)P (yi|xi;θ1)

=
n∑
i=1

log
[
P (yi = 1|xi;θ1)(1−η(xi;θ2))1−siη(xi;θ2)si

+P (yi = 0|xi;θ1)(1− si)]

1
=

k∑
i=1

log [P (yi = 1|xi;θ1)η(xi;θ2)]

+
n∑

i=k+1

log[P (yi=1|xi;θ1)(1−η(xi;θ2))+P (yi=0|xi;θ1)]

=
n∑
i=1

si log [η(xi;θ2)P (yi = 1|xi;θ1)]

+ (1− si) log [1− η(xi;θ2)P (yi = 1|xi;θ1)] ,

2
=

n∑
i=1

si log h̄(xi;θ) + (1− si) log(1− h̄(xi;θ)),

(19)

where the 1st identity uses the fact that si = 1 and 0 for xi ∈ SP
and xi ∈ SU , respectively; and in the 2nd identity, h̄(xi;θ) =
η(xi;θ2)P (yi = 1|xi;θ1) = η(xi;θ2)h(xi;θ1) parameterized
by θ = {θ1,θ2} can be regarded as a rectified score function by
imposing a factor η(xi;θ2) to the plain score function h(xi;θ1).
From Eq. (19), we have the following interesting findings:

1) If we regard si as the label of xi for i = 1, 2, · · · , n, the
maximization of Eq. (19) soon becomes the formulation of
standard logistic regression with cross-entropy loss. Here all
unlabeled examples xi ∈ SU are assigned negative labels
si = 0, which are actually inaccurate as some of the original
positive data are hidden in SU . In contrast, the labels si for
positive examples xi ∈ SP are all correct. Therefore, our
LBE algorithm can also be interpreted as a one-sided label
noise learning problem as mentioned in Section 2.

2) To remedy the inaccuracy of si (i = k + 1, · · ·, n), the
plain score function h(xi;θ1) is associated with an extra
term η(xi;θ2) to form h̄(xi;θ). Here η(xi;θ2), which
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should also be estimated from data, critically controls the
“strength” of h(xi;θ1) in obtaining the optimal parameter
θ∗1 . Concretely, when the label of a positive example is
observed with high probability (i.e., η(xi) approaches to 1),
the rectified score function h̄(xi;θ) is trustable and its output
will approach to that of h(xi;θ1). This also indicates that the
performance of our algorithm will get close to the ideal fully
supervised classifier if the probability of every positive data
being labeled approaches to 1.

3) For the network-structured LBE-MLP, we may regard
η(xi;θ2) as an adaptation layer to h(xi;θ1) for handling
the one-sided label noise mentioned in 1). Consequently,
LBE-MLP has a similar framework to some approaches with
various noise adaptation layers or loss correction techniques
for handling noisy labels or complementary labels [40],
[41], [42], [43], by which different classifier-consistent deep
learning algorithms are constructed.

5 THEORETICAL ANALYSES

In this section, we conduct some theoretical analyses on our
proposed LBE algorithm.

5.1 Existence and Uniqueness of MLE
It should be noted that the solution for a general MLE problem
may not exist, and the solutions may even not be unique when
they exist. Here we show that the solution of our method always
exists, and the solution is unique under certain conditions.

To prove the existence of solution to our LBE, we first provide
an existing result for a general MLE problem:

Proposition 1. (Sufficient condition for existence of estimator,
[44]) Given an MLE problem maxα∈ΓL(x;α) where Γ is
parameter space, x is a random variable, and L(x;α) is (log)-
likelihood function. If Γ is compact and L(x;α) is continuous on
Γ, then there exists a maximum likelihood estimator.

By checking the conditions in the above theorem, we see that
the existence of LBE solution is obvious. Firstly, the parameter
θ in our derived model satisfies ‖θ‖ < +∞, and the related
parameter space is also closed, so it is compact. Besides, as
our likelihood function L(θ) is made up of several elementary
functions, so it is continuous on the parameter space.

To prove the solution uniqueness, we also present a sufficient
condition for general MLE problem, namely:

Proposition 2. (Sufficient condition for uniqueness of estima-
tor, [44]) Let α ∈ Γ and L(α) be a twice continuously
differentiable real-valued function on Γ. If the Hessian matrix
H = ∂2L(α)/∂α2 of second partial derivatives is negative
definite at every point α ∈ Γ for which the gradient vector
∇L(α) = ∂L(α)/∂α vanishes, then L(α) has a unique local
(and hence global) maximum and no other critical points.

Above proposition can also be understood from the viewpoint
of optimization. If the Hessian matrix of likelihood function L(α)
is negative definite, L(α) is concave and thus its maximization
problem will have a unique global solution. In our case, since
both y|x and s|y = 1,x obey Bernoulli distribution, if they are
independent to each other, the distribution of their multiplication
will also be Bernoulli which belongs to the exponential family.
Therefore, the conditions in Proposition 2 are satisfied [45], and
the solution of Eq. (11) exists and is also unique. However, since

this paper considers the instance-dependent PU learning setting,
such independency between y|x and s|y = 1,x does not hold.
As a result, below we show that our linear-in-parameter model
LBE-LF leads to a local unique solution under certain conditions.

Theorem 3. (Uniqueness of LBE-LF estimator) Given the log-
likelihood function L(θ) expressed as Eq. (11), and h(x;θ1) =
P (y = 1|x;θ1) and η(x;θ2) = P (s = 1|y = 1,x;θ2) are
modeled by logistic function, if h̄(x;θ1) > 2h(x;θ1) − 1; and
η(x;θ2) < 0.5 when x ∈ SU , the likelihood function L(θ)
regarding θ1 and θ2 is concave, respectively, which leads to a
local unique solution for maximizing L(θ).

The proof of Theorem 3 is provided in Section 8. This
theorem reveals that the MLE problem defined by our LBE-LF
method is meaningful, and the obtained classifier will not be too
bad from the perspective of maximizing the likelihood function.
Besides, this theorem can be understood as a weak explanation
for identifiability of solution in LBE-LF. That is to say, under
certain conditions, a unique solution can be identified, which
helps to yield satisfactory results. Whether the optimal solution
can be fully identified without these conditions still requires
further strict theoretical investigations which may relate to the
irreducibility of distributions [46], [47]. However, although the
identifiability of our LBE-LF method is only partially explained,
its performance is still quite encouraging as empirically illustrated
by the experimental results in Section 6. For the deep LBE-
MLP model, due to the high non-linearity of neural network,
the above Theorem 3 may not be applicable. Nevertheless, the
experimental results presented in the following Section 6 also
empirically demonstrate the satisfactory performance.

5.2 Generalization Error

This section studies the generalizability of the proposed LBE-
MLP and LBE-LF algorithms. Specifically, we focus on the
rectified classifier h̄(xi;θ) (abbreviated as h̄ when no confusion
is incurred) according to the explanations in Section 4, of which
the expected risk R(h̄) and empirical risk RS(h̄) are respectively
defined as:

R(h̄) = E(x,s)∼Ds
[`(h̄(x;θ), s)] (20)

and

RS(h̄) =
1

n

n∑
i=1

`(h̄(xi;θ), si) (21)

where Ds is the distribution from which {(xi, si)}ni=1 are gener-
ated, and the loss function `(h̄(xi;θ), si) here is the cross-entropy
loss. To prove the generalizability of the proposed LBE method,
some definitions and existing theoretical results are necessary.

Definition 4. (Empirical Rademacher complexity, [48]) Let r =
{r1, · · · , rn} be a set of independent Rademacher variables
which are uniformly sampled from {−1, 1}, `(·) be a loss func-
tion, S={x1, · · · ,xn} be an independent distributed sample set,
andH a function class, then the empirical Rademacher complexity
of the composition of ` and all h̄ ∈ H (i.e., ` ◦ H) is defined as:

R̂S(` ◦ H) = Er[sup
h̄∈H

1

n

n∑
i=1

ri`(h̄(xi), si)]. (22)
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Proposition 5. (Generalization bound, [48]) Given x1, · · · ,xn
are i.i.d variables, and the loss function `(·) is upper bound by A,
then for any δ > 0, with probability at least 1− δ, we have

sup
h̄∈H

∣∣R(h̄)−RS(h̄)
∣∣ ≤ 2R̂S(` ◦ H) + 3A

√
log 2/δ

2n
. (23)

Next we bound the generalization error of LBE-MLP, and then
that of LBE-LF.

5.2.1 Generalization Error of LBE-MLP
For LBE-MLP, we assume that h(x;θ1) is a network con-
sisted of l1 layers with parameters θ

(1)
1 , · · · ,θ(l1)

1 and activa-
tion functions σ

(1)
1 , · · · , σ(l1−1)

1 with σ
(i)
1 (0) = 0 for i =

1, · · · , l1 − 1, that is, h(x;θ1) = softmax(h′(x)) where
h′(x) = θ

(l1)
1 σ

(l1−1)
1 (θ

(l1−1)
1 σ

(l1−2)
1 (· · ·σ(1)

1 (θ
(1)
1 x))) =

(h′0(x) h′1(x)) ∈ R2
+ outputs the nonnegative responses of

network on the unlabeled data with si = 0 and positive data
with si = 1, and the notation h(x;θ1) = softmax(h′(x)) =
exp(h′i(x))/

∑1
j=0 exp(h′j(x)) = (h0(x) h1(x)) (i =

0, 1) is also slightly abused to denote a two-dimensional
nonnegative vector. Similarly, η(x;θ2) is represented as
η(x;θ2) = θ

(l2)
2 σ

(l2−1)
2 (θ

(l2−1)
2 σ

(l2−2)
2 (· · ·σ(1)

2 (θ
(1)
2 x))) with

θ
(1)
2 , · · · ,θ(l2)

2 being the parameters of totally l2 layers and
σ

(1)
2 , · · · , σ(l2−1)

2 being the activation functions. Therefore, the
classifier ˆ̄h(x) = arg maxi=0,1

ˆ̄hi(x) learned in the hypothesis
space H is denoted by ˆ̄h(x) = arg minh̄∈HRS(h̄(x)).

Lemma 6. Given h̄0(xi) and h̄1(xi) as the responses of
rectified classifier h̄(xi) on the unlabeled data and positive
data correspondingly, with h̄0(xi) = 1 − h̄1(xi), then the
adopted cross-entropy loss `(h̄(xi), si) = −[si log h̄1(xi) +
(1 − si) log h̄0(xi)] is 1-Lipschitz continuous w.r.t. h′j(xi) for
j = 0, 1, namely ∣∣∣∣∣∂`(h̄(xi), si)

∂h′j(xi)

∣∣∣∣∣ < 1. (24)

Due to the 1-Lipschitz continuity of the cross-entropy loss
illustrated in Lemma 6, we have the following lemma regarding
the empirical Rademacher complexity R̂S(` ◦ H) mentioned in
Definition 4, which is

Lemma 7. If the loss function `(h̄(xi), si) is 1-Lipschitz contin-
uous, and H′ is the hypothesis space of h′(xi), we have

R̂S(` ◦ H) ≤ Er[ sup
h′∈H′

1

n

n∑
i=1

ri(h
′(xi))]. (25)

The above Lemmas 6 and 7 are proved in Section 8. Apart
from them, we also need the following lemma:

Lemma 8. [49] Given a l-layer neural network h′(xi) with the
layer parameters

∥∥∥θ(i)
∥∥∥

F
≤ M (i) for i = 1, · · · , l, ‖xi‖2 ≤ B

for any xi ∈ X , and the activation functions being 1-Lipschitz,
positive-homogeneous, and applied element-wise, then we have

Er[ sup
h′∈H′

1

n

n∑
i=1

rih
′(xi)] ≤

B(
√

2l log 2+1)
∏l
i=1M

(i)

√
n

.

(26)

Based on the above lemmas, we are ready to present the gen-
eralization error bound for LBE-MLP in the following theorem:

Theorem 9. (Generalization bound of LBE-MLP) Assume that
the Frobenius norm of the parameters θ(1)

1 , · · · ,θ(l1)
1 are respec-

tively upper bounded by M (1)
1 , · · · ,M (l1)

1 , i.e. ∀i = 1, · · · , l1,∥∥∥θ(i)
1

∥∥∥
F
≤ M

(i)
1 ; the feature vector of any example x ∈ X

satisfies ‖x‖2 ≤ B; and the activation functions to be 1-
Lipschitz continuous, positive-homogeneous, and applied element-
wise (such as the ReLU). Given the loss function `(h̄(xi), si)
upper bound by A, then for any δ > 0, with probability at least
1− δ, we have

R(ˆ̄h)−RS(ˆ̄h)

≤2B(
√

2l1 log 2+1)
l1∏
i=1

M
(i)
1

(
1√
k

+
1√
n− k

)
+3A

√
log 2/δ

2n
,

(27)

where k and n are the sizes of SP and S correspondingly.

Proof. It is apparent that

R(ˆ̄h)−RS(ˆ̄h) ≤ sup
h̄∈H

∣∣R(h̄)−RS(h̄)
∣∣ , (28)

of which the right-hand side can be upper bounded by using
Proposition 5. Therefore, the main problem here is to bound
the empirical Rademacher complexity R̂S(` ◦ H), which is
further bounded by R̂S(` ◦ H) ≤ R̂P (` ◦ H) + R̂U (` ◦ H)
according to the triangle inequality [48]. Here R̂P (` ◦ H) =
ErP [suph̄∈H

1
k

∑k
i=1 r

P
i `(h̄(xi), si)] is the Rademacher com-

plexity corresponding to positive set SP with rP = {rPi }ki=1

being the related Rademacher variables, and R̂U (` ◦ H) =
ErU [suph̄∈H

1
n−k

∑n
i=k+1 r

U
i `(h̄(xi), si)] is the Rademacher

complexity corresponding to unlabeled set SU with rU =
{rUi }ni=k+1 being the associated Rademacher variables.

Due to that the adopted cross-entropy loss function for MLP
is 1-Lipschitz continuous, then according to Lemmas 7 and 8,
R̂P (` ◦H) and R̂U (` ◦H) can be respectively upper bounded by

R̂P (` ◦ H) ≤ B(
√

2l1 log 2 + 1)
∏l1
i=1M

(i)

√
k

(29)

R̂U (` ◦ H) ≤ B(
√

2l1 log 2 + 1)
∏l1
i=1M

(i)

√
n− k

. (30)

Therefore, by plugging Eqs. (29) and (30) into Eq. (23) in
Proposition 5, Theorem 9 is proved.

Theorem 9 shows that the generalization error of the learned
rectified ˆ̄h(x;θ) will converge to the empirical error on the
labeling condition variables {si}ni=1 by increasing the PU sample
size n. Therefore, if the labeling probability η(x;θ2) is accurately
estimated, the generalization error of ĥ(x;θ1) induced by our
algorithm will also be upper bounded on the training set with
groundtruth labels {yi}ni=1.

5.2.2 Generalization Error of LBE-LF

The generalization error bound of LBE-LF is presented in the
following theorem:

Theorem 10. (Generalization bound of LBE-LF) Assume that the
model parameter ‖θ1‖2 ≤ M , and the input features ‖x‖ ≤ B,
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then given the loss function `(h̄(xi), si) upper bound by A, we
have for any δ > 0, with probability at least 1− δ,

R(ˆ̄h)−RS(ˆ̄h) ≤ 2BM

(
1√
k

+
1√
n− k

)
+3A

√
log 2/δ

2n
.

(31)

Proof. The pipeline for proving the generalization error bound of
LBE-LF is similar to that of LBE-MLP. The only difference is
to bound the empirical Rademacher complexity of R̂S(` ◦ H)
appeared in Proposition 5. Note that the logistic function (8)
is a generalized linear model with a nonlinear transformation
u(z) = 1/(1 + exp(−z)) where z = θ>1 x = 〈θ1,x〉 is the
variable, and u(z) is 1-Lipschitz continuous since |∇zu(z)| =
|u(z)(1− u(z))| < 1. Therefore, for LBE-LF, the empirical
Rademacher complexity on positive dataset SP satisfies

R̂P (` ◦ H) = ErP [sup
h̄∈H

1

k

k∑
i=1

rPi `(h̄(xi), si)]

= ErP [ sup
θ1:‖θ1‖2≤M

1

k

k∑
i=1

rPi `(u(〈θ1,xi〉), si)]

1
≤ ErP [ sup

θ1:‖θ1‖2≤M

1

k

k∑
i=1

rPi u(〈θ1,xi〉)]

2
≤ ErP [ sup

θ1:‖θ1‖2≤M

1

k

k∑
i=1

rPi 〈θ1,xi〉]

=
1

k
ErP [ sup

θ1:‖θ1‖2≤M
θ>1

k∑
i=1

rPi xi]

3
≤ 1

k
ErP

[
sup

θ1:‖θ1‖2≤M
‖θ1‖2

∥∥∥∥∑k

i=1
rPi xi

∥∥∥∥
2

]

=
M

k
ErP

[∥∥∥∥∑k

i=1
rPi xi

∥∥∥∥
2

]
=
M

k
ErP

[√∑k

i=1

∑k

j=1
rPi r

P
j 〈xi,xj〉

]
4
≤ M

k

√
ErP

[∑k

i=1

∑k

j=1
rPi r

P
j 〈xi,xj〉

]
=
M

k

√∑k

i=1

∑k

j=1
〈xi,xj〉ErP [rPi r

P
j ]

5
=
M

k

√∑k

i=1
‖xi‖22

=
MB√
k
.

(32)

In above derivations, the 1st and 2nd inequalities are due to the 1-
Lipschitz continuity of cross-entropy loss and u(z), respectively.
The 3rd inequality is according to the Cauchy-Schwarz inequality.
The 4th inequality holds due to Jensen’s inequality and the
concavity of “

√
·”. Finally, the 5th equality is obtained since

ErP [rPi r
P
j ] equals to 1 for i = j, and 0 for i 6= j.

Similarly, for the unlabeled set SU , we may obtain

R̂U (` ◦ H) ≤ MB√
n− k

. (33)

Therefore, Theorem 10 can be easily proved by substituting
Eqs. (32) and (33) into Eq. (23).

Theorems 9 and 10 indicate that the expected risks of the
classifiers induced by our LBE-MLP and LBE-LF methods will
converge to their empirical errors on the training set when the
number of positive data or unlabeled data increases, and the
convergence rate isO

(
1√
k

+ 1√
n−k + 1√

n

)
. Therefore, our method

is theoretically guaranteed to achieve satisfactory prediction per-
formance for various PU classification tasks.

6 EXPERIMENTS

In this section, we compare our proposed LBE algorithm (includ-
ing two implementations LBE-LF and LBE-MLP) with several
state-of-the-art PU learning methods on synthetic datasets, bench-
mark datasets, and real-world datasets. The compared baseline
methods include the typical instance-independent algorithms such
as unbiased PU model (uPU) [3], non-negative PU model (nnPU)
[4], Loss Decomposition and Centroid Estimation (LDCE) [6];
and instance-dependent algorithms such as PU learning with
a Selection Bias (PUSB) [38], Propensity-Weighted Estimator
(PWE) [21]. To achieve fair comparison, we report the results
generated by the linear models of uPU, nnPU, LDCE, PUSB, PWE
and LBE-LF for our experiments. Besides, we also present the
results of non-linear LBE-MLP, in which the normal three-layer
MLP with hyperbolic tangent activation function is employed, and
the dimension of the hidden layer is fixed to 10 unless otherwise
specified. The Adam optimizer is adopted for parameter learning
in each dataset with the default parameters specified in [39]. For
our LBE, the target classifier h(x;θ1) is initialized by training
it on the dataset that naively takes the unlabeled examples as
negative ones, and θ2 in η(x;θ2) is initialized to zero to achieve
good convergence result [21].

To generate instance-dependent PU data with labeling bias,
we first train a linear model by logistic regression on the data
with groundtruth positive and negative labels. Then based on
the predicted class probabilities of examples output by logistic
regression, we select a subset of the positive training data as
positive set SP , and then combine the remaining positive data
with negative data to compose the unlabeled set SU . Specifically,
in every dataset, the positive examples are respectively sampled
according to the two sampling strategies below:

• Strategy 1: η(x) =

[(
1 + exp(−θ∗>lgtx)

)−1
]κ

;

• Strategy 2: η(x) =

[
1−

(
1 + exp(−θ∗>lgtx)

)−1
]κ

,

where θ∗lgt is the optimal parameter learned from logistic regres-
sion, and κ is set to 10 by following [38] to make the selected
positive data more skewed than κ = 1. In Strategy 1, the positive
data that are far from the potential ideal decision boundary are
more likely to be labeled. This sampling strategy models the
situations that the human annotators prefer to label the positive
examples that they are almost sure. In contrast, in Strategy 2, the
positive data that are close to the ideal decision boundary will have
large probability to be labeled. This sampling strategy mimics the
annotation preference similar to active learning [50] in which some
critical data points in determining the final classifier are more
likely to be labeled. Note that all positive data in SP are sampled
with replacement such that the obtained positive examples are
identically and independently distributed.

6.1 Synthetic Datasets
First, we create a two-dimensional binary dataset that consists
of two clusters of data generated from two Gaussians, and each
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(a) (e)(b) (f)

True 𝜂(𝐱)

Learned 𝜂(𝐱)

(g)

(c) (i)(d) (h) ( j)

Fig. 2: The performances of various methods on the synthetic dataset under Strategy 1. (a) shows the real positive and negative data; (c) shows
the unlabeled and biased positive data for model training; (b) and (d) present the true η(x) and the estimated η(x) of LBE; (e)∼(j) display the
classification results generated by uPU, nnPU, LDCE, PUSB, PWE, and LBE. The classification accuracy of every method is presented above
the corresponding subfigure.

Gaussian corresponds to a class (positive/negative) as shown in
Fig. 2(a) and Fig. 3(a). The centers of two Gaussians are (2.7, 0)
and (−2.7, 0), respectively, and their variances are set to the same
number 1. The entire dataset contains 1000 data points, and they
are equally divided into two classes. After that, two instance-
dependent PU datasets are generated based on the two sampling
strategies mentioned above, which are illustrated in Fig. 2(c) for
Strategy 1 and Fig. 3(c) for Strategy 2. The ratio of positive
examples that are unlabeled to all original positive examples
(denoted as π hereinafter) is set to 60% under each sampling
strategy.

The classification results of LBE-LF and the compared meth-
ods are shown in Figs. 2(e)∼(j) for Strategy 1 and in Figs. 3(e)∼(j)
for Strategy 2. On both datasets, LBE-LF is the only method
that can achieve 100% accuracy, which is better than the re-
sults obtained by two state-of-the-art instance-dependent methods
PUSB and PWE. For the instance-independent algorithms such as
uPU, nnPU and LDCE, a considerable number of data points are
mislabeled due to the biased sampling of positive examples. For
example, in Fig. 2 corresponding to Strategy 1, some unlabeled
examples that are originally positive near the decision boundary
are classified as negative by uPU and LDCE, which suggests that
the conventional instance-independent PU methods cannot well
handle the labeling bias on positive data.

Moreover, we visualize the real probability value of η(x)
generated by Strategy 1 (Fig. 2(b)) and Strategy 2 (Fig. 3(b)),
and also plot the estimated η(x) by our LBE-LF (Fig. 2(d) and
Fig. 3(d)). By comparing Fig. 2(b) vs. Fig. 2(d) and Fig. 3(b)
vs. Fig. 3(d), we can easily observe that LBE-LF can correctly
identify the biased labeling probabilities for positive examples,
which is the key reason for our method to achieve satisfactory
performance.

The results of LBE-MLP under Strategy 1 and Strategy 2 are
presented in Fig. 4, from which we see that the output decision
boundaries under both strategies are over-complicated and cannot

TABLE 1: The characteristics of six UCI datasets. n+ and n− are the
amounts of positive and negative examples.

Dataset n d n+ n−
australian 690 14 370 383
madelon 2000 500 1000 1000
phishing 11055 30 6157 4898

vote 435 16 267 168
banknote 1372 4 610 762

breast 683 10 143 540

reflect the real data distribution. In other words, LBE-MLP overfits
the dataset, as this dataset is too simple for the “big” and complex
neural network model. More experiments on this synthetic dataset
under inseparable case and other positive data sampling strategy
can be found in the supplementary material.

6.2 UCI Benchmark Datasets
To demonstrate the effectiveness and robustness of LBE, we
conduct extensive experiments on six UCI benchmark dataset-
s2 including australian, madelon, phishing, vote, banknote, and
breast. The brief information of these datasets are presented in
Table 1, from which we see that the number of examples in the
employed datasets ranges from 435 to 11055. In our experiments,
we conduct five-fold cross validation for our method and all the
counterparts on each dataset. The mean test accuracies and the
standard deviations over five independent trials are particularly
investigated. Furthermore, we also applied the paired t-test with
confidence level 95% to statistically examine whether our LBE
(including LBE-LF and LBE-MLP) is significantly better/worse
than other methods. As described in the beginning of Section 6,
for every dataset, we apply two sampling strategies to establish
the biased PU training set, with π ∈ {0.2, 0.3, 0.4}.

In our LBE-LF and LBE-MLP, the maximum iteration number
is set to 100. For LBE-MLP, the weight decay parameter is chosen

2. http://archive.ics.uci.edu/ml/index.php
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(a) (e)(b) (f)

True 𝜂(𝐱)

Learned 𝜂(𝐱)

(g)

(c) (i)(d) (h) ( j)

Fig. 3: The performances of various methods on the synthetic dataset under Strategy 2. (a) shows the real positive and negative data; (c) shows
the unlabeled and biased positive data for model training; (b) and (d) present the true η(x) and the estimated η(x) of LBE; (e)∼(j) display the
classification results generated by uPU, nnPU, LDCE, PUSB, PWE, and LBE. The classification accuracy of every method is presented above
the corresponding subfigure.

from {10−1, 10−2, 10−3, 10−4}, and they are set to the optimal
values on the six datasets by observing the validation accuracy.
Regarding the baseline methods, the step discounted parameter
γ and the tolerance parameter β in nnPU are respectively fixed
to 0.001 and 0 as suggested by [4]. In LDCE, the regularization
parameter λ and the parameter β are respectively selected from
{2−4, · · · , 24} and {0.1, 0.2, · · · , 0.9} via cross validation ac-
cording to [6]. In PUSB, the value of r(x) = P (x|y=1,s=1)

P (x) is es-
timated via minimizing the pseudo classification risk. In PWE, all
data features are deemed as “propensity attributes” to estimate the
propensity scores3. Among the incorporated compared methods,
uPU, nnPU and LDCE require the class prior P (Y = 1), and here
we simply input the real value of P (Y = 1) to these approaches.
Besides, the loss functions employed by the compared methods
are indicated by the corresponding papers [3], [4], [6], [21], [38],
namely sigmoid loss for uPU, nnPU and PUSB, hinge loss for
LDCE, and cross-entropy loss for PWE.

The experimental results are reported in Table 2. As we can
see, our approach achieves better or comparable performance
when compared with the remaining baseline methods in most
cases. Generally, LBE-MLP and LBE-LF are the best two methods
among the compared methodologies. The nonlinear LBE-MLP is
slightly better than the linear LBE-LF in most cases as the network
in LBE-MLP can produce more flexible classifier than the logistic
function in LBE-LF. Besides, we observe that the methods that
consider the labeling bias (e.g., LBE, PUSB and PWE) can usually
obtain higher classification accuracy than those that do not take the
labeling bias into account (e.g., uPU, nnPU and LDCE), and this
again shows the necessity of modeling the biased positive data

3. In [21], the PWE method requires a subset of the original features to be
propensity attributes, so the authors conduct clustering on the dataset and then
assign the additional artificial binary propensity attributes to the data points in
the clusters according to some distribution. Here we do not use this propensity
attributes generation strategy as this will modify the original datasets and make
the comparison setting for various methods not consistent.

Even:

Odd:

Fig. 5: Examples of even and odd images in the adopted USPS dataset.

Non-fighting: 

Fighting: 

Fig. 6: Examples of fighting and non-fighting video frames in Hock-
eyFight dataset.

selection in instance-dependent PU learning.

6.3 Real-World Datasets

To further evaluate the ability of LBE in handling complex
problems in reality, we conduct experiments on three real-world
datasets in this section, namely USPS4, HockeyFight5, and Swis-

4. https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps
5. http://visilab.etsii.uclm.es/personas/oscar/FightDetection/index.html
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(a) (b) (d)

True 𝜂(𝐱)

(e) (h)(f)

(c)

Learned 𝜂(𝐱)

(g)

Strategy 1

Strategy 2

True 𝜂(𝐱)

Learned 𝜂(𝐱)

Fig. 4: The performances of LBE-MLP on the synthetic dataset under Strategies 1 and 2. The upper panel refers to Strategy 1, where (a)∼(d)
show the unlabeled and biased positive data for model training, true η(x), the estimated η(x) by LBE-MLP, and the classification result of
LBE-MLP, respectively. The lower panel refers to Strategy 2, where (e)∼(h) have the same meanings as (a)∼(d).

sProt 6.
The USPS dataset is a typical benchmark dataset for handwrit-

ten digit recognition. It contains 9298 digit images of size 16×16
that are classified into 10 categories, i.e., “0”∼“9”. In this paper,
every image is represented by a 16 × 16 = 256-dimensional
feature vector with the elements being the gray values of image
pixels. The images of odd numbers are chosen as positive data,
and the images of even numbers are taken as negative ones. Some
examples of this dataset are shown in Fig. 5.

The HockeyFight dataset is a challenging dataset for detecting
violent behaviors in various ice hockey games. It is made up of
1000 video clips collected from different ice hockey games, in
which 500 clips are with fighting behavior (i.e., positive class)
and 500 clips are without fighting behavior (i.e., negative class).
Similar to [51], we first apply the space-time interest point (STIP)
and motion SIFT as action descriptors, and then transform each
video clip into a histogram over 100 visual words by further
using the Bag-of-Words quantization. As a result, each clip can be
characterized by a 100-dimensional feature vector. Fig. 6 provides
some example frames of this dataset.

The SwissProt is a document classification dataset with 2453
human-labeled positive examples and 4906 unlabeled examples
[16]. This dataset contains natural labeling bias during the data
annotation process, and has been widely used to evaluate the
instance-dependent PU learning approaches [38], [22]. Therefore,
different from the USPS and HockeyFight datasets of which the
biased positive sets SP are artificially generated via the two
sampling strategies, the observed positive data in SwissProt are
inheritably biased. In SwissProt dataset, approximately 10% of the
unlabeled data are actually positive. Following [38], we use Bag-
of-Words technique to transform each document into a 78,894-
dimensional sparse feature vector. Moreover, since the resulting
data dimension is extremely high, the hidden layer dimension of
MLP in LBE-MLP is set to 300.

6. http://cseweb.ucsd.edu/ elkan/posonly/

Similar to the experimental setting in Section 6.2, for the USPS
and HockeyFight datasets, we also use five-fold cross validation to
evaluate the performances of compared methods on each dataset,
and the mean test accuracies as well as the standard deviations
are reported. Because the training set (including positive set and
unlabeled set) and test set have already been specified by the
original SwissProt dataset, so we simply report the test accuracy of
each compared method for one trial. The parameter configurations
of all methods are identical to those as mentioned in Section 6.2.
Table 3 presents the test accuracies rendered by the compared
methods, which clearly validates the top-level performance of
LBE among all the other methods in all these datasets. As
we can see, our method outperforms the instance-independent
PU methods such as uPU, nnPU, and LDCE under different
sampling strategies, revealing the effectiveness and generality of
our proposed graphical model in handling instance-dependent PU
learning problems. Besides, we note that on the SwissProt dataset
with natural labeling bias, our LBE also shows better results than
other methods. The above results indicate that our method can
precisely capture different types of underlying labeling bias during
the annotation stage.

7 CONCLUSION

In this paper, we proposed a new instance-dependent PU learning
algorithm termed “LBE” which jointly estimates the labeling bias
and learns a classifier. The advantages of LBE are four-fold:

• Generality. The generality of the proposed framework lies in
two aspects. One one hand, LBE can accommodate to a wide
range of popular classifiers such as LF and MLP presented in
this paper. On the other hand, LBE can flexibly characterize
various kinds of labeling bias as long as the user-defined
η(x;θ2) is changed.

• Optimality. LBE can be interpreted as the rectified logistic
regression with a clear objective function, of which the
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TABLE 2: Comparison of test accuracies (mean±std) for our proposed method and the baselines on six UCI datasets under different sampling
strategies and π’s. The best and the second best results on each dataset are indicated in red and blue, respectively. The black “X”(“×”) denotes
that LBE-LF is siginificantly better (worse) than the corresponding methods revealed by the paired t-test with confidence level 95%. Similarly,
the magenta “X”(“×”) denotes that LBE-MLP is significantly better (worse) than the corresponding methods revealed by the paired t-test.

Dataset Strategy π uPU [3] nnPU [4] LDCE [6] PUSB [38] PWE [21] LBE-LF LBE-MLP

australian

1
0.2 0.8188 ± 0.0258 X X 0.8235 ± 0.0248 X 0.8105 ± 0.0078 X X 0.8202 ± 0.0090 X X 0.8429 ± 0.0104 X 0.8484 ± 0.0091 0.8641 ± 0.0057
0.3 0.7913 ± 0.0679 X 0.8156 ± 0.0049 X X 0.8116 ± 0.0063 X X 0.8232 ± 0.0251 X 0.8380 ± 0.0171 0.8336 ± 0.0173 0.8577 ± 0.0152
0.4 0.8194 ± 0.0359 0.8061 ± 0.0271 X X 0.7652 ± 0.0022 X X 0.8169 ± 0.0071 X X 0.8299 ± 0.0205 X 0.8397 ± 0.0162 0.8525 ± 0.0095

2
0.2 0.8099 ± 0.0487 X X 0.7362 ± 0.0737 X X 0.8290 ± 0.0035 X X 0.8319 ± 0.0099 X X 0.7939 ± 0.1262 X X 0.8745 ± 0.0033 0.8719 ± 0.0039
0.3 0.7728 ± 0.0387 X X 0.8084 ± 0.0582 0.7958 ± 0.0053 X X 0.8351 ± 0.0121 X 0.8310 ± 0.0049 X 0.8371 ± 0.0101 0.8528 ± 0.0048
0.4 0.7849 ± 0.0519 X X 0.7875 ± 0.0376 X X 0.7638 ± 0.0190 X X 0.8182 ± 0.0058 X 0.8235 ± 0.0299 0.8496 ± 0.0093 0.8397 ± 0.0106

madelon

1
0.2 0.6584 ± 0.0039 X X 0.7113 ± 0.0035 X X 0.6608 ± 0.0158 X X 0.7647 ± 0.0022 X X 0.7000 ± 0.0082 X X 0.7986 ± 0.0038 0.8301 ± 0.0088
0.3 0.6612 ± 0.0165 X X 0.6998 ± 0.0039 X X 0.6528 ± 0.0186 X X 0.7345 ± 0.0086 X X 0.6910 ± 0.0120 X X 0.7723 ± 0.0041 0.7947 ± 0.0065
0.4 0.6432 ± 0.0026 X X 0.6546 ± 0.0106 X X 0.6609 ± 0.0060 X X 0.6813 ± 0.0048 X X 0.6500 ± 0.0055 X X 0.7149 ± 0.0065 0.7735 ± 0.0040

2
0.2 0.7022 ± 0.0134 X X 0.7242 ± 0.0045 X X 0.7039 ± 0.0086 X X 0.7656 ± 0.0035 × X 0.7099 ± 0.0106 X X 0.7464 ± 0.0043 0.8250 ± 0.0069
0.3 0.6776 ± 0.0053 X X 0.6508 ± 0.0121 X X 0.6504 ± 0.0102 X X 0.7174 ± 0.0047 X 0.6300 ± 0.0152 X X 0.7199 ± 0.0092 0.7705 ± 0.0094
0.4 0.6276 ± 0.0052 X X 0.6124 ± 0.0031 X X 0.6264 ± 0.0133 X X 0.6809 ± 0.0079 X 0.5500 ± 0.0258 X X 0.6811 ± 0.0047 0.7211 ± 0.0089

phishing

1
0.2 0.9325 ± 0.0018 X 0.8817 ± 0.0023 X X 0.8960 ± 0.0199 X X 0.9022 ± 0.0017 X X 0.9295 ± 0.0027 X X 0.9341 ± 0.0003 0.9373 ± 0.0024
0.3 0.9311 ± 0.0002 X X 0.8777 ± 0.0089 X X 0.9027 ± 0.0071 X X 0.9001 ± 0.0029 X X 0.9319 ± 0.0016 X 0.9336 ± 0.0009 0.9394 ± 0.0016
0.4 0.9311 ± 0.0003 X X 0.8889 ± 0.0071 X X 0.8737 ± 0.0197 X X 0.9027 ± 0.0014 X X 0.9325 ± 0.0025 X 0.9344 ± 0.0016 0.9411 ± 0.0006

2
0.2 0.9255 ± 0.0013 X X 0.8903 ± 0.0033 X X 0.8935 ± 0.0051 X X 0.9090 ± 0.0010 X X 0.9330 ± 0.0005 X X 0.9379 ± 0.0001 0.9440 ± 0.0041
0.3 0.9245 ± 0.0005 X X 0.9045 ± 0.0036 X X 0.8535 ± 0.0301 X X 0.9103 ± 0.0009 X X 0.9320 ± 0.0011 X X 0.9378 ± 0.0001 0.9468 ± 0.0020
0.4 0.9280 ± 0.0011 X X 0.9127 ± 0.0022 X X 0.9152 ± 0.0041 X X 0.8873 ± 0.0206 X X 0.9322 ± 0.0015 X X 0.9368 ± 0.0006 0.9445 ± 0.0035

vote

1
0.2 0.9191 ± 0.0038 X X 0.8814 ± 0.0245 X X 0.9014 ± 0.0034 X X 0.9056 ± 0.0017 X X 0.9568 ± 0.0055 × 0.9389 ± 0.0026 0.9563 ± 0.0043
0.3 0.9131 ± 0.0073 X X 0.8690 ± 0.0056 X X 0.8754 ± 0.0168 X X 0.9049 ± 0.0033 X X 0.9131 ± 0.0451 X X 0.9439 ± 0.0097 0.9513 ± 0.0050
0.4 0.9030 ± 0.0070 X 0.8634 ± 0.0179 X X 0.8749 ± 0.0151 X X 0.9064 ± 0.0026 X 0.8947 ± 0.0225 X 0.9269 ± 0.0401 0.9393 ± 0.0107

2
0.2 0.9389 ± 0.0084 X 0.8648 ± 0.0208 XX 0.8644 ± 0.0137 X X 0.9079 ± 0.0033 X X 0.9103 ± 0.0787 X X 0.9701 ± 0.0002 0.9513 ± 0.0435
0.3 0.9494 ± 0.0040 X X 0.8814 ± 0.0187 X X 0.8653 ± 0.0053 X X 0.9079 ± 0.0043 X X 0.9655 ± 0.0036 X 0.9687 ± 0.0013 0.9710 ± 0.0031
0.4 0.9499 ± 0.0050 0.8998 ± 0.0066 X X 0.8805 ± 0.0118 X X 0.9273 ± 0.0086 X 0.9430 ± 0.0376 X X 0.9595 ± 0.0198 0.9513 ± 0.0450

banknote

1
0.2 0.9000 ± 0.0630 X X 0.8994 ± 0.0161 X X 0.8713 ± 0.0025 X X 0.8203 ± 0.0282 X X 0.8774 ± 0.0554 X X 0.9652 ± 0.0238 0.9797 ± 0.0066
0.3 0.8299 ± 0.0813 X X 0.8010 ± 0.0112 X X 0.8571 ± 0.0011 X X 0.8134 ± 0.0355 X X 0.9096 ± 0.0444 X X 0.9638 ± 0.0117 0.9784 ± 0.0061
0.4 0.8299 ± 0.0813 X X 0.8010 ± 0.0112 X X 0.8671 ± 0.0034 X X 0.8134 ± 0.0355 X X 0.9096 ± 0.0444 X X 0.9638 ± 0.0117 0.9784 ± 0.0061

2
0.2 0.8872 ± 0.0161 X X 0.9523 ± 0.0009 X X 0.9413 ± 0.0078 X X 0.9619 ± 0.0060 X 0.9452 ± 0.0258 X X 0.9708 ± 0.0040 0.9668 ± 0.0121
0.3 0.9210 ± 0.0211 X X 0.9708 ± 0.0090 0.9261 ± 0.0197 X X 0.9729 ± 0.0066 0.9194 ± 0.0759 X X 0.9758 ± 0.0029 0.9765 ± 0.0107
0.4 0.9633 ± 0.0102 X X 0.9669 ± 0.0083 X 0.9672 ± 0.0025 X 0.9256 ± 0.0118 X X 0.9599 ± 0.0314 X X 0.9742 ± 0.0068 0.9800 ± 0.0030

breast

1
0.2 0.9628 ± 0.0061 X X 0.9556 ± 0.0023 X X 0.9503 ± 0.0068 X X 0.9628 ± 0.0008 X X 0.9672 ± 0.0034 X 0.9698 ± 0.0013 0.9716 ± 0.0017
0.3 0.9687 ± 0.0008 X X 0.9643 ± 0.0063 X X 0.9529 ± 0.0077 X X 0.9506 ± 0.0019 X X 0.9613 ± 0.0120 X X 0.9728 ± 0.0018 0.9739 ± 0.0016
0.4 0.9698 ± 0.0017 0.9672 ± 0.0056 0.9585 ± 0.0028 X X 0.9540 ± 0.0030 X X 0.9567 ± 0.0290 X X 0.9707 ± 0.0029 0.9716 ± 0.0013

2
0.2 0.9698 ± 0.0013 X X 0.9523 ± 0.0023 X X 0.9617 ± 0.0031 X X 0.9672 ± 0.0052 X X 0.9363 ± 0.1432 X X 0.9760 ± 0.0008 0.9783 ± 0.0019
0.3 0.9675 ± 0.0024 X X 0.9548 ± 0.0035 X X 0.9567 ± 0.0024 X X 0.9716 ± 0.0008 X X 0.9425 ± 0.1756 X X 0.9766 ± 0.0004 0.9786 ± 0.0008
0.4 0.9701 ± 0.0013 X X 0.9654 ± 0.0027 X X 0.9645 ± 0.0043 X X 0.9540 ± 0.0005 X X 0.9513 ± 0.0008 X X 0.9751 ± 0.0022 0.9769 ± 0.0007

TABLE 3: Comparison of test accuracies for our proposed method and the baselines on three real-world datasets including HockeyFight, USPS,
and SwiffProt. The best two results on each dataset are indicated in red and blue, respectively. The black “X”(“×”) denotes that LBE-LF is
siginificantly better (worse) than the corresponding methods revealed by the paired t-test with confidence level 95%. Similarly, the magenta
“X”(“×”) denotes that LBE-MLP is significantly better (worse) than the corresponding methods revealed by the paired t-test.

Dataset Strategy π uPU [3] nnPU [4] LDCE [6] PUSB [38] PWE [21] LBE-LF LBE-MLP

HockeyFight

1
0.2 0.8524 ± 0.0022 X X 0.8738 ± 0.0053 X X 0.8664 ± 0.0047 X X 0.8756 ± 0.0033 X X 0.8402 ± 0.0193 X X 0.9020 ± 0.0099 0.9236 ± 0.0043
0.3 0.8502 ± 0.0034 X X 0.8764 ± 0.0071 X 0.8656 ± 0.0041 X X 0.8820 ± 0.0032 X 0.8546 ± 0.0018 X X 0.8800 ± 0.0107 0.9102 ± 0.0036
0.4 0.8962 ± 0.0027 X 0.8816 ± 0.0050 X X 0.8616 ± 0.0089 X X 0.8760 ± 0.0014 X X 0.8472 ± 0.2017 X X 0.8996 ± 0.0078 0.9030 ± 0.0040

2
0.2 0.9086 ± 0.0019 X 0.8850 ± 0.0034 X X 0.8476 ± 0.0168 X X 0.8820 ± 0.0014 X X 0.8200 ± 0.0023 X X 0.8994 ± 0.0062 0.9526 ± 0.0029
0.3 0.8996 ± 0.0030 X X 0.8912 ± 0.0019 X X 0.8442 ± 0.0104 X X 0.8884 ± 0.0062 X X 0.7828 ± 0.0051 X X 0.9262 ± 0.0008 0.9494 ± 0.0042
0.4 0.8940 ± 0.0051 X X 0.8968 ± 0.0038 X X 0.8400 ± 0.0129 X X 0.8884 ± 0.0068 X X 0.8072 ± 0.0017 X X 0.9274 ± 0.0011 0.9436 ± 0.0035

USPS

1
0.2 0.9058 ± 0.0059 X 0.8273 ± 0.0249 X X 0.9064 ± 0.0037 X 0.8276 ± 0.0044 X X 0.8977 ± 0.0117 X X 0.9171 ± 0.0104 0.9266 ± 0.0044
0.3 0.9080 ± 0.0061 X 0.8431 ± 0.0080 X X 0.8603 ± 0.0064 X X 0.8375 ± 0.0085 X X 0.9141 ± 0.0147 0.9246 ± 0.0148 0.9275 ± 0.0071
0.4 0.9072 ± 0.0060 X X 0.8529 ± 0.0064 X X 0.8836 ± 0.0045 X X 0.8414 ± 0.0128 X X 0.9187 ± 0.0075 0.9232 ± 0.0108 0.9230 ± 0.0084

2
0.2 0.9033 ± 0.0160 X X 0.8541 ± 0.0320 X X 0.8825 ± 0.0016 X X 0.9002 ± 0.0236 X X 0.9119 ± 0.0085 X X 0.9380 ± 0.0178 0.9374 ± 0.0175
0.3 0.8815 ± 0.0153 X X 0.8413 ± 0.0347 X X 0.8601 ± 0.0120 X X 0.8916 ± 0.0151 X X 0.9135 ± 0.0064 X 0.9234 ± 0.0084 0.9429 ± 0.0148
0.4 0.8796 ± 0.0188 X X 0.8723 ± 0.0256 X X 0.8897 ± 0.0030 X X 0.8879 ± 0.0275 X X 0.9166 ± 0.0062 X X 0.9386 ± 0.0146 0.9289 ± 0.0102

SwiffProt - - 0.9256 0.9450 0.9174 0.9216 0.9436 0.9477 0.9581

existence and local uniqueness of the solution have been
theoretically proved.

• Generalizability. The obtained LBE model is theoretically
proved to generalize well on unseen data, as the expected risk
will converge to the empirical risk if the amounts of positive
and unlabeled data are sufficiently large.

• Practicability. Unlike many existing PU classifiers that
should pre-estimate the class prior P (y = 1), LBE does not
require this prior knowledge which is practically non-trivial
to obtain. Besides, the LBE model does not contain any tun-
ing hyperparameters. Therefore, it can be easily implemented
under various practical scenarios.

Due to the above reasons, our method has shown superior per-
formance to various state-of-the-art PU learning approaches on
typical benchmark and real-world datasets.

For the future work, although our LBE is designed under the
setting of single-training-set PU learning, it would be interesting

to find a way to adapt our method to case-control PU learning.
Besides, it is also worthwhile to extend our LBE framework to
tackle the sampling bias-inherited semi-supervised learning [52],
[53] and label noise learning [19], [23] problems.

8 APPENDIX

This section provides the proofs for some key lemmas and theo-
rems in the main body.

8.1 Proof of Theorem 3

For the simplicity of presentation, in the following proof of
Theorem 3, we use L, hi, h̄i, ηi to abbreviate L(θ), h(xi;θ1),
h̄(xi;θ1) and η(xi;θ2), respectively. According to Proposition 2,
we should investigate the first-order derivative and Hessian matrix
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of the log-likelihood function Eq. (19) to θ1 and θ2. Specifically,
the first-order derivative of L(θ) to θ1 is in the form of

∂L
∂θ1

=
n∑
i=1

(1− si)
ηihi(1− hi)

1− ηihi
xi + si(hi − 1)xi

=
n∑
i=1

(1−si)
(ηi−1)hi
1−ηihi

xi+(1−si)hixi+si(hi−1)xi,

(34)

and the Hessian matrix is consequently computed as

HL,θ1 = HSP

L,θ1
+ HSU

L,θ1
(35)

where

HSP

L,θ1
=

k∑
i=1

(1− si)ηi + si + η2
i h

2
i − 2ηihi

(1− ηihi)2
hi(hi − 1)xix

>
i ;

(36)

HSU

L,θ1
=

n∑
i=k+1

(1− si)ηi + si + η2
i h

2
i − 2ηihi

(1− ηihi)2
hi(hi− 1)xix

>
i .

(37)
Therefore, next we should study the negative definitiveness of

HL,θ1
in Eq. (35). For the HSP

L,θ1
part corresponding to xi ∈ SP ,

we know si = 1, so Eq. (36) degenerates to

HSP

L,θ1
=

k∑
i=1

hi(hi − 1)xix
>
i = XPD

SP

L,θ1
X>P , (38)

where XP = (x1,x2, · · · ,xk) ∈ Rd×k is positive data
matrix with each column representing an example, and DSP

L,θ1

is a k × k diagonal matrix with the i-th (i = 1, · · · , k)
diagonal elements being hi(hi − 1) ≤ 0. To demonstrate
that the Hessian matrix HSP

L,θ1
corresponding to the positive

examples is negative semi-definite, we consider its opposite, i.e.,
−HSP

L,θ1
. Given any d-dimensional column vector v 6= 0,

we have v>(−HSP

L,θ1
)v = v>XP (−DSP

L,θ1
)X>Pv =

v>XP (−DSP

L,θ1
)1/2

(
(−DSP

L,θ1
)1/2

)>
X>Pv =∥∥∥(−DSP

L,θ1
)1/2X>Pv

∥∥∥2

2
≥ 0, which indicates the positive

semi-definitiveness of −HSP

L,θ1
. Therefore, HSP

L,θ1
is negative

semi-definite.
For the HSU

L,θ1
part corresponding to xi ∈ SU , since si = 0,

Eq. (37) becomes

HSU

L,θ1
=

n∑
i=k+1

η2
i

[
(hi − 1

ηi
)2 + ηi−1

η2i

]
(1− ηihi)2

hi(hi − 1)xix
>
i

= XUD
SU

L,θ1
X>U ,

(39)

where XU = (xk+1,xk+2, · · · ,xn) ∈ Rd×(n−k) is unlabeled
data matrix similar to XP , and DSU

L,θ1
is an (n−k)×(n−k) diago-

nal matrix with the i-th (i = k+ 1, · · · , n) diagonal elements be-
ing η2

i

[
(hi − 1

ηi
)2 + ηi−1

η2i

]
hi(hi − 1)/(1− ηihi)2. Here we u-

tilize the fact that ηi 6= 0 as in this case the labels of all positive ex-
amples will be unobserved, which obviously violates the setting of
PU learning. By observing Eq. (39) and considering that hi(hi−1)
is always no larger than 0, we see that to make all the diagonal
elements in DSU

L,θ1
to be negative, the quadratic term regarding hi,

i.e.,
[
(hi − 1

ηi
)2 + ηi−1

η2i

]
, should be positive. That is to say, hi

has to satisfy hi < (1 −
√

1− ηi)/ηi, ∀i = k + 1, · · · , n. By

denoting the function fη(ηi) = (1 −
√

1− ηi)/ηi, we see that
fη(ηi) is monotonically increasing when ηi ∈ (0, 1), and thus
fη(ηi) > limηi→0 (1−

√
1− ηi)/ηi = 0.5.

On the other hand, by noting that 0 < ηi < 1, 0 ≤ hi ≤ 1,
and recalling that h̄i > 2hi − 1, we have hiηi > 2hi − 1, which
leads to 0 < hi(1−ηi)

1−hiηi
< 0.5, and this indicates that

hi(1− ηi)
1− hiηi

=
hi(1− ηi)

1− [hiηi + (1− hi) · 0]

=
P (yi = 1|xi)(1− P (si = 1|yi = 1,xi))

1−
(
P (yi=1|xi)P (si=1|yi=1,xi)+P (yi=0|xi)P (si=1|yi=0,xi)

)
=

P (yi = 1|xi)(1− P (si = 1|yi = 1,xi))

1−
(
P (si = 1, yi = 1|xi) + P (si = 1, yi = 0|xi)

)
=
P (yi = 1|xi)(1− P (si = 1|yi = 1,xi))

1− P (si = 1|xi)

=
P (yi = 1|xi)P (si = 0|yi = 1,xi)

P (si = 0|xi)

=P (yi = 1|si = 0,xi)

<0.5.
(40)

Consequently, we know that hi < (1−
√

1− ηi)/ηi holds true
when xi ∈ SU . Therefore, the Hessian matrix HSU

L,θ1
regarding

unlabeled set is negative semi-definite. As a result, the Hessian
matrix HL,θ1

in Eq. (35) is negative semi-definite as the sum
of two negative semi-definite matrices is still negative semi-
definite. Therefore, the entire log-likelihood function L is concave
regarding θ1.

Furthermore, by observing the equivalent log-likelihood func-
tion Eq. (19), we see that hi and ηi are symmetrical and exchange-
able, so the concavity of Eq. (19) regarding θ2 can be similarly
proved by invoking η(xi;θ2) = P (si = 1|yi = 1,xi) < 0.5
when i = k+ 1, · · · , n. As a result, Theorem 3 is proved and the
optimal solution θ∗ will be locally unique.

8.2 Proof of Lemma 6
Note that h(xi) is the output of softmax on h′(xi). Be-
sides, we have h̄1(xi) = η(xi)h1(xi) and h̄0(xi) = 1 −
h̄1(xi) = 1−η(xi) +η(xi)h0(xi). Then we get the relationship

h′(xi)
softmax−−−−−→ h(xi)

η(xi)◦h(xi)−−−−−−−→ h̄(xi). Therefore, we have
the following derivative results:

∂l(h(xi), si)

∂h̄(xi)
=

(∂l(h(xi),si)

∂h̄0(xi)
∂l(h(xi),si)

∂h̄1(xi)

)
=

(
−(1− si)/h̄0(xi)
−si/h̄1(xi)

)
,

(41)

∂h̄(xi)

∂h(xi)
=

∂h̄0(xi)
∂h0(xi)

∂h̄1(xi)
∂h0(xi)

∂h̄0(xi)
∂h1(xi)

∂h̄1(xi)
∂h1(xi)

 =

(
η(xi) 0

0 η(xi)

)
, (42)

∂h(xi)

∂h′(xi)
=

(
∂h0(xi)
∂h′

0(xi)
∂h1(xi)
∂h′

0(xi)
∂h0(xi)
∂h′

1(xi)
∂h1(xi)
∂h′

1(xi)

)

=

(
h0(xi)h1(xi) −h0(xi)h1(xi)
−h0(xi)h1(xi) h0(xi)h1(xi)

)
,

(43)

where we use the facts that h1(xi) = 1−h0(xi) and the derivative
of the softmax function is ∂hm(xi)

∂h′
j(xi)

=−hm(xi)hj(xi) for m 6= j.
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For si = 1, according to the chain rule and Eqs. (41), (42),
(43), we have

∂`(h̄(xi), si)

∂h1(xi)
=
∂`(h̄(xi), si)

∂h̄1(xi)

∂h̄1(xi)

∂h1(xi)
+
∂`(h̄(xi), si)

∂h̄0(xi)

∂h̄0(xi)

∂h1(xi)

= −η(xi)/h̄1(xi)
(44)

and

∂`(h̄(xi), si)

∂h0(xi)
=
∂`(h̄(xi), si)

∂h̄1(xi)

∂h̄1(xi)

∂h0(xi)
+
∂`(h̄(xi), si)

∂h̄0(xi)

∂h̄0(xi)

∂h0(xi)

= 0.
(45)

Therefore, we know that

∂`(h̄(xi), si)

∂h′1(xi)
=
∂`(h̄(xi), si)

∂h1(xi)

∂h1(xi)

∂h′1(xi)
+
∂`(h̄(xi), si)

∂h0(xi)

∂h0(xi)

∂h′1(xi)

= −h0(xi).
(46)

Since h0(xi) is within [0, 1],
∣∣∣∂`(h̄(xi),si)

∂h′
j(xi)

∣∣∣<1 holds when si=1.

For si = 0, we similarly have

∂`(h̄(xi), si)

∂h1(xi)
= 0 (47)

and

∂`(h̄(xi), si)

∂h0(xi)
= −η(xi)/h̄0(xi). (48)

Therefore, we know that

∂`(h̄(xi), si)

∂h′0(xi)
=
∂`(h̄(xi), si)

∂h1(xi)

∂h1(xi)

∂h′0(xi)
+
∂`(h̄(xi), si)

∂h0(xi)

∂h0(xi)

∂h′0(xi)

= −η(xi)h0(xi)h1(xi)/h̄0(xi).
(49)

Since h0(xi) and η(xi) are within [0, 1], we have h̄0(xi) =
1−η(xi)+η(xi)h0(xi) = (1−η(xi))(1−h0(xi))+h0(xi) ≥
h0(xi). By further noting that h1(xi) and h̄0(xi) in Eq. (49) are
also within [0, 1], we conclude that

∣∣∣∂`(h̄(xi),si)
∂h′

j(xi)

∣∣∣ < 1 holds when
si = 0. By taking both the cases of si = 0 and si = 1 into
consideration, Lemma 6 is proved.

8.3 Proof of Lemma 7

To prove Lemma 7, we need the following existing result:

Lemma 11. (Talagrand contraction Lemma, [48]) If ` : R → R
is Ω-Lipschitz continuous and satisfies `(0) = 0, then

R̂S(` ◦ H) ≤ ΩR̂S(H). (50)

Therefore, Lemma 7 can be proved according to the following
derivations:

R̂S(` ◦ H) = Er[sup
h̄∈H

1

n

n∑
i=1

ri`(h̄(xi), si)]

1
≤ Er[sup

h

1

n

n∑
i=1

rih(xi)]

= Er[ sup
arg max{h′

0,h
′
1}

1

n

n∑
i=1

rih(xi)]

= Er[ sup
h′
j∈H′

1

n

n∑
i=1

rih
′
j(xi)]

= Er[ sup
h′∈H′

1

n

n∑
i=1

rih
′(xi)],

(51)

where the 1st inequality is according to Lemma 11.
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1 ADDITIONAL EXPERIMENTS ON SYNTHETIC DATASETS

In Section 6.1 of our main paper, we present the experimental results of our LBE-LF and the other compared methods under perfectly-
separable case with sampling Strategies 1 and 2. Here we provide more experimental results of the compared approaches on this dataset
to further study their classification ability. We mainly investigate the performance of LBE-LF in this section, as LBE-MLP may cause
overfitting as illustrated in Fig. 4 of the main paper.

Firstly, we study the performances of various methods when the positive data and negative data are not perfectly-separable. To
this end, we increase the variance of the two Gaussian clusters from 1 in our main paper to 1.7 here, so that the data points of the
two classes are “overlapped” with each other (see Fig. 1(a) and Fig. 2(a)). The Strategies 1 and 2 are also adopted here, and the other
experimental configurations are kept identical to those in the main paper. The generated PU datasets are respectively displayed in
Fig. 1(c) for Strategy 1 and Fig. 2(c) for Strategy 2.

The classification results of LBE-LF and the compared methods including uPU, nnPU, LDCE, PUSB and PWE are shown in
Figs. 1(e)∼(j) for Strategy 1 and in Figs. 2(e)∼(j) for Strategy 2. We see that the classification accuracies of all investigated methods
drop when compared with the results illustrated in Figs. 2 and 3 of our main paper. This is due to that the inseparable case involves
more outliers than the separable case, which misleads the training process and makes the ideal decision boundary more difficult to
identify. However, our LBE can still yield very impressive results, and the accuracy is as high as 97.7% for both Strategy 1 and Strategy
2. Moreover, we plot the real labeling probability of η(x) generated by Strategy 1 (Fig. 1(b)) and Strategy 2 (Fig. 2(b)), and also show
the estimated η(x) by our LBE (Fig. 1(d) and Fig. 2(d)). It can be observed that the estimated η(x) is very close to the true η(x),
therefore we learn that the labeling probability η(x) can still be accurately estimated by LBE-LF even though the two classes are not
perfectly separable.

Secondly, we consider a more challenging sampling strategy when the assumption of “invariance of order” that is widely employed

by existing works [1], [2] is severely violated. To be specific, the sampling strategy is η(x) =
[(

1 + exp(− [ 01 ]
>
x)

)−1]κ
with κ =

10, and the labeling probability is plotted in Fig. 3(b). We see that under this sampling strategy, the positive data point x = (x1, x2)
>

with large x2 is more likely to be labeled. Therefore, such η(x) is inconsistent with the assumption of “invariance of order”, as an
example x with a large P (y = 1|x) does not necessarily have a high probability of P (s = 1|y = 1,x).
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Fig. 1: The performances of various methods on the synthetic dataset under Strategy 1. The inseparable case is particularly studied. (a) shows
the real positive and negative data; (c) shows the unlabeled and biased positive data for model training; (b) and (d) present the true η(x)
and the estimated η(x) of LBE; (e)∼(j) display the classification results generated by uPU, nnPU, LDCE, PUSB, PWE, and LBE-LF. The
classification accuracy of every method is presented above the corresponding subfigure.
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Fig. 2: The performances of various methods on the synthetic dataset under Strategy 2. The inseparable case is particularly studied. (a) shows
the real positive and negative data; (c) shows the unlabeled and biased positive data for model training; (b) and (d) present the true η(x)
and the estimated η(x) of LBE; (e)∼(j) display the classification results generated by uPU, nnPU, LDCE, PUSB, PWE, and LBE-LF. The
classification accuracy of every method is presented above the corresponding subfigure.

The experimental results generated by various compared methods are presented in Figs. 3(e)∼(j). We see that the decision boundaries
yielded by the compared methods are largely influenced by the biasedly sampled positive data. Especially, PUSB, which is based on the
assumption of “invariance of order”, shows imperfect decision boundary and thus the obtained classification accuracy is only 94.20%.
Comparatively, our LBE-LF still yields reasonable decision boundary and the classification accuracy is as high as 99.50%. The reason
of our method in achieving impressive classification result is that our method does not need the assumption of “invariance of order”, so
it can still accurately estimate η(x) (see Fig. 3(d)), which is helpful for generating a good binary classifier.

2 EXPERIMENTS UNDER CONSTANT η

Although our LBE method is devised for instance-dependent PU learning, namely the labeling probability η(x) varies across different
data points, we show that it is still applicable to instance-independent PU learning where η(x) = η is a constant for all x. To be
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Fig. 3: The performances of various methods on synthetic dataset when the sampling strategy violates the assumption of “invariance of order”.
(a) shows the real positive and negative data; (c) shows the unlabeled and biased positive data for model training; (b) and (d) present the true
η(x) and the estimated η(x) of LBE; (e)∼(j) display the classification results generated by uPU, nnPU, LDCE, PUSB, PWE, and LBE-LF.
The classification accuracy of every method is presented above the corresponding subfigure.

TABLE 1: Experiments on two UCI datasets under the random sampling strategy with different η. The mean test accuracies and the estimated
η (mean±std) for our LBE-LF and LBE-MLP are reported.

Dataset true η
LBE-LF LBE-MLP

accuracy estimated η accuracy estimated η

banknote
0.8 0.9884 ± 0.0050 0.8254 ± 0.0019 0.9993 ± 0.0016 0.8125 ± 0.0049
0.7 0.9727 ± 0.0015 0.7429 ± 0.0087 0.9793 ± 0.0020 0.6879 ± 0.0024
0.6 0.9796 ± 0.0041 0.6751 ± 0.0018 0.9723 ± 0.0027 0.5922 ± 0.0011

breast
0.8 0.9704 ± 0.0031 0.8099 ± 0.0081 0.9606 ± 0.0083 0.7959 ± 0.0044
0.7 0.9674 ± 0.0089 0.6925 ± 0.0087 0.9593 ± 0.0090 0.7012 ± 0.0062
0.6 0.9731 ± 0.0027 0.6354 ± 0.0025 0.9801 ± 0.0003 0.5786 ± 0.0067

specific, we slightly change Eq. (9) in the main paper to η = P (s = 1|y = 1) = (1 + exp(−θ2))−1 such that η is irrelevant to x for
both LBE-LF and LBE-MLP. Then we run our algorithm on two UCI benchmark datasets banknote and breast to see: 1) whether our
LBE can still precisely estimate the constant value of η; and 2) the average classification accuracy over five-fold cross validation. The
experimental setting is identical to that in the main paper, and on each dataset we focus on the performances of LBE-LF and LBE-MLP
when true η are {0.6.0.7, 0.8}.

The experimental results are displayed in Table 1, from which we observe that the estimated η by our LBE is very close to the true
η on the two datasets. As a sequel, the test accuracies are quite high which are all above 95%. Therefore, we see that our LBE is also
effective on instance-independent PU learning with constant labeling probability η.
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