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Large-Margin Label-Calibrated Support Vector
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Abstract— Positive and unlabeled learning (PU learning) aims
to train a binary classifier based on only PU data. Existing meth-
ods usually cast PU learning as a label noise learning problem
or a cost-sensitive learning problem. However, none of them
fully take the data distribution information into consideration
when designing the model, which hinders them from acquiring
more encouraging performance. In this paper, we argue that
the clusters formed by positive examples and potential negative
examples in the feature space should be critically utilized to
establish the PU learning model, especially when the negative
data are not explicitly available. To this end, we introduce a
hat loss to discover the margin between data clusters, a label
calibration regularizer to amend the biased decision boundary to
the potentially correct one, and propose a novel discriminative
PU classifier termed “ Large-margin Label-calibrated Support
Vector Machines” (LLSVM). Our LLSVM classifier can work
properly in the absence of negative training examples and
effectively achieve the max-margin effect between positive and
negative classes. Theoretically, we derived the generalization
error bound of LLSVM which reveals that the introduction
of PU data does help to enhance the algorithm performance.
Empirically, we compared LLSVM with state-of-the-art PU
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methods on various synthetic and practical data sets, and the
results confirm that the proposed LLSVM is more effective than
other compared methods on dealing with PU learning tasks.

Index Terms— Label calibration, large margin, positive and
unlabeled learning (PU Learning), support vector machines
(SVMs).

I. INTRODUCTION

POSITIVE and unlabeled learning (PU learning) has
attracted intensive research efforts in recent years,

of which the target is to train an accurate binary classifier
based on only PU examples. PU learning is very useful
when the negative training data are absent or too diverse. For
example, the fake review detection system for online shopping
website can only identify some definite fake reviews (i.e.,
positive data), but cannot explicitly return the genuine reviews
(i.e., negative data) [1]. In other words, only a fraction of
positive data are at hand and the remaining unlabeled reviews
can be either genuine or fake; therefore, PU learning can be
utilized to build a more precise detector for discriminating fake
reviews from genuine reviews. In addition, in remote sensing,
we are often interested in identifying a specific land type (e.g.,
“water”) from a hyperspectral image [2]. In this case, it is
easy to annotate some water regions (i.e., positive data), but
is difficult to sufficiently and representatively collect diverse
non-water regions (i.e., negative data), as “nonwater region”
is an open notion that may contain unlimited land types.

Since PU learning is demanded in many practical appli-
cations as mentioned above, it receives a great deal of
attention in academic research. Suppose we are given a set
of d-dimensional examples T = {xi ∈ X ∈ Rd , i =
1, 2, . . . , p, p + 1, . . . , n; n = p + u} where n is the amount
of examples and X denotes the feature space. In T , the first
p elements with the label {yi}p

i=1 = +1 constitute the positive
set P , and the rest u elements form the unlabeled set U in
which the label of every example can be either positive or
negative. Therefore, by respectively denoting ω and b as the
coefficient vector and bias term, a PU learning algorithm aims
to train a suitable binary classifier f (x) = ω�x + b on T so
that it can correctly decide the label yt = sgn( f (xt )) from the
label space Y = {±1} for an unseen test example xt .

To conduct PU learning, current algorithms can be mainly
divided into three categories according to how the potential
negative examples are handled. The first category deploys
the two-step strategy which initially identifies some reliable
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Fig. 1. Motivation of our proposed LLSVM. The red positive sign,
green negative sign, and blue circle represent the positive example, negative
example, and unlabeled example, respectively. (a) Ideal decision boundary
can be found based on the large-margin theory if we know the ground truth
labels of training data. (b) Due to the unknown negative data in PU learning,
the direct deployment of large-margin theory will lead to the biased decision
boundary that classifies all examples into positive. (c) Label calibration is
conducted to push the biased decision boundary in (b) to the correct one.

negative data from the unlabeled set and then employs a
traditional supervised classifier to perform the ordinary learn-
ing under positive and negative examples. Such a two-step
framework is mostly followed by some early staged methods
such as [3] and [4], of which the drawback lies in that the
algorithm performance is dominated by the identified negative
training data. If the detection of negative data is inaccurate,
the final output could be disastrous. To address this defect,
the methods belonging to the second category directly treat all
unlabeled examples as negative, among which the original pos-
itive examples are regarded as mislabeled. As a consequence,
the PU learning problem is converted to a label noise learning
problem [5]–[7] and some specific models can be built via
label centroid estimation [8] or other probabilistic way [9].
The recent state-of-the-art PU learning approaches usually
adopt the third category, namely, designing various unbiased
loss functions and casting PU learning as a cost-sensitive
learning problem. By imposing different weights on the losses
incurred by the unlabeled data regarding positive class and
negative class, these methods try to achieve the unbiased
estimation of the loss value under traditional binary supervised
case. The representative loss functions include double hinge
loss [10], ramp loss [11], and nonnegative risk estimator [12].

Although the above methods have obtained good perfor-
mance to some extent, they did not fully exploit the data
distribution information which is actually very important for
PU learning. To be specific, although the unlabeled examples
do not have explicit labels, they form different clusters cor-
responding to positive class and underlying negative class,
which can be deployed to determine the negative examples
and amend the label bias caused by the missing of negative
examples. Taking Fig. 1(a) as an example, if the real labels of
training examples are available, an optimal decision boundary
can be easily placed to the margin formed by the positive
cluster and negative cluster. Therefore, the cluster information
revealed by the data set is very important for determining
the boundary, and here we incorporate the hat loss [13] to
support vector machines (SVM) to explore the large-margin
property inherited by both PU data. However, due to the
unavailability of negative training examples, the hat loss for
maximizing the between-class margin will generate a biased
decision boundary that classifies all training data into positive
[see Fig. 1(b)]. To alleviate this phenomenon, we design

a novel label calibration term that can “push” the biased
decision boundary to the correct one [see Fig. 1(c)]. Therefore,
our designed model for PU classification is dubbed “Large-
margin Label-calibrated SVM” (LLSVM).

Algorithmically, the hat loss will turn the objective function
to be nonsmooth and nonconvex, and the introduced label
calibration term is not decomposable with respect to each
of the training examples, so these two regularizers make the
LLSVM model difficult to solve. To facilitate the optimization,
we use a smooth Gaussian-like function to approximate the
hat loss and find an upper bound of label calibration term that
specifically penalizes the label bias on every training data.
As a result, the LLSVM model can be efficiently solved via
minibatch stochastic gradient descent (SGD). Theoretically,
we derived the generalization error bound of the proposed
LLSVM, which suggests that LLSVM is guaranteed to obtain
satisfactory performance when PU data are available for
training. Experimentally, we tested our method on toy data
set, benchmark data sets, and real-world data sets of different
areas, and the results confirm that our LLSVM can obtain
superior results to the state-of-the-art PU learning algorithms.

II. RELATED WORK

As an important branch of weakly supervised
learning [14], [15], the study of PU learning can be
dated back to [3] and [4], which follow a two-stage strategy
that initially identifies some reliable negative examples from
the unlabeled set and then performs the traditional supervised
learning. In this strategy, the first stage is critical and various
methods have been developed to find the probable negative
examples. Liu et al. [3] develop a “Spy Technique” that
randomly puts a set of positive examples to U , and thus,
the expectation–maximization algorithm can be employed
to detect the definite negative examples. Differently, Liu
et al. [4] adopt a naive Bayesian classifier to determine the
most likely negative documents for text classification. Xiao
et al. [16] build a similarity graph and employ K-means
to find the representative positive and negative prototypes.
Above “detect-then-classify” strategy actually adopts the
simple-to-complex sequence [17] to progressively decide the
definite negative examples and, thus, is very straightforward,
but the drawback is also obvious, namely, the detection of
negative examples can be inaccurate and the final performance
will be degraded as a result.

Considering that precisely detecting the negative examples
is nontrivial, some later methods transform PU learning prob-
lem into the learning problem with label noise and thus some
existing methodologies can be adapted to solve PU learning
problem. Lee and Liu [9] regard all the unlabeled examples
as negative, among which the original positive examples are
treated as mislabeled. Then, they perform logistic regression
on the data set and generate the real-valued probabilistic
outputs rather than the thresholded binary outputs as previous
“detect-then-classify” strategy.

However, above noise learning strategy cannot work prop-
erly if the noise rate is too high, which occurs when a large
number of positive examples are hidden in the unlabeled
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set. Therefore, the recent state-of-the-art methods usually
formulate PU learning as cost-sensitive learning, by which the
losses incurred by the unlabeled examples regarding positive
and negative classes are re-weighted. For example, Elkan and
Noto [18] first train a nontraditional classifier on P and U
to estimate the examples’ weights on a validation set, and
then model the probability P(y = 1|x) using a weighted
SVM. In addition, Plessis et al. [11] reweight the per-class
costs of every example according to the estimated class priors,
and propose to use a nonconvex ramp loss to conduct PU
classification. To avoid the nonconvexity, a convex unbiased
double hinge loss is presented in [10], of which the key idea is
to use a weighted ordinary convex loss for unlabeled data and
a weighted composite convex loss function for positive data.
However, the empirical risks of this method on the training
data might be negative, and serious overfitting will happen in
this case, so an improvement is made by Kiryo et al. [12]
which develop a nonnegative risk estimator. Theoretically,
Niu et al. [19] have proved that cost-sensitive PU learning is
guaranteed to outperform fully supervised classifier in certain
cases even though the negative data are absent. They also shed
light on that the loss functions proposed in [10] and [11] are
unbiased to the real loss for ordinary binary classification.

Apart from above-mentioned models, there are some other
works that extend the ordinary PU learning to different set-
tings. Zhou et al. [20] extend the ordinary single-view PU
model to multiview cases based on density ratio estimation.
Xu et al. [21] generalize the single positive class to multiple
positive classes and propose multi-PU learning based on the
discriminative multiclass formulation.

Although the existing methods have obtained encouraging
performance to some extent, they lack the capability of dis-
covering the large-margin effect revealed by the locations of
training examples in the feature space. Therefore, this paper
aims to design a novel discriminative PU learning model
that maximizes the margin between real positive and negative
classes without the aid of known negative examples. Note
that [22] also advocates employing margin theory to conduct
PU learning. However, this method heavily relies on the large
positive margin assumption that all positive examples are
located far away from the optimal decision boundary, which
may not be true practically. In addition, the margin in [22]
is caused by the truncated Gaussian distribution, which is
different from the interclass margin to be maximized in our
method.

III. PROPOSED METHOD

In this section, we first establish our proposed PU learning
model LLSVM in Section III-A, and then explain the opti-
mization process for solving LLSVM in Section III-B. Finally,
the parameter estimation is detailed in Section III-C.

A. Model

In training stage, our target is to find a real-valued decision
function f : Rd → R based on the training set T = P∪U , and
the classification is performed according to its sign, namely,

y = sgn( f ) ∈ {−1,+1}. Given n, p, and u as the sizes of T ,
P , and U , respectively, our model is formulated as

min
ω,b,ξ,η

1

2
�ω�2 + α

p

p∑
i=1

ξi + β

u

p+u∑
i=p+1

ξi + γ η (1)

s.t. ω�xi + b ≥ 1 − ξi , i = 1, 2, . . . , p (2)∣∣∣ω�xi + b
∣∣∣ ≥ 1 − ξi , i = p + 1, . . . , p + u (3)

1

u

p+u∑
i=p+1

�(ω�xi + b) ≤ t + η (4)

ξi ≥ 0, i = 1, 2, . . . , n

η ≥ 0

where α, β, and γ are nonnegative tradeoff parameters; t is the
variable to be estimated that will be detailed in Section III-C;
and �(z) = (2/π) arctan(z) squashes the value of z to the
range [−1, 1]. The first term in the objective function (1) is a
regularizer to present overfitting. The second term in (1) along
with the constraint (2) imposed on the positive set P requires
that every xi ∈ P is classified as positive by the trained model.
The third term in (1) and the constraint (3) encourage the
examples in U to obtain “clear” labels, namely the value of
model output f (xi) should ideally be larger than 1 or less
than −1. The left-hand side of (4) computes the mean value
of unlabeled examples’ labels, and we hope that this mean
value is no larger than a threshold t . This constraint informs
the algorithm that the unlabeled set U contains a considerable
amount of negative examples, and thus, the determination of
their labels cannot be dominated by the observed positive
examples. Note that above constraints (2), (3), and (4) are not
“hard” as the nonnegative slack variables ξi (i = 1, . . . , n) and
η are incorporated. However, we want these constraints to be
satisfied as much as possible by minimizing the corresponding
slack variables.

For simplicity, we compactly express the decision function
as f (x) = ω�x where an additional value 1 is added to the
(d+1)th dimension of x’s feature vector and ω is augmented
correspondingly. Therefore, above constrained optimization
model can be rewritten in an unconstrained way, namely,

min
ω

1

2
�ω�2 + α

p

p∑
i=1

max(1 − ω�xi , 0)

+ β

u

p+u∑
i=p+1

max(1 − |ω�xi |, 0)

+ γ max

⎛
⎝1

u

p+u∑
i=p+1

�(ω�xi ) − t, 0

⎞
⎠. (5)

In (5), the second term which rewrites (2) is the hinge loss
on p positive examples. The third term related to (3) is called
hat loss [13] that drives our LLSVM to assign confident labels
to unlabeled examples. It can be observed that the loss value
will be above zero if the label value f (x) = ω�xi falls into
the range [−1, 1]. Furthermore, the maximum loss 1 will be
obtained if the label is 0, which means that the assigned label
does not contain any class information. On the contrary, if the
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Fig. 2. Regularizers (red curves) adopted by our LLSVM and their approximations (blue dashed curves).

label is larger than 1 or smaller than −1, the loss will be 0,
which suggests that xi has a clear class label. In other words,
we require the optimal decision boundary to travel thorough
a margin such that the examples belonging to two classes
are sufficiently separated. Therefore, by penalizing the label
values that are within [−1, 1], the obtained classifier is able
to find the maximum margin between classes. Note that if
we only minimize the first three terms, our algorithm will
produce a biased classifier that classifies all training examples
into positive [see Fig. 1(b)]. Consequently, an additional label
calibration term [i.e., the last term in (5)] equivalent to (4)
is introduced. By restricting the label mean of unlabeled
examples to a value that is not larger than t , the LLSVM will
be aware of the existence of negative examples, therefore the
improper decision boundary will be calibrated to the correct
one [see Fig. 1(c)]. The above-mentioned hinge loss, hat
loss, and label calibration term are plotted in Fig. 2 (red
curves), from which we observe that they are not smooth,
and thus, posing a great difficulty for the gradient-based
optimization approaches to solve (5). Therefore, to make them
differentiable everywhere, we use squared hinge loss and
squared label calibration term to replace the original hinge loss
and label calibration term, and utilize a smooth Gaussian-like
function [23] to approximate the hat loss. The three adopted
surrogate regularizers are visualized by the blue dashed curves
shown in Fig. 2. As a result, the model (5) is transformed to

min
ω

1

2
�ω�2+ α

p

p∑
i=1

[max(1−ω�xi , 0)]2+ β

u

p+u∑
i=p+1

e−3(ω�xi )
2

+γ

⎡
⎣max

⎛
⎝1

u

p+u∑
i=p+1

�(ω�xi ) − t, 0

⎞
⎠
⎤
⎦

2

. (6)

From (6), we see that all unlabeled examples should be visited
when computing the last squared label calibration term. Con-
sequently, the derivative of this regularizer to ω will be very
complicated due to the correlation of the unlabeled examples.
To address this problem, we further derive the upper bound
of [max((1/u)

∑p+u
i=p+1 �(ω�xi ) − t, 0)]2

and then minimize

this upper bound. According to Jensen’s inequality, we have

max

⎛
⎝ 1

u

p+u∑
i=p+1

�(ω�xi ) − t, 0

⎞
⎠

≤ 1

u

p+u∑
i=p+1

max(�(ω�xi ) − t, 0) (7)

therefore the squared label calibration term is upper bounded
by ⎡
⎣max

⎛
⎝ 1

u

p+u∑
i=p+1

�(ω�xi) − t, 0

⎞
⎠
⎤
⎦

2

1≤ 1

u2

⎡
⎣ p+u∑

i=p+1

max(�(ω�xi ) − t, 0)

⎤
⎦

2

2≤ 1

u

p+u∑
i=p+1

[
max(�(ω�xi ) − t, 0)

]2
(8)

where the second inequality holds true due to the inequality
of sum of squares. Finally, our model for training an LLSVM
classifier is expressed as

min
ω

1

2
�ω�2+ α

p

p∑
i=1

[max(1−ω�xi , 0)]2+ β

u

p+u∑
i=p+1

e−3(ω�xi )
2

+γ

u

p+u∑
i=p+1

[max(�(ω�xi ) − t, 0)]2
. (9)

B. Optimization

Note that the problem (9) is nonconvex due to the
third term, so we use the well-known minibatch SGD for
optimization [24]. Minibatch SGD differs from the conven-
tional SGD algorithm in that it randomly splits the training
data set into small batches that are used to compute the
gradient and update model coefficients. For each minibatch,
the average of the gradient values on all examples is adopted,
which reduces the variance of the gradient when compared
with the traditional SGD that processes only one example per
iteration. Therefore, minibatch SGD seeks to find a balance
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between the stability of SGD and the efficiency of full gradient
descent. In our implementation, we shuffle the examples in the
training set T and divide the entire T into N nonoverlapped
minibatches, and then use the batches successively to compute
the gradient and update ω. One cycle through all the mini-
batches constitutes a training epoch, and such training epoch
is repeated Max Epoch times. Note that one can shuffle the
data before every epoch, but in our work, we simply shuffle
the training data at the beginning of training stage to simulate
the independent identically distributed (i.i.d.) sampling.

By denoting the objective in (9) as J (ω), each summed
function Ji associated with xi (i takes a value from 1, . . . , n)
is formulated as

Ji =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
�ω�2 + α

p
[max(1 − ω�xi , 0)]2

, xi ∈ P;
1

2
�ω�x2 + β

u
e−3(ω�xi )

2 + γ

u
[max(�(ω�xi )−t, 0)]2

xi ∈ U .

(10)

As a result, for xi ∈ P , the gradient on ω is

∇ω(Ji ) = ω + 2α

p
min(ω�xi − 1, 0)xi . (11)

For xi ∈ U , the gradient on ω is

∇ω(Ji ) = ω − 6β

u
ω�xi e

−3(ω�xi )
2

xi

+ 4γ

πu[1 + (ω�xi )
2]

max(�(ω�xi ) − t, 0)xi . (12)

Therefore, the updating rule for each iteration is

ω := ω − τ

m

m∑
i=1

∇ω(Ji ), (13)

where m = n/N is the minibatch size and τ is step size that
is fixed to 0.01 throughout this paper.

C. Estimation of t

For LLSVM, the parameter t in the proposed label cali-
bration term determines the “strength” of pushing the biased
decision boundary to the potentially correct one. Manually
tuning this parameter may lead to the wrong placement of
decision function in the feature space and, thus, degrading the
performance. Here, we propose an adaptive way to estimate
the optimal t .

Since t represents the upper bound of the mean value of
unlabeled examples’ real labels, it can be easily estimated if
we know the class prior π = P(y = 1) in U . To this end,
some existing methods for estimating the class prior can be
deployed such as [25]–[30]. In this paper, we use the method
proposed in [30] which properly penalizes the divergences for
model fitting to mitigate the error caused by the absence of
negative samples. Specifically, suppose Q(x; π) = π P(x|y =
1) + (1 − π)P(x|y = −1) is the partial model revealed by P ,
and P(x) is the density of the unlabeled data associated with

U , then [30] proposes to estimate the class prior by penalizing
the divergence between Q(x; π) and P(x), namely,

π := arg min
0≤π≤1

Div f (π) (14)

where “Div” denotes the divergence that is defined by

Div f (π) :=
∫

f

(
Q(x; π)

P(x)

)
P(x)dx. (15)

By utilizing the Fenchel duality bounding technique [31]
for divergence and employing penalized L1-distance
f (z) = |z − 1| as the practical divergence penalization,
the problem (14) can be transformed to the following
constrained optimization problem, namely,

(c∗
1, . . . , c∗

B) = arg min
c1,...,cB

B∑
i=1

r̄

2
c2

i −
B∑

i=1

ci ρ̄i

s.t. ci ≥ 0, i = 1, . . . , B (16)

where r̄ > 0 is a tuning parameter, and

ρ̄i = π

n

n∑
j=1

ϕi (x j ) − 1

u

p+u∑
j=p+1

ϕi (x j ). (17)

In (17), ϕi (x) is the i th element from a set of nonnegative
Gaussian base functions {ϕi (x)}B

i=1.
The solution for the optimization problem (16) can be

analytically expressed as

ci = 1

r̄
max(0, ρ̄i ). (18)

Therefore, the class prior π is selected to minimize the
following estimator

�penL1(π) = 1

r̄

B∑
i=1

max(0, ρ̄i )ρ̄i − π + 1 (19)

where �penL1(π) denotes the estimated L1-distance related to
a specific π . In our work, the optimal π is searched from
0.05 to 0.95 with the interval 0.05. Given the estimated class
prior on U as π , the parameter t in (9) is computed as

t = uπ − u(1 − π)

u
= 2π − 1. (20)

The complete LLSVM algorithm for PU classification is
summarized in Algorithm 1.

IV. THEORETICAL ANALYSES

This section studies the proposed LLSVM algorithm from
the theoretical aspects. First, we analyze the computational
complexity of the involved SGD optimization process for
model training, and second, we derive the generalization bound
for our LLSVM.
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Algorithm 1: Summarization of the Proposed LLSVM
Input: trade-off parameters α, β and γ ; number of

mini-batches N ; maximum number of epochs
Max Epoch; step size τ = 0.01

Output: the optimal ω

1 Compute π by minimizing (19);
2 Estimate t via (20);
3 Initialize ω randomly;
4 for epoch = 1 : Max Epoch do
5 for batch = 1 : N do
6 ∀xi ∈ P , compute ∇ω(Ji ) via (11);
7 ∀xi ∈ U , compute ∇ω(Ji ) via (12);
8 Update ω via (13);
9 end

10 end

A. Computational Complexity

As mentioned in Section III-B, the designed LLSVM model
can be efficiently solved via SGD, so here we deduce the
computational complexity for model optimization. Given d as
the data dimensionality, one can easily find that the com-
plexities for calculating the gradients in (11) and (12) are
O(d) (Lines 6 and 7 in Algorithm 1). By further considering
that (13) also takes O(d) complexity (Line 8 in Algorithm 1),
we know that the parameter updating on a minibatch of size
m takes O(md + d) complexity. Suppose there are totally N
minibatches and Max Epoch epochs, the total complexity for
running the SGD for LLSVM is O(Max Epoch ·N ·(md +d)).
Note that the complexity for solving LLSVM is linear to d ,
so the optimal solution can be efficiently figured out. More-
over, since the term ω�xi appears several times in (12), it can
be precomputed for xi ∈ U . Therefore, the computational
burden can be further reduced for practical implementation.

B. Generalization Bound

In this section, we study the generalizability of the proposed
learning algorithm. We show that the empirical classification
risk of any classifier learned by the proposed algorithm con-
verges to its expected classification risk when the amounts of
both PU examples are sufficiently large.

Specifically, we define the expected classification error of a
classifier ω by

R(ω) = E[1Yω� X≤0] (21)

where 1{·} is the indicator function representing the 0-1 loss
function, and (X, Y ) stands for a pair of random variables
distributed from the unknown joint distribution P on the set
X × Y .

Since we only have PU data, we will rewrite the expected
risk accordingly. Let

R1(ω) =
∫

P(X|Y = 1)1ω� X≤0d X (22)

and

R−1(ω) =
∫

P(X|Y = −1)1ω� X≥0d X (23)

denote the false positive rate and false negative rate, respec-
tively, we have

R(ω) = E[1Yω� X≤0] = π R1(ω) + (1 − π)R−1(ω). (24)

Moreover, we define

Ru(ω) = E[1ω� X≥0]
=
∫

P(X)1ω� X≥0d X

=
∫

(P(X|Y = 1)P(Y = 1)

+ P(X|Y = −1)P(Y = −1))1ω� X≥0d X

= π(1 − R1(ω)) + (1 − π)R−1(ω). (25)

Therefore, by combining (24) and (25), we have

R(ω) = 2π R1(ω) + Ru(ω) − π. (26)

Accordingly, we may define the empirical margin error of
the classifier ω as

R̂ρ(ω) = 2π

p

p∑
i=1

1ω� Xi ≤ρ + 1

u

u∑
i=1

1−ω� Xi≤ρ − π, (27)

where ρ is the margin. Note that the prior π can be efficiently
estimated from the PU data, and thus, the empirical margin
error can be easily estimated from the data. Also note that
when ρ → 0, we have E[R̂ρ(ω)] → R(ω).

Let ω̂ be any learned classifier output by the proposed
learning algorithm, so our target is to upper bound the gener-
alization error R(ω̂) − R̂ρ(ω̂).

Theorem 1: Assume the feature space X is upper bounded,
i.e., ∀x ∈ X , �x� ≤ b�. Let p and u be the sizes of positive
set and unlabeled set, respectively, α, β, and γ be the tradeoff
parameters in (9), and ŵ be the classifier parameter learned
by the proposed algorithm. For any δ > 0, with probability at
least 1 − δ, we have

R(ω̂) − R̂ρ(ω̂) ≤ 2b�√2(α + β + γ t2)

ρ
√

p

+ 2b�√2(α + β + γ t2)

ρ
√

u
+
√

ln(1/δ)

2n
. (28)

Before proving this theorem, we first present some useful
definitions and lemmas.

Definition 2 (Rademacher Complexity, [32]): Let σ =
{σ1, . . . , σn} be a set of independent Rademacher variables
which are uniformly sampled from {−1, 1}. Let v1, . . . , vn be
an independent distributed sample set and F be a function
class. The Rademacher complexity is defined as

Rn(F) = Eσ

[
sup
f ∈F

1

n

n∑
i=1

σi f (vi )

]
. (29)

The Rademacher complexity is a data-dependent complexity
measure, which is often used to derive the dimensionality inde-
pendent generalization error bound of a decision function f ,
which is

Lemma 3 (Generalization Bound, [32]): Let F be a [0, 1]-
valued function class on X and f ∈ F . Given X1, . . . , Xn ∈
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X are i.i.d. variables, then for any δ > 0, with probability at
least 1 − δ, we have

sup
f ∈F

(
E f (X) − 1

n

n∑
i=1

f (Xi )

)
≤ 2Rn(F) +

√
ln(1/δ)

2n
. (30)

In addition, the Rademacher complexity appeared in (30)
can be usually upper bounded by following the Talagrand
contraction Lemma [32], which is

Lemma 4 (Talagrand Contraction Lemma, [32]): If � :
R → R is Lipschitz continuous with constant L and satisfies
�(0) = 0, then

Rn(� ◦ F) ≤ LRn(F) (31)

where � ◦ F represents the composition of � and all f ∈ F .
Now, we present the formal proof for Theorem 1: To

facilitate the proof, we first introduce the following function:

�ρ(x) =

⎧⎪⎨
⎪⎩

0 if x ≥ ρ

1 − x/ρ if 0 ≤ x ≤ ρ

1 otherwise

(32)

where ρ is the margin as defined in (27). Let

R(�ρ ◦ ω) = E[�ρ(Yω�X)]
= 2π R1(�

ρ ◦ ω) + Ru(�ρ ◦ ω) − π (33)

R̂(�ρ ◦ ω) = 2π

p

p∑
i=1

�ρ(ω�Xi )

+ 1

u

u∑
i=1

�ρ(−ω� Xi ) − π (34)

where �ρ ◦ ω stands for the composite function, and

R1(�
ρ ◦ ω) =

∫
P(X|Y = 1)�ρ(ω�X)d X (35)

and

Ru(�ρ ◦ ω) =
∫

P(X|Y = 1)�ρ(−ω�X)d X. (36)

We have that E[R̂(�ρ ◦ ω)] = R(�ρ ◦ ω). It can also be easily
verified that R(ω) ≤ R(�ρ ◦ ω) and that R̂ρ(ω) ≥ R̂(�ρ ◦ ω),
which implies

R(ω) − R̂ρ(ω) ≤ R(�ρ ◦ ω) − R̂(�ρ ◦ ω). (37)

Let W be the set of all possible learned classifiers, then we
have

R(ω̂) − R̂ρ(ω̂) ≤ sup
ω∈W

(R(�ρ ◦ ω) − R̂(�ρ ◦ ω)). (38)

We are now going to upper bound the defect R(�ρ ◦ ω) −
R̂(�ρ ◦ ω). According to Lemma 3, with probability at least
1 − δ, we have

sup
ω∈W

(R(�ρ ◦ ω) − R̂(�ρ ◦ ω))

≤ 2Rp(�
ρ ◦ W) + 2Ru(�ρ ◦ W) +

√
ln(1/δ)

2n
(39)

where

Rp(�
ρ ◦ W) = E

[
sup
ω∈W

1

p

p∑
i=1

σi�
ρ(ω�Xi )

]
(40)

and

Ru(�ρ ◦ W) = E

⎡
⎣ sup

ω∈W
1

u

p+u∑
i=p+1

σi�
ρ(ω�Xi )

⎤
⎦ . (41)

To upper bound the Rademacher complexities in (40)
and (41), we first derive an upper bound for the classifiers
in W . Specifically, due to the optimality of any ω ∈ W ,
we have

1

2
�ω�2 + α

p

p∑
i=1

[max(1 − ω�xi , 0)]2

+β

u

p+u∑
i=p+1

e−3(ω�xi )
2 + γ

u

p+u∑
i=p+1

[max(�(ω�xi ) − t, 0)]2

≤ 1

2
�0�2 + α

p

p∑
i=1

[max(1 − 0�xi , 0)]2

+β

u

p+u∑
i=p+1

e−3(0�xi )
2 + γ

u

p+u∑
i=p+1

[max(�(0�xi ) − t, 0)]2

= α + β + γ t2. (42)

This implies that �ω�2 ≤ 2α + 2β + 2γ t2.
Now, we are going to upper bound Rp(�

ρ ◦ W) and
Ru(�ρ ◦ W). Specifically, since the function �ρ(x) is
1/ρ-Lipschtiz, by using Lemma 4, we have

Rp(�
ρ ◦ W) ≤ 1

ρ
Rp(W)

= 1

ρ
E

[
sup
ω∈W

1

p

p∑
i=1

σiω
�Xi

]

= 1

ρ
E

[
sup
ω∈W

〈
ω,

1

p

p∑
i=1

σi Xi

〉]

1≤ 1

ρp
E

[
sup
ω∈W

�ω�
∥∥∥∥∥

p∑
i=1

σi Xi

∥∥∥∥∥
]

≤
√

2α + 2β + 2γ t2

ρp
E

[∥∥∥∥∥
p∑

i=1

σi Xi

∥∥∥∥∥
]

2≤
√

2α + 2β + 2γ t2

ρp

√√√√ p∑
i=1

E[�Xi�2]

≤ b�√2(α + β + γ t2)

ρ
√

p
(43)

where the Inequality 1 holds because of the Cauchy–Schwarz
inequality, and the Inequality 2 holds because of the Jensen’s
inequality (the square root function is concave) and that
E[σiσ j ] = 0 when i �= j .

Similarly, we have

Ru(�ρ ◦ W) ≤ b�√2(α + β + γ t2)

ρ
√

u
. (44)
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By combining inequalities (38), (39), (43), and (44), for any
learned ω̂, with probability at least 1 − δ, we have

R(ω̂) − R̂ρ(ω̂) ≤ 2b�√2(α + β + γ t2)

ρ
√

p

+2b�√2(α + β + γ t2)

ρ
√

u
+
√

ln(1/δ)

2n
(45)

which concludes the proof of Theorem 1. �
Theorem 1 shows that by either increasing the sample size

of positive data or unlabeled data, the upper bound of our
LLSVM decreases, which justifies the usefulness of PU data
in PU learning. Also, when the training sample sizes of the
PU data go to infinity, the upper bound will vanish. This also
guarantees the generalization ability of the proposed learning
algorithm.

V. EXPERIMENTAL RESULTS

In this section, we first study the closeness of the decision
boundaries of our LLSVM and fully supervised SVM on a toy
data set, and then compare LLSVM with some state-of-the-
art PU learning models on benchmark and practical data sets.
Finally, we investigate the running time and also parametric
sensitivity of the proposed LLSVM.

A. Toy Data

To visualize the effectiveness of our proposed PU learning
algorithm LLSVM, we run LLSVM on a synthetic 2-D data set
called DoubleGaussian. This data set is composed of two data
clusters generated from two Gaussian distributions centered at
(0, 0) and (2.5, 2.5), respectively (see Fig. 3). The covariance
matrix of both Gaussians is Cov = ( 0.5 0

0 0.5

)
. Each Gaussian

forms a class with 100 examples and only a part of the
positive examples are labeled while the remaining examples
are regarded as unlabeled.

We first randomly pick up 30 positive examples (i.e.,
p = 30) which are represented by the red triangles shown
in Fig. 3(a), and the ground truth labels of all examples
are indicated by different colors shown in Fig. 3(b). Based
on the ground truth labels, we adopt the liblinear1 toolbox
to train a standard fully supervised binary SVM, and plot
the generated decision boundary in Fig. 3(b) (cyan dashed
line). This decision boundary is assumed to be ideal as it
is built with the aid of all positive and negative training
labels. Furthermore, we conduct our proposed LLSVM on
this data set with only 30 known positive examples as shown
in Fig. 3(a), and the produced decision boundary is illustrated
by the magenta line in Fig. 3(b). After that, we randomly
select 20 more positive examples such that the total number
of positive examples is 50 [see Fig. 3(c)]. Then, we run the
fully supervised SVM and our LLSVM for PU learning again
to investigate their performances, and the obtained decision
boundaries are visualized in Fig. 3(d).

From the right column of Fig. 3, we see that the decision
boundaries of LLSVM are very close to that of SVM when

1https://www.csie.ntu.edu.tw/c̃jlin/liblinear/

Fig. 3. Experiments on TwoGaussian data set. The first row compares
the decision boundaries of LLSVM (magenta line) for PU learning with
30 positive examples and the fully supervised binary SVM (cyan dashed line)
with all known labels. The second row conducts the same comparison when
the proposed LLSVM is trained on 50 positive examples.

TABLE I

OVERVIEW OF THE ADOPTED DATA SETS. n = p� + n� IS THE TOTAL

NUMBER OF EXAMPLES, WHERE p� AND n� ARE THE REAL AMOUNTS
OF POSITIVE EXAMPLES AND NEGATIVE EXAMPLES,

RESPECTIVELY; d DENOTES THE FEATURE

DIMENSIONALITY OF EVERY EXAMPLE

p = 30 and p = 50. It means that although our PU algo-
rithm LLSVM is trained without using the negative examples,
its performance is still comparable with the ideal decision
boundary that is established under a fully supervised case.
Therefore, our model is effective and is promising to generate
satisfactory performance. Moreover, by comparing Fig. 3(b)
and (d), we see that the decision boundary of LLSVM under
l = 50 is closer to that of standard SVM than l = 30, which
demonstrates that bringing more positive examples into PU
training is beneficial to improving the model performance.
This is consistent with our theoretical findings in Section IV,
and also suggests that the bound derived in (28) is meaningful.

B. Benchmark Data

In this section, we compare the proposed LLSVM with other
representative PU learning methods on OpenML2 benchmark
data sets. Specifically, four binary data sets are adopted for
algorithm evaluation including fri, phoneme, bank8FM, and
ailerons, and their configurations are listed in Table I.

2https://www.openml.org/search?type=data

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:23:22 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: LLSVM FOR PU LEARNING 3479

TABLE II

ACCURACIES OF VARIOUS METHODS ON FOUR OPENML BENCHMARK DATA SETS WHEN 60% AND 90% POSITIVE EXAMPLES ARE LABELED.
THE BEST RECORD UNDER EACH NOISE LEVEL IS MARKED IN BOLD. “

√
” (“×”) INDICATES THAT LLSVM IS

SIGNIFICANTLY BETTER (WORSE) THAN THE CORRESPONDING METHOD VIA PAIRED T-TEST

The compared methodologies include:
1) Classical method: Weighted SVM (denoted as

“WSVM”) [18].
2) State-of-the-art methods: Double Hinge loss (denoted as

“DH”) [10], multilayer perceptron with nonnegative PU
risk estimator (denoted as “NNPU-MLP”) [12], linear
classifier with nonnegative PU risk estimator (denoted
as “NNPU-Linear”) [12], and large positive margin
approach (LPM) [22].

Note that LPM is also developed on the margin theory,
so it is incorporated for comparison. For fair comparison,
the codes of WSVM, DH, NNPU-MLP, and NNPU-Linear for
our experiments are directly provided by the authors, and LPM
was implemented by ourselves based on the liblinear toolbox.

For each data set, we randomly treat r = 60% and
r = 90% positive examples as labeled and leave the remaining
40% and 10% positive examples as well as all negative
examples as unlabeled. Under each r , we conduct five-fold
cross validation on every compared method and report the
average test accuracy and standard deviation over the five
independent implementations. As a result, every model under a
certain implementation is trained with 80% examples and then
tested on the rest 20% examples. Note that the selected positive
examples and the data set splits are kept identical for all the
compared methodologies. The parameters of every algorithm
have been carefully tuned to achieve the best performance.

To be specific, the optimal tradeoff parameter C for WSVM
is searched from {0.01, 0.1, 1, 10, 100} via cross validation.
The parameter τ governing the positive margin in LPM is
set to the 75% quantile of positive decision values predicted
by the initial model according to [22], and the number of
queried examples Q in each iteration is adaptively decided
as Q = (3/4)u for all data sets. To achieve a fair comparison,
the minibatch size of NNPU-MLP and NNPU-Linear for SGD
is tuned to the same value as LLSVM, and the class prior π
is also estimated via [30] like our LLSVM. For the proposed
LLSVM, the tradeoff parameters α, β, and γ in (9) are tuned
by searching the grid {0.1, 1, 10, 100, 1000}, and the amount
of mini-batches is kept to N = 40 for all the adopted data
sets.

The test accuracies of all methods on the four benchmark
data sets including fri, phoneme, bank8FM, and ailerons are
compared in Table II. We also adopt the paired t-test with
significance level 0.1 to investigate whether our LLSVM is
significantly better than the compared baselines. It can be
easily found that our LLSVM is able to obtain higher test
accuracy than other baseline methods in most cases. Excep-
tional cases are that when r = 60%, LLSVM is significantly
worse than DH on ailerons and is comparable with DH on
phoneme. Another finding is that the accuracies obtained by
the proposed LLSVM are above 70% on phoneme, bank8FM,
and ailerons, which suggests that LLSVM generates very
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TABLE III

ACCURACIES OF VARIOUS METHODS ON CIFAR DATA SET WHEN 60%
AND 90% POSITIVE EXAMPLES ARE LABELED. THE BEST RECORD

UNDER EACH NOISE LEVEL IS MARKED IN BOLD. “
√

” INDICATES

THAT LLSVM IS SIGNIFICANTLY BETTER THAN THE

CORRESPONDING METHOD VIA PAIRED T-TEST

impressive classification results, although it is trained without
the help of negative examples. Specifically, our LLSVM
touches the accuracy of 83.8% on ailerons when r = 90%,
which leads the second best method NNPU-MLP with a
significant margin of 4.2%.

C. Image Data

In this section, we investigate the performance of WSVM,
DH, NNPU-MLP, NNPU-Linear, LPM, and LLSVM on the
task of natural image classification. To this end, we extract
the images of “cat” and “dog”, which are usually difficult
to discriminate, from the CIFAR10 data set [33], [34], and
target to classify every image example into one of the above
two classes. In this data set, each class has 6000 images
and we use the output of the first fully connected layer of
VGGNet-16 [35] to form a 4096-dimensional feature vector
to express each image example. Similar to the experiments in
Section V-B, we also conduct five-fold cross validation on all
compared methods and record their mean test accuracies and
standard deviations. Furthermore, we adopt the paired t-test
with significance level 0.1 to investigate whether our LLSVM
is significantly better than the compared baselines.

The tradeoff parameter C in WSVM is tuned to 0.01 to
obtain the optimal results. The number of minibatches N
for NNPU-MLP, NNPU-Linear, and LLSVM is set to 40.
The results obtained by various algorithms are presented
in Table III, which suggest that our LLSVM achieves the
highest classification accuracy among all methodologies when
60% and 90% positive examples are in the labeled positive
set P . Such advantage of LLSVM to other baselines has
been statistically confirmed by the paired t-test unless to
the NNPU-MLP method when r = 90%. In this case, our
LLSVM and NNPU-MLP achieve comparable performance.
Another notable fact is that LLSVM achieves more than 96%
accuracy on this data set, reflecting that the discriminability of
LLSVM is very encouraging. Comparatively, LPM performs
unsatisfactorily on this data set of which the accuracy is always
below 90%. Therefore, the proposed LLSVM is effective in
handling image data.

D. Banking Data

Evaluating a customer’s credit is very important for a bank
to make a decision whether he/she is qualified to hold a

TABLE IV

ACCURACIES OF VARIOUS METHODS ON GermanCredit DATA SET WHEN
60% AND 90% POSITIVE EXAMPLES ARE LABELED. THE BEST

RECORD UNDER EACH NOISE LEVEL IS MARKED IN BOLD. “
√

”
INDICATES THAT LLSVM IS SIGNIFICANTLY BETTER THAN

THE CORRESPONDING METHOD VIA PAIRED T-TEST

credit card or apply for a loan. Usually, the credit evaluation
system of a bank can automatically specify a fraction of
customers whose credits are low. However, it is not true that
the customers not “caught” by the system are always good,
which means that some customers with low credits might
also pass the examination of the credit evaluation system.
Therefore, by treating the “bad” customers identified by the
system as positive examples and the remaining customers as
unlabeled examples, we can use PU learning algorithms to
distinguish bad guys from good guys.

Specifically, we use the GermanCredit data set [36] for our
experiment. This data set provides the personal information of
totally 1000 German such as credit history, personal property,
employment condition, marital status, and so on. Therefore,
the task of compared methods such as WSVM, DH, NNPU-
MLP, NNPU-Linear, LPM, and LLSVM is to identify the
credit of every customer as good or bad. Note that the Ger-
manCredit data set contains 300 positive examples (i.e., bad
guys) and 700 negative examples (i.e., good guys), which is
often the case in practical situations that the subjects with low
credit are much less than the normal ones. Such data imbalance
also poses a great difficulty for accurate classification. The
parameters in our LLSVM are set to α = 1, β = 0.01, and
γ = 1000 via cross validation, and the number of minibatches
is also kept to 40 as above. The parameter C in WSVM and
the γ in NNPU-MLP and NNPU-Linear have been tuned to
the optimal value 1. For LPM, the number queried examples
in each iteration is decided as Q = 90 to achieve the best
performance.

Similar to the experiments in Sections V-B and V-C,
we investigate the performances of all compared methods
when r = 60% and r = 90% positive examples are labeled.
The results of these comparators are produced by five-fold
cross validation and the mean test accuracies of their five
independent runs are reported in Table IV. In addition, we also
use the t-test to statistically validate the superiority of our
LLSVM to the remaining baselines. From the table, we see that
LLSVM touches the highest test accuracy among all methods
when r = 60% and r = 90%, and this advantage has also been
verified by the t-test. WSVM and DH are usually in the second
place while NNPU-MLP and NNPU-Linear perform unsatis-
factorily on this data set. Therefore, our LLSVM shows very
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Fig. 4. Parametric sensitivity of (a) α, (b) β, and (c) γ of our LLSVM on CIFAR and GermanCredit data sets.

TABLE V

CPU TIME (IN SECONDS) OF VARIOUS METHODS ON CIFAR DATA SET

encouraging performance in handling the real-world banking
data.

E. Running Time

In Section IV-A, we analyzed the complexity for solving
our LLSVM model and the results indicate that the related
optimization problem can be efficiently solved via SGD.
In this section, we compare the training time of our method
with WSVM, DH, NNPU-MLP, NNPU-Linear, and LPM on
the two adopted real-world data sets including CIFAR and
GermanCredit. Specifically, all algorithms are implemented
on a desktop with Intel i7-6700 CPU at 3.40 GHz and 16-
G memory, and their CPU time is compared when r = 60%
positive examples are labeled on each data set.

The running time of the compared methods on CIFAR and
GermanCredit data sets are recorded in Tables V and VI,
respectively. We see that LPM is usually more efficient than
our LLSVM, and the time costs of DH and our LLSVM are
also comparable, but their classification accuracies are much
lower than those of our LLSVM as revealed by Tables III
and IV. In addition, NNPU-MLP, NNPU-Linear, and WSVM
usually require more computational time than LLSVM. There-
fore, we conclude that the proposed LLSVM is able to
complete the model training under an acceptable time cost.

F. Parametric Sensitivity

The objective function (9) of our LLSVM model contains
three tradeoff parameters α, β, and γ that should be pre-
tuned manually. Therefore, in this section, we study their
influences on the final performance of LLSVM. To this end,

TABLE VI

CPU TIME (IN SECONDS) OF VARIOUS METHODS ON

GermanCredit DATA SET

we examine the test accuracy of LLSVM by varying one of
α, β, and γ , and meanwhile fixing every remaining parameter
to a constant value [37], [38]. The two practical data sets
from Sections V-C and V-D are adopted including CIFAR and
GermanCredit. By changing these three parameters from 10−2

to 104, the results on the two practical data sets when r = 90%
positive examples are labeled are shown in Fig. 4.

From the curves presented in Fig. 4, we find that these
three parameters are critical for our LLSVM to achieve good
performance. To be specific, Fig. 4(a) and (b) shows that
α = 1 and β = 1 usually lead to high classification accuracy,
and therefore, these two parameters are consistently set to
1 throughout our experiments. In contrast, Fig. 4(c) reveals that
the optimal γ should be chosen around 100, which is generally
consistent with its setting 100 and 1000 on the real-world
CIFAR and GermanCredit data sets.

VI. CONCLUSION

In this paper, we proposed a novel PU learning algo-
rithm named LLSVM. To enable our LLSVM to generate
discriminative decision function with the absence of negative
examples, three critical regularizers are introduced, i.e., the
hinge loss for fitting the positive examples, the hat loss for
achieving the max-margin effect, and the label calibration
term for calibrating the biased decision boundary to the poten-
tially correct one. The proposed optimization problem can be
efficiently solved via minibatch SGD, and its generalization
bound has also been theoretically proved. We compared our
LLSVM with state-of-the-art PU methods on both synthetic
and real-world data sets, and the results suggest that LLSVM
is superior to other compared baseline methods in most cases.
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Since the performance of LLSVM is a bit sensitive to the
selections of α, β, and γ , we plan to find a suitable way
to adaptively determine them in the future. In addition, it is
also worthwhile to apply the proposed method to solving more
practical problems.
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