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Label Propagation via Teaching-to-Learn
and Learning-to-Teach

Chen Gong, Dacheng Tao, Fellow, IEEE, Wei Liu, Member, IEEE, Liu Liu, and Jie Yang

Abstract— How to propagate label information from labeled
examples to unlabeled examples over a graph has been intensively
studied for a long time. Existing graph-based propagation algo-
rithms usually treat unlabeled examples equally, and transmit
seed labels to the unlabeled examples that are connected to the
labeled examples in a neighborhood graph. However, such a
popular propagation scheme is very likely to yield inaccurate
propagation, because it falls short of tackling ambiguous but crit-
ical data points (e.g., outliers). To this end, this paper treats the
unlabeled examples in different levels of difficulties by assessing
their reliability and discriminability, and explicitly optimizes the
propagation quality by manipulating the propagation sequence
to move from simple to difficult examples. In particular, we
propose a novel iterative label propagation algorithm in which
each propagation alternates between two paradigms, teaching-
to-learn and learning-to-teach (TLLT). In the teaching-to-learn
step, the learner conducts the propagation on the simplest
unlabeled examples designated by the teacher. In the learning-
to-teach step, the teacher incorporates the learner’s feedback
to adjust the choice of the subsequent simplest examples. The
proposed TLLT strategy critically improves the accuracy of
label propagation, making our algorithm substantially robust to
the values of tuning parameters, such as the Gaussian kernel
width used in graph construction. The merits of our algorithm
are theoretically justified and empirically demonstrated through
experiments performed on both synthetic and real-world
data sets.

Index Terms— Label propagation, machine teaching,
semisupervised learning.

I. INTRODUCTION

LABEL propagation has been intensively exploited in
semisupervised learning [1], which aims to classify a

massive number of unlabeled examples in the presence of
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a few labeled examples. Recent years have witnessed the
widespread applications of label propagation in various areas,
such as object tracking [2], saliency detection [3], social
network analysis [4], and so on.

The notion of label propagation was introduced in [5], which
proposed to iteratively propagate class labels on a weighted
graph by executing random walks with clamping operations.
Similarly, [6] and [7] are also random walk-based propa-
gation algorithms. Unlike [5]–[7], which worked on asym-
metric normalized graph Laplacians, Zhou and Bousquet [8]
deployed a symmetric normalized graph Laplacian to
implement propagation. In contrast to the aforementioned
methods that used graphs with pairwise edges, Wang et al. [9]
introduced the multiple-wise edge graph, and predicted the
label of an example according to its neighbors in a linear way.
Considering that the fixed adjacency (or affinity) matrix of a
graph cannot always faithfully reflect the similarities between
examples during propagation, Wang et al. [10] developed
dynamic label propagation (DLP) to update the edge weights
dynamically by fusing available multilabel and multiclass
information. Recently, some researchers adapted the traditional
label propagation methods to large-scale scenarios via either
efficient graph construction [11] or efficient labeling [12].
Other representative works related to label propagation
include [13]–[16].

Although the existing label propagation algorithms obtained
encouraging results to some extent, they may become fragile
under certain circumstances. For example, the bridge points
located across different classes, and the outliers that incur
abnormal distances from the normal samples of their classes
are very likely to mislead the propagation and result in error-
prone classifications. The reason for this is that the label
propagation yielded by conventional methods is completely
governed by the adjacency relationships between given exam-
ples, including labeled and unlabeled ones, in which the seed
labels are blindly diffused to the unlabeled neighbors without
considering the difficulty or risk of propagation. Consequently,
the mutual label transmission between different classes will
probably occur if the above referred ambiguous points are
incorrectly activated to receive the propagated labels.

Based on this consideration, we propose a novel
propagation scheme, dubbed teaching-to-learn and learning-
to-teach (TLLT), to explicitly manipulate the propagation
sequence, so that the unlabeled examples are logically acti-
vated from simple to difficult. The framework of our TLLT is
shown in Fig. 1. An undirected weighted graph G = 〈V, E〉 is
first built [see Fig. 1(a)], where V is the node set representing
all the examples and E is the edge set encoding the similarities
between these nodes. In the teaching-to-learn step, a teaching
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Fig. 1. TLLT framework for label propagation. The labeled examples,
unlabeled examples, and curriculum are represented by red, gray, and green
balls, respectively. (a) Established graph G, in which the examples/nodes are
represented by balls and the edges are denoted by blue lines. (b) Selection
of curriculum examples, where the green balls are considered as simple.
(c) Selected examples in (b) are propagated by the learner. The steps of
Teaching-to-Learn and Leaning-to-Teach are marked with blue and black
dashed boxes.

model that serves as a teacher is established to select the sim-
plest examples [i.e., a curriculum; see Fig. 1(b) (green balls)]
from the pool of unlabeled examples (gray balls) for the
current propagation. This selection is performed by solving
an optimization problem that integrates the reliability and
discriminability of each unlabeled example. In the learning-
to-teach step, a learner activates the simplest examples to
conduct label propagation using the classical method presented
in [5] [see Fig. 1(c)], and meanwhile delivers its learning
confidence to the teacher in order to assist the teacher in
deciding the subsequent simplest examples. Such a two-step
procedure iterates until all the unlabeled examples are properly
handled. As a result of the interactions between the teacher and
the learner, the originally difficult (i.e., ambiguous) examples
are handled at a late time, so that they can be reliably labeled
via leveraging the previously learned knowledge.

The argument of learning from simple to difficult
levels has been acknowledged in the human cognitive
domain [17], [18], and also gradually applied to advance
the existing machine learning algorithms in recent years.
Bengio et al. [19] proposed curriculum learning, which treats
available examples as curriculums with different levels of
difficulties in running a stepwise learner. Kumar et al. [20]
adaptively decided which and how many examples are taken as
curriculum according to the learner’s ability, and termed their
algorithm self-paced learning. By introducing the antigroup-
sparsity term, Jiang et al. [21] picked up curriculums that
are not only simple but also diverse. Jiang et al. [22] also
combined curriculum learning with self-paced learning so that
the proposed model can exploit both the estimation of example
difficulty before learning and information about the dynamic
difficulty rendered during learning.

The early works related to machine teaching mainly focus
on the teaching dimension theory [23], [24]. Recently, some
teaching algorithms have been developed, such as [25]–[30].
In the literature, a teacher is supposed to know the exact labels
of a curriculum. However, in our case, a teacher is assumed
to only know the difficulties of examples without accessing

TABLE I

IMPORTANT NOTATIONS USED IN THIS PAPER

their real labels, which poses a great challenge to teaching
and learning.

To the best of our knowledge, this paper is the first work
to model label propagation as a teaching and learning frame-
work, so that abundant unlabeled examples are activated to
receive the propagated labels in a well-organized sequence.
We employ the state-of-the-art label propagation algorithm [5]
as the learner, because it is naturally incremental without
retraining when a new curriculum comes. Empirical studies
on synthetic and real-world data sets demonstrate the effec-
tiveness of the proposed TLLT approach.

Notations: In this paper, we use the bold capital letter,
bold lowercase letter, and curlicue letter to denote matrix,
vector, and set, respectively. The scalar is represented by
italic letters. The symbol Ai j stands for the (i, j)th element
of matrix A, and the superscript (t) associated with the
variables, e.g., A(t), is to indicate the formation of A under
the t th propagation. Some key notations used in this paper are
listed in Table I.

II. TEACHING-TO-LEARN STEP

The investigated problem is defined as follows.
Suppose we have a set of n = l + u examples
X = {x1, . . . , xl , xl+1, . . . , xn}, where the first l elements
constitute the labeled set L and the remaining u examples form
the unlabeled set U with typically l � u. The purpose of label
propagation is to iteratively propagate the label information
from L to U . In order to record the labels of x1, . . . , xn , the

label matrix is defined as F = (F�
1 , . . . , F�

l , F�
l+1, . . . , F�

n )
�,

where the i th row vector Fi ∈ {1, 0}1×c (c is the number
of classes) satisfying

∑c
j=1 Fi j = 1 denotes xi ’s soft labels

with Fi j is the probability of xi belonging to the j th class C j .
In addition, we define a set S to denote the curriculum
that is mentioned in the introduction [e.g. the green balls
in Fig. 1(b)]. For the general case, we assume that S
contains s unlabeled examples that are selected for one
propagation iteration. When one iteration of label propagation
is completed, L and U are updated by L := L ∪ S and
U := U − S, respectively.1

In order to quantify the graph G showed in Fig. 1(a),
we adopt the adjacency (or affinity) matrix W, which is

1Note that the notations such as l, u, s, L, U , S , and C j are all related
to the iteration number t . We drop the superscript (t) for simplicity if no
confusion is incurred.
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formed by Wi j = exp(−‖xi − x j‖2/(2ξ2)) (ξ is the Gaussian
kernel width), if xi and x j are linked by an edge in G, and
Wi j = 0 otherwise. Based upon W, we introduce the diagonal
degree matrix Dii = ∑n

j=1 Wi j and graph Laplacian matrix
L = D − W. The matrix L will play an important role in
evaluating the difficulty levels of unlabeled examples in our
model.

A. Curriculum Selection

This section introduces a teacher, which is essentially a
teaching model, to decide the curriculum S for each iteration
of propagation.

Above all, we associate each example xi with a random
variable yi , which can be understood as the class label of xi .
We also view the propagations on the graph as a Gaussian
process, which is modeled as a multivariate Gaussian distrib-
ution over the random variables y = (y1, . . . , yn)

�, that is [31]

p(y) ∝ exp

(

−1

2
y�(L + I/κ2)y

)

. (1)

In (1), L + I/κ2 (I denotes the identity matrix with proper
size in this paper and κ2 is fixed to 100) is the regularized
graph Laplacian [31]. The modeled Gaussian process has a
concise form y ∼ N (0,�) with its covariance matrix being
� = (L + I/κ2)

−1
.

Then, we define reliability and discriminability to assess the
difficulty of the examples selected in S ⊆ U .

Definition 1 (Reliability): A curriculum S ⊆ U is reliable
with respect to the labeled set L if the conditional entropy
H (yS |yL) is small, where yS and yL represent the subvectors
of y corresponding to the sets S and L, respectively.

Definition 2 (Discriminability): A curriculum S ⊆ U is
discriminative if ∀xi ∈ S, the value of

min
j ′∈{1,...,c}\{q}

T̄ (xi , C j ′) − min
j∈{1,...,c} T̄ (xi , C j )

is large, where T̄ (xi , C j ) denotes the average commute time
between xi and all the labeled examples in class C j , and
q = arg min j∈{1,...,c} T̄ (xi , C j ).

In Definition 1, we use reliability to measure the correlation
between a curriculum S and the labeled set L. The curriculum
examples highly correlated with the labeled set are obviously
simple and reliable to classify. Such reliability is modeled as
the entropy of S conditioned on L, which implies that the
simple examples in S should have small conditional entropy,
since they come as no surprise to the labeled examples.
In Definition 2, we introduce the discriminability to model
the tendency of xi belonging to certain classes. An example
xi is simple if it is significantly inclined to a category.
Therefore, Definition 1 considers the hybrid relationship
between S and L, while Definition 2 associates the examples
in S with the concrete class information, so they complement
to each other in optimally selecting the simplest examples.

According to Definition 1, we aim to find a reliable set S,
such that it is most deterministic with respect to the labeled
set L, which is formulated as

S∗ = arg min
S⊆U

H (yS|yL) := H (yS∪L) − H (yL). (2)

Based on the property of Gaussian process [32, Theo-
rem 8.4.1], we deduce (2) as follows:

S∗ = arg min
S⊆U

(
s + l

2
(1 + ln 2π) + 1

2
ln |�S∪L,S∪L|

)

−
(

l

2
(1 + ln 2π) + 1

2
ln |�L,L|

)

= arg min
S⊆U

s

2
(1 + ln 2π) + 1

2
ln

|�S∪L,S∪L|
|�L,L|

where �L,L and �S∪L,S∪L are the submatrices of � associ-
ated with the corresponding subscripts. By further partitioning

�S∪L,S∪L = (
�S,S �S,L
�L,S �L,L ), we have

|�S∪L,S∪L|
|�L,L| = |�L,L|∣∣�S,S − �S,L�−1

L,L�L,S
∣
∣

|�L,L| = |�S|L|

where �S|L is the covariance matrix of the conditional distri-
bution p(yS |yL) and is naturally positive semidefinite. There-
fore, minimizing ln |�S|L| = ln |�S,S − �S,L�−1

L,L�L,S | is

equivalent to minimizing tr(�S,S − �S,L�−1
L,L�L,S). Given

a fixed s (we defer its determination to Section III), the most
reliable curriculum S is then found by

S∗ = arg min
S⊆U

tr
(
�S,S − �S,L�−1

L,L�L,S
)
. (3)

In Definition 2, the commute time between two examples xi

and x j is the expected time cost starting from xi , reach-
ing x j , and then returning to xi again, which is computed
by [33]2

T (xi , x j ) =
n∑

k=1

h(λk)(uki − ukj )
2. (4)

In (4), the values of 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are
the eigenvalues of L, and the values of u1, . . . , un are
the associated eigenvectors. uki is the i th element of uk .
h(λk) = 1/λk if λk �= 0 and h(λk) = 0 otherwise. Based
on (4), Definition 2 calculates the average commute time
T̄ (xi , C j ) between xi and the examples in the j th class C j ,
which is

T̄ (xi , C j ) = 1

|C j |
∑

xi′ ∈C j

T (xi , xi ′ ). (5)

Definition 2 characterizes the discriminability of an
unlabeled example xi ∈ U as the average commute time
difference between xi ’s two closest classes C j1 and C j2 , that
is, M(xi ) = T̄ (xi , C j2) − T̄ (xi , C j1). xi is thought of as
discriminative, if it is significantly inclined to a certain class,
namely it has a large M(xi ). From Definition 2, the most
discriminative curriculum that consists of s discriminative
examples is equivalently found by

S∗ = arg min
S={xik ∈ U}s

k=1

∑s

k=1
1/M(xik ). (6)

2Strictly, the original commute time is T (xi , x j ) =
vol(G)

∑n
k=1 h(λk)(uki − ukj )

2, where vol(G) is a constant denoting
the volume of graph G. Here, we drop this term, since it will not influence
our derivations.
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Now, we propose that the simplest curriculum is not
only reliable but also discriminative. Hence, we combine
(3) and (6) to arrive at the following curriculum selection
criterion:

S∗ = arg min
S={xik ∈ U}s

k=1

tr(�S,S − �S,L�−1
L,L�L,S)

+ α

s∑

k=1

1/M(xik ) (7)

where α > 0 is the tradeoff parameter.
Considering that the seed labels will be first propagated to

the unlabeled examples, which are the direct neighbors of the
labeled examples in L, we collect such unlabeled examples
in a set B with cardinality b. Since only s (s < b) distinct
examples from B are needed, we introduce a binary selection
matrix S ∈ {1, 0}b×s , such that S�S = Is×s (Is×s denotes
the s × s identity matrix). The element Sik = 1 means
that the i th example in B is selected as the kth example in
the curriculum S. The orthogonality constraint S�S = Is×s

imposed on S ensures that no repetitive example is included
in S.

We reformulate problem (7) in the following matrix form:
S∗ = arg min

S
tr(S��B,BS − S��B,L�−1

L,L�L,BS)

+ αtr(S�MS)

s.t. S ∈ {1, 0}b×s, S�S = Is×s (8)

where M ∈ R
b×b is a diagonal matrix whose diagonal

elements are Mii = 1/M(xik ) for k = 1, . . . , b. We notice
that problem (8) falls into an integer program and is generally
NP-hard. To make problem (8) tractable, we relax the discrete
constraint S ∈ {1, 0}b×s to be a continuous nonnegative
constraint S ≥ O. By doing so, we pursue to solve a simpler
problem

S∗ = arg min
S

tr(S�RS)

s.t. S ≥ O, S�S = Is×s (9)

where R = �B,B − �B,L�−1
L,L�L,B + αM is a positive

definite matrix.

B. Optimization

Note that (9) is a nonconvex optimization problem because
of the orthogonality constraint. In fact, the feasible solution
region is on the Stiefel manifold M = {X ∈ R

m1×m2 :
X�X = Im2×m2}, which makes the conventional gra-
dient methods easily trapped into local minima. Instead,
we adopt the method of partial augmented Lagrangian mul-
tiplier (PALM) [34] to solve problem (9). In particular, only
the nonnegative constraint is incorporated into the objective
function of the augmented Lagrangian expression, while the
orthogonality constraint is explicitly retained and imposed on
the subproblem for updating S. As such, the S-subproblem is
a Stiefel-manifold constrained optimization problem, and can
be efficiently solved by the curvilinear search method [35].

Algorithm 1 Curvilinear Search Method for Solving
S-Subproblem

1: Input: S satisfying S�S = I, ε = 10−5, τ = 10−3,
ϑ = 0.2, η = 0.85, Q = 1, ν = L(S), i ter = 0

2: repeat
3: // Define searching path P̄(τ ) and step size on the Stiefel

manifold
4: A = ∇L(S) · S� − S · (∇L(S))�;
5: repeat
6: P̄(τ ) = (

I + τ
2 A
)−1 (I − τ

2 A
)

S;
7: τ := ϑ · τ ;
8: // Check Barzilai-Borwein condition
9: until L(P̄(τ )) ≤ ν − τ L ′(P̄(0))

10: // Update variables
11: S := P̄(τ );
12: Q := ηQ + 1; ν := (ηQν + L(S))/Q;
13: i ter := i ter + 1;
14: until ‖∇L(S)‖F < ε
15: Output: S

Updating S: By degenerating the nonnegative constraint and
preserving the orthogonality constraint in problem (9), the
partial augmented Lagrangian function is

L(S,, T, σ ) := tr(S�RS) + tr(�(S − T)) + σ

2
‖S − T‖2

F

(10)

where  ∈ R
b×s is the Lagrangian multiplier, T ∈ R

b×s

is a nonnegative auxiliary matrix that enforces the obtained
S∗ to be nonnegative, and σ > 0 is the penalty coeffi-
cient. Therefore, S is updated by minimizing (10) subject
to S�S = Is×s using the curvilinear search method [35]
(see Algorithm 1).

Fig. 2 sketches the main procedures of Algorithm 1.
Starting from the point S(iter), Algorithm 1 first finds an
initial searching path −τAS(iter) in the tangent plane
[i.e., TM(S(iter))] of the Stiefel manifold M, where τ is
the step size and −AS(iter) is a valid descent direction. The
associated matrix A is computed in Line 4 of Algorithm 1.
Second, a retraction mapping [36] [see the red arrow in Fig. 2]
is conducted by projecting −τAS(iter) onto the manifold M
(Line 6). As a result, a searching curve P̄(τ ) is generated
along the manifold M. Finally, a suitable step size τ is
found by Barzilai–Borwein method [37], so that the optimal
S(iter+1) can be located (Lines 7–11). In Algorithm 1, ∇L(S) =
2RS +  + σ(S − T) is the gradient of L(S,, T, σ ) with
respect to S, and L ′(P̄(τ )) = tr(∇L(S)�P̄′(τ )) calculates the
derivate of L(S,, T, σ ) with respect to the step size τ , in
which P̄′(τ ) = −(I + (τ/2)A)−1A((S + P̄(τ )/2)).

The retraction step in Algorithm 1 critically preserves
the orthogonality constraint through the skew-symmetric
matrix A-based Cayley transformation (I + (τ/2)A)−1

(I − (τ/2)A), which transforms S to P̄(τ ) to guarantee that

P̄(τ )�P̄(τ ) = I always holds.
Updating T: In (10), T is the auxiliary variable to

enforce S nonnegative, whose update is the same as that in the

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 21,2020 at 09:17:33 UTC from IEEE Xplore.  Restrictions apply. 



1456 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 6, JUNE 2017

Fig. 2. Illustration of curvilinear search presented in Algorithm 1. M denotes
the Stiefel manifold and TM(S(iter)) denotes the tangent plane at the point
S(iter). First, a searching path −τAS(iter) in TM(S(iter)) is computed, in
which −AS(iter) is a valid descent direction. Second, a retraction mapping
(see the red arrow) is conducted by projecting −τAS(iter) onto the Stiefel
manifold M, which guarantees that the projected searching curve P̄(τ ) for
S(iter+1) is always on M. After finding a suitable step size τ , we may locate
the feasible S(iter+1) on the manifold.

Algorithm 2 PALM for Solving Problem (9)

1: Input: R, S satisfying S�S = I,  = O, σ = 1, ρ = 1.2,
i ter = 0

2: repeat
3: // Compute T
4: Tik = max(0, Sik + ik/σ);
5: // Update S by minimizing Eq. (10) using Algorithm 1
6: S := arg minS�S=Is×s

tr(S�RS) + tr
[
�(S − T)

] +
σ
2 ‖S − T‖2

F;
7: // Update variables
8: ik := max(0,ik +σSik); σ := min(ρσ, 1010); i ter :=

i ter + 1;
9: until Convergence

10: Output: S∗

traditional augmented Lagrangian multiplier (ALM) method,
namely Tik = max(0, Sik + ik/σ).

We summarize the complete optimization procedure of
PALM in Algorithm 2, by which a stationary point can
be efficiently obtained. PALM inherits the merits of the
conventional ALM, such as the nonnecessity for driving
the penalty coefficient to infinity, and is also guaranteed to
converge [38].

Note that the solution S∗ generated by Algorithm 2 is
continuous, which does not comply with the original binary
constraint in problem (8). Therefore, we discretize S∗ to binary
values via a simple greedy procedure. In detail, we find the
largest element in S∗, and record its row and column; then
from the unrecorded columns and rows, we search the largest
element and mark it again; this procedure repeats until s
elements are found. The rows of these s elements indicate
the selected simplest examples to be propagated.

III. LEARNING-TO-TEACH STEP

This section first introduces a learner, which is a propagation
model, and then elaborates how the learning feedback is
established for the subsequent teaching.

Suppose that the curriculum in the t th propagation iteration

is S(t). The learner learns (i.e., labels) the s(t) examples
in S(t) by propagating the labels of the labeled examples
in L(t) to S(t). We adopt the following iterative propagation
model [5]:

F(t)
i :=

{
F(0)

i , xi ∈ L(0)

Pi· F(t−1), xi ∈ S(1:t−1) ∪ S(t) (11)

where S(1:t−1) is the set S(1) ∪ · · · ∪ S(t−1) and Pi· is
the i th row of the transition matrix P calculated by
P = D−1W. The element Pi j shows the probability of a
particle jumping from node j to i in the random walks
interpretation [5], [6], [39]. Equation (11) reveals that the
labels of the t th curriculum S(t) along with the previously
learned examples S(1:t−1) will change during the propagation,
while the labels of the initially labeled examples in L(0) are
clamped, as suggested in [5]. The initial state for xi ’s label
vector F

(0)

i is

F
(0)

i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1/c, . . . , 1/c)
︸ ︷︷ ︸

c

, xi ∈ U (0)

(0, . . . , 1↓
j−th element

, . . . , 0), xi ∈ C j ∈ L(0).
(12)

The formulations of (11) and (12) maintain the probability

interpretation
∑c

j=1 F(t)
i j = 1 for any example xi and all

iterations t = 0, 1, 2, . . .
After the t th propagation, the learner should deliver a

learning feedback to the teacher and assist the teacher to
determine the (t + 1)th curriculum S(t+1). If the tth learning
result is correct, the teacher may assign a heavier curriculum
to the learner for the next propagation. In this sense, the
teacher should also learn the learner’s feedback to arrange
the proper (t + 1)th curriculum, which is a learning-to-teach
mechanism. However, the correctness of the propagated labels
generated by the t th iteration remains unknown to the teacher,
so the learning confidence is explored to blindly evaluate the
t th learning performance.

To be specific, we restrict the learning confidence to the
range [0, 1], in which 1 is achieved if all the curriculum
examples in S(t) obtain definite label vectors, and 0 is reached
if the curriculum examples are assigned similar label values
over all the possible classes. For example, suppose we have
c = 3 classes in total, then for a single example xi , it is
well learned if it has a label vector Fi = [1, 0, 0], [0, 1, 0],
or [0, 0, 1], which means that xi definitely belongs to the
class 1, 2, or 3, respectively. In contrast, if xi ’s label vector is
Fi = [1/3, 1/3, 1/3], it will be an ill-learned example because
[1/3, 1/3, 1/3] cannot provide any cue for determining its
class. Therefore, we integrate the learning confidence of all
the examples in S(t) and define a learning evaluation function
g(FS(t)) : R

s(t)×c → R to assess the t th propagation quality,
based on which the number of examples s(t+1) for the
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(t + 1)th iteration can be adaptively decided. Here,
FS(t) denotes the obtained label matrix of the t th cur-

riculum S(t). A valid g(FS(t)) is formally described by
Definition 3.

Definition 3 (Learning Evaluation Function): A learning
evaluation function g(FS(t)) : R

s(t)×c → R assesses the
tth learning confidence revealed by the label matrix FS(t) ,
which satisfies: 1) 0 ≤ g(FS(t)) ≤ 1; 2) g(FS(t)) → 1 if
∀xi ∈ S(t), Fi j → 1 while Fik → 0 for k �= j ; and
g(FS(t)) → 0 if Fi j → 1/c for i = 1, . . . , s(t),
j = 1, . . . , c.

Definition 3 suggests that a large g(FS(t)) can be achieved
if the label vectors Fik (k = 1, 2, . . . , s(t)) in FS(t) are
almost binary. In contrast, the ambiguous label vectors Fik
with all entries around 1/c cause FS(t) to obtain a rather
low confidence evaluation g(FS(t)). According to Definition 3,
we propose two learning evaluation functions by, respectively,
utilizing FS(t)’s norm and entropy

g1(FS(t)) = 2

1 + exp
[− γ1

(‖FS(t)‖2
F − s(t)/c

)] − 1 (13)

g2(FS(t)) = exp

[

− γ2
1

s(t)
H (FS(t))

]

= exp

⎡

⎣ γ2

s(t)

s(t)
∑

k=1

c∑

j=1

(FS(t))kj logc(FS(t))kj

⎤

⎦ (14)

where γ1 and γ2 are the parameters controlling the learning
rate. Increasing γ1 in (13) or decreasing γ2 in (14) will
incorporate more examples into one curriculum.

It can be easily verified that both (13) and (14)
satisfy the two requirements in Definition 3. For (13),
we may write g1(FS(t)) as g1(FS(t)) = 2ḡ1(FS(t)) − 1
where ḡ1(FS(t)) = 1/(1 + exp[−γ1(‖FS(t)‖2

F − s(t)/c)]) is
a monotonically increasing logistic function with respect
to ‖FS(t)‖F. Therefore, ḡ1(FS(t)) reaches its minimum

value 1/2 when ‖FS(t)‖2
F = s(t)/c, which means that all the

elements in FS(t) equal to 1/c. The value of ḡ1(FS(t)) gradually
approaches to 1 when ‖FS(t)‖F becomes larger, which requires
that all the row vectors in FS(t) are almost binary. Therefore,
ḡ1(FS(t)) ∈ [1/2, 1) and g1(FS(t) ) maps ḡ1(FS(t)) to [0, 1) so
that the two requirements in Definition 3 are satisfied.

For (14), it is evident that the entropy H (FS(t)) =
−∑

k

∑
j (FS(t))kj logc(FS(t))kj falls into the range [0, 1],

where 0 is obtained when each row of FS(t) is a {0,1}-binary
vector with only one element 1, and 1 is attained if every
element in FS(t) is 1/c. As a result, g2(FS(t)) is valid as a
learning evaluation function.

Based on a defined learning evaluation function, the number
of examples included in the (t + 1)th curriculum is

s(t+1) = �b(t+1) · g(FS(t))� (15)

where b(t+1) is the size of set B(t+1) in the (t + 1)th iteration,
�·� rounds up the element to the nearest integer, and g(·) can
be either g1(·) or g2(·). Note that g(·) is simply set to a very
small number, e.g., 0.05, for the first propagation, because
no feedback is available at the beginning of the propagation
process.

TLLT proceeds until all the unlabeled examples are learned,
and the obtained label matrix is denoted by F̄. Then, we set
F̄(0) := F̄ and use the following iterative formula to drive the
entire propagation process to the steady state [8], [9]:

F̄(t) = θPF̄(t−1) + (1 − θ)F̄ (16)

where θ > 0 is the weighting parameter balancing the labels
propagated from other examples and F̄ that is produced by
the TLLT process. We set θ = 0.05 to enforce the final result
to maximally preserve the labels generated by teaching and
learning. By employing the Perron–Frobenius theorem [40],
we take the limit of F̄(t) as follows:

F̄∗ = lim
t→∞ F̄(t) = lim

t→∞ (θP)t F̄ + (1 − θ)

t−1∑

i=0

(θP)i F̄

= (1 − θ)(I − θP)−1F̄. (17)

Eventually, xi is assigned to the j∗th class, such that
j∗ = arg max j∈{1,...,c} F̄∗

i j .

IV. EFFICIENT COMPUTATIONS

The computational bottlenecks of TLLT are the calculation
of pairwise commute time in (4) and the updating of �−1

L,L
in (3) for each propagation.

Note that (4) involves computing the eigenvectors of L,
which is time-consuming when the size of L (i.e., n) is large.
Considering that L is positive semidefinite, we follow [41] and
apply the Nyström approximation to reduce the computational
burden. The merit of this method is that the eigenvectors
of L can be efficiently computed via conducting singular value
decomposition (SVD) on a matrix, which is much smaller than
the previous matrix L.

It is very inefficient if �−1
L,L in (3) is computed from scratch

in each propagation, so we develop an incremental way to
update �−1

L,L by using the matrix blockwise inversion [42].
The details for efficiently computing commute time and

�−1
L,L can be found in Appendixes A and B, respectively.

V. COMPLEXITY ANALYSIS

Up to now, the entire TLLT framework for label propagation
has been presented, and it is summarized in Algorithm 3.
Before explaining its complexity, we first analyze the com-
plexities of Algorithms 1 and 2 as they are the important
components of Algorithm 3.

In Algorithm 1, the complexities for obtaining A, inverting
I + (τ/2)A, and computing the value of objective function
L(S,, T, σ ) are O(b2s), O(b3), and O(bs2), respectively.
Therefore, suppose the Lines 5–9 in Algorithm 1 are repeated
T1 times, and the Lines 2–14 are iterated T2 times, then the
complexity of Algorithm 1 is O([b2s + (b3 + bs2)T1]T2).
As a result, the entire PALM outlined in Algorithm 2 takes
O([b2s + (b3 + bs2)T1]T2T3) complexity, where T3 is the
iteration times of Lines 2–9 in Algorithm 2. Note that the
established k-NN graph G is very sparse; therefore, the amount
of examples directly linked to the labeled set (i.e., b) will not
be extremely large. Consequently, the computational burden
of Algorithm 2 is acceptable even though the complexity of
our optimization is cubic to b.
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Algorithm 3 TLLT for Label Propagation
1: Input: labelled set L = {x1, . . . , xl} with known labels

F1, . . . , Fl , unlabelled set U = {xl+1, . . . , xl+u}, parame-
ters α, ξ , γ1 (or γ2)

2: Pre-compute W, D, L, �−1
L,L appeared in Section II, and

the pairwise commute time Eq. (4) by using the method of
Appendix A;

3: repeat
4: Generate curriculum S by solving Eq. (9), for which

Algorithm 2 is utilized;
5: Propagate from L to U via Eq. (11);
6: Compute learning feedback via Eq. (13) or Eq. (14);
7: Update �−1

L,L by using the method of Appendix B;
L := L ∪ S; U := U − S;

8: until U = ∅

9: Drive the entire propagation process to steady state via
Eq. (17);

10: Output: The labels of original unlabelled examples
Fl+1, . . . , Fl+u

Next, we study the complexity of Algorithm 3. Since the
complexities for computing W, �−1

L,L, and pairwise commute
time in Line 2 are O(n2), O(l3), and O(q3) (q = 10% · n
as explained in Appendix A), respectively, so Line 2 takes
O(n2 + l3 + q3) complexity. In Line 4, the complexity of
Algorithm 2 changes under different iterations because the
involved b and s vary all the time, so we are only able to obtain
a loose bound as O((u3 + 2T1u3)T2T3) by using the facts that
b ≤ u and s ≤ u. For the same reason, the complexities
of Lines 5–7 are upper bounded by O(n2c), O(c2u), and
O(u3), respectively. Besides, Line 9 takes O(n2) complexity
because F̄∗ in (17) can be solved by transforming (17) to a
group of linear equations with an n × n coefficient matrix.
Therefore, suppose Lines 3–8 are iterated T4 times, the upper
bound of the complexity for the entire TLLT algorithm is
O(l3 + q3 + n2 + [(u3 + 2T1u3)T2T3 + n2c + c2u + u3]T4).
This complexity is not as high as it suggests because l is
usually small for semisupervised problems. The parameter q is
also set to a small value in our approach. Besides, since the
upper bounds of the complexity in Lines 4–7 are very loose
as explained above, the practical computational complexity is
much lower than the derived upper bound.

VI. ROBUSTNESS ANALYSIS

For graph-based learning algorithms, the choice of the
Gaussian kernel width ξ is critical to achieving good per-
formance. Unfortunately, tuning this parameter is usually
nontrivial because a slight perturbation of ξ will lead to a
big change in the model output. Several methods [39], [43]
have been proposed to decide the optimal ξ via entropy
minimization [39] or local reconstruction [43]. However, they
are heuristic and not guaranteed to always obtain the optimal ξ .
Here, we demonstrate that TLLT is very robust to the variation
of ξ , which implies that ξ in our method can be easily tuned.

Theorem 4: Suppose that the adjacency matrix W̃ of
graph G is perturbed from W due to the variation of ξ ,

such that for some δ > 1,∀i, j , Wi j /δ ≤ W̃i j ≤ δWi j .
The deviation of the t th propagation that result on the initial
unlabeled examples F̃(t)

U from the accurate F(t)
U

3 is bounded
by ‖F̃(t)

U − F(t)
U ‖F ≤ O(δ2 − 1).

Proof: Given Wi j /δ ≤ W̃i j ≤ δWi j for δ > 1, the bound
for the (i, j)th element in the perturbed transition matrix P̃ is
Pi j /δ

2 ≤ P̃i j ≤ δ2Pi j . Besides, by recalling that 0 ≤ Pi j ≤ 1
as P has been row normalized, and the difference between
Pi j and P̃i j satisfies

|P̃i j − Pi j | ≤ (δ2 − 1)Pi j ≤ δ2 − 1. (18)

For the ease of analysis, we rewrite the learning model (11)

in a more compact form. Suppose QS(1:t) ∈ {0, 1}u(0)×u(0)

(S(1:t) = S(1) ∪ . . . ∪ S(t) as defined in Section III) is a
{0, 1}-binary diagonal matrix where the diagonal elements are
set to 1, if they correspond to the examples in the set S(1:t),
then (11) can be reformulated as

F(t)
U = QS(1:t)PU ,·F(t−1) + (I − QS(1:t))F(t−1)

U (19)

where PU ,· = (PU ,L PU ,U ) denotes the rows in P correspond-
ing to U . Similarly, the perturbed F̃(t)

U is

F̃(t)
U = QS(1:t)P̃U ,· F(t−1) + (I − QS(1:t))F(t−1)

U . (20)

As a result, the difference between F(t)
U and F̃(t)

U is com-
puted by

‖F̃(t)
U − F(t)

U ‖F = ‖QS(1:t)(P̃U ,· − PU ,·)F(t−1)‖F

≤ ‖QS(1:t)(P̃U ,· − PU ,·)‖F‖F(t−1)‖F. (21)

By employing (18), we arrive at

‖QS(1:t)(P̃U ,· − PU ,·)‖F ≤ (δ2 − 1)

√
√
√
√n

t∑

i=1

s(i). (22)

In addition, since the sum of every row in F(t−1) ∈ [0, 1]n×c

is 1, we know that

‖F(t−1)‖F ≤ √
n. (23)

Finally, by plugging (22) and (23) into (21) and noting that
∑t

i=1 s(i) ≤ u(0), we obtain

∥
∥F̃(t)

U − F(t)
U
∥
∥

F ≤ (δ2 − 1)

√

n
∑t

i=1
s(i) ≤ (δ2 − 1)n

√
u(0).

(24)

Since n
√

u(0) is a constant, Theorem 4 is proved, which
reveals that our algorithm is insensitive to the perturbation of
Gaussian kernel width ξ in one propagation. �

However, one may argue that the error introduced in every
propagation will accumulate and degrade the final paramet-
ric stability of TLLT. To show that the error will not be
significantly amplified, the error bound between successive
propagations is presented in Theorem 5.

3For ease of explanation, we slightly abuse the notations in this section
by using L and U to represent the initial labeled set L(0) and unlabeled
set U (0). They are not time-varying variables as previously defined. Therefore,
the notation F(t)

U represents the labels of initial unlabeled examples produced
by the tth propagation.
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Theorem 5: Let F̃(t−1)
U be the perturbed label matrix F(t−1)

U
generated by the (t − 1)th propagation, which satisfies
‖F̃(t−1)

U − F(t−1)
U ‖F ≤ O(δ2 − 1). Let P̃ be the perturbed

transition matrix P. Then, after the tth propagation, the inac-
curate output F̃(t)

U will deviate from its real value F(t)
U by

‖F̃(t)
U − F(t)

U ‖F ≤ O(δ2 − 1).
Proof: Theorem 5 can be proved based on the following

existing result.
Lemma 6 [44]: Suppose p1 and p2 are two uncertain

variables with possible errors �p1 and �p2, then the devi-
ation �p3 of their multiplication p3 = p1 · p2 satisfies
�p3 = p1 · �p2 + �p1 · p2.

Based on Lemma 6, next we bound the error accumulation
between successive propagations under the perturbed Gaussian
kernel width ξ . Equation (19) can be rearranged as

F(t)
U = QS(1:t)PU ,· F(t−1) + (I − QS(1:t))F(t−1)

U
= QS(1:t)

(
PU ,LF(t−1)

L + PU ,UF(t−1)
U

)+(I − QS(1:t))F(t−1)
U

= QS(1:t)PU ,LF(t−1)
L + (

QS(1:t)PU ,U + I − QS(1:t)
)
F(t−1)
U

= (
QS(1:t)PU ,L QS(1:t)PU ,U + I − QS(1:t)

)
(

F(t−1)
L

F(t−1)
U

)

= �(t)F(t−1) (25)

where �(t) = (QS(1:t)PU ,L QS(1:t)PU ,U + I − QS(1:t)) and

F(t−1) = (F(t−1)�
L F(t−1)�

U )
�

. Therefore, by leveraging
Lemma 6, we know that

F̃(t)
U − F(t)

U = (�̃(t) − �(t))F(t−1) + �(t)(F̃(t−1) − F(t−1))

(26)

where �̃(t) = (
QS(1:t)P̃U ,L QS(1:t)P̃U ,U + I − QS(1:t)

)
is the

imprecise �(t) induced by P̃. Consequently, we obtain

‖F̃(t)
U − F(t)

U ‖F = ‖(�̃(t)−�(t))F(t−1)+�(t)(F̃(t−1)−F(t−1))‖F

≤ ‖�̃(t) − �(t)‖F‖F(t−1)‖F

+ ‖�(t)‖F‖F̃(t−1) − F(t−1)‖F. (27)

Next, we investigate the upper bounds of ‖�̃(t) − �(t)‖F,
‖F(t−1)‖F, ‖�(t)‖F, and ‖F̃(t−1) − F(t−1)‖F appeared in (27).
Of these, ‖F(t−1)‖F has been bounded in (23).

It is also straightforward that

‖�̃(t) − �(t)‖F

= ∥
∥
(
QS(1:t)(P̃U ,L − PU ,L) QS(1:t)(P̃U ,U − PU ,U )

)∥
∥

F

= ‖QS(1:t)(P̃U ,· − PU ,·)‖F

1≤ (δ2 − 1)

√
√
√
√n

t∑

i=1

s(i)

2≤ (δ2 − 1)
√

nu(0) (28)

where inequality (1) is given by (22), and inequality (2) holds
because

∑t
i=1 s(i) ≤ u(0).

By further investigating the structure of the u(0) × n
matrix �(t) in (25), it is easy to find that the i th row

of �(t) (i.e., �
(t)
i· ) is

�
(t)
i· :=

⎧
⎪⎨

⎪⎩

Pi·, xi ∈ S(1:t)

(0, . . . , 1↓
i−th element

, . . . , 0), xi /∈ S(1:t) (29)

where Pi· denotes the i th row of P. Therefore, the sum of
every row in �(t) is not larger than 1, leading to

‖�(t)‖F ≤
√

u(0) (30)

where we again use the fact that 0 ≤ Pi j ≤ 1.
Recalling that the labels of the original labeled examples are

clamped after every propagation [see (11)], namely

F̃(t−1)
L = F(t−1)

L , so the bound obtained in Theorem 4

also applies to ‖F̃(t−1) − F(t−1)‖F, which is

‖F̃(t−1) − F(t−1)‖F = ∥
∥F̃(t−1)

U − F(t−1)
U

∥
∥

F ≤ O(δ2 − 1). (31)

Because u(0) and n are constants for a given problem,
Theorem 5 is finally proved by substituting (23), (28), (30),
and (31) into (27). Theorem 5 implies that under the per-
turbed P̃ and F̃(t−1), the error bound after the t th propagation
‖F̃(t)

U − F(t)
U ‖F is the same as that before the t th propagation

‖F̃(t−1)
U − F(t−1)

U ‖F. Therefore, the labeling error will not be
significantly accumulated when the propagations proceed. �

Considering Theorems 4 and 5 together, we conclude that a
small variation of ξ will not greatly influence the performance
of TLLT, so the robustness of the entire propagation algorithm
is guaranteed. Accordingly, the parameter ξ used in our
method can be easily tuned. An empirical demonstration of
parametric insensitivity can be found in Section VII-G.

VII. EXPERIMENTAL RESULTS

In this section, we compare the proposed TLLT with
several representative label propagation methods on both
synthetic and practical data sets. In particular, we imple-
ment TLLT with two different learning-to-teach strategies
presented in (13) and (14), and term them TLLT (Norm)
and TLLT (Entropy), respectively. The compared methods
include Gaussian field and harmonic functions (GFHF) [5],
local and global consistency (LGC) [8], graph transduction via
alternating minimization (GTAM) [45], linear neighborhood
propagation (LNP) [9], and DLP [10]. Note that GFHF is
the learning model (i.e., learner) used by our proposed TLLT,
which is not instructed by a teacher.

A. Synthetic Data

We begin by leveraging the 2-D DoubleMoon data set
to visualize the propagation process of different methods.
DoubleMoon consists of 640 examples, which are equally
divided into two moons. This data set was contaminated by
Gaussian noise with standard deviation 0.15, and each class
had only one initial labeled example [see Fig. 3(a)]. The
8-NN graph with the Gaussian kernel width ξ = 1 is
established for TLLT, GFHF, LGC, GTAM, and DLP. The
parameter μ in GTAM is set to 99 according to [45]. The
number of neighbors k for LNP is adjusted to 10. We set
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Fig. 3. Propagation process of the methods on the DoubleMoon data set. (a) Initial state with marked labeled examples and difficult bridge point. (b) Imperfect
edges during graph construction caused by the bridge point in (a). These unsuitable edges pose a difficulty for all the compared methods to achieve accurate
propagation. (c)–(i) show the intermediate propagations of TLLT (Norm), TLLT (Entropy), GFHF, LGC, LNP, DLP, and GTAM. (j)–(p) Compares the results
achieved by all the algorithms, which reveals that only the proposed TLLT achieves perfect classification while the other methods are misled by the ambiguous
bridge point.

γ1 = 1 for TLLT (Norm) and γ2 = 2 for TLLT (Entropy).
The tradeoff parameter α in (7) is fixed to 1 throughout this
paper, and we will show that the result is insensitive to the
variation of this parameter in Section VII-G.

From Fig. 3(a), we observe that the distance between the
two classes is very small, and that a difficult bridge point
is located in the intersection region between the two moons.
Therefore, the improper edges [see Fig. 3(b)] caused by the
bridge point may lead to the mutual transmission of labels
from different classes. As a result, previous label propaga-
tion methods, such as GFHF, LGC, LNP, DLP, and GTAM,
generate unsatisfactory results, as shown in Fig. 3(l)–(p).
In contrast, only our proposed TLLT [including TLLT (Norm)
and TLLT (Entropy)] achieves perfect classification without
any confusion [see Fig. 3(j) and (k)]. The reason for our
accurate propagation can be found in Fig. 3(c) and (d), which
indicate that the propagation to ambiguous bridge point is
postponed due to the careful curriculum selection. On the
contrary, the critical but difficult bridge examples are prop-
agated by GFHF, LGC, LNP, DLP, and GTAM at an early
stage as long as they are connected to the labeled examples
[see Fig. 3(e)–(i)], resulting in the mutual label transmission
between the two moons. This experiment highlights the impor-
tance of our teaching-guided label propagation.

B. UCI Benchmark Data
In this section, we compare TLLT with GFHF, LGC,

GTAM, LNP, and DLP on ten UCI benchmark data sets [46],
including Iris, Wine, Seeds, SPECTF, CNAE9, BreastCancer,
BreastTissue, Haberman, Leaf, and Banknote. For each data
set, all the algorithms are tested with different numbers of
initial labeled examples (i.e., l(0)). In order to suppress the
influence of different initial labeled sets to the final perfor-
mance, the accuracies are reported as the mean values of the
outputs of 200 independent runs.

We established the same 5-NN graphs (i.e., k = 5) for
TLLT, GFHF, LGC, GTAM, and DLP on all the ten data sets
to achieve fair comparison. The kernel width ξ was chosen
from {0.05, 0.5, 5, 50} and was, respectively, adjusted to 0.5,
0.5, 0.5, 50, 5, 5, 5, 5, 5, and 5 on Iris, Wine, Seeds, SPECTF,
CNAE9, BreastCancer, BreastTissue, Haberman, Leaf, and
Banknote. For LNP, we set k to 10, 50, 30, 50, 30, 50,
20, 50, 10, and 50 on the ten data sets, since the graph
required by LNP is different from other methods. Throughout
the experiments of this paper, the parameter α for LGC is
set to 0.99 as suggested in [8], and μ in GTAM is tuned to
99 according to [45]. The two parameters α and λ in DLP
are, respectively, adjusted to 0.05 and 0.1, which are also
given in [10]. The classification accuracies of all the compared
methods are presented in Fig. 4.

From Fig. 4, we observe that the proposed TLLT (Norm)
and TLLT (Entropy) yield better performance than other
baselines in most cases. An exceptional case is that DLP
generates the best result on Haberman data set. Besides, we
note that GFHF generally obtains impressive performances on
all the data sets. However, TLLT is able to further improve the
performance of GFHF. Therefore, the well-organized learning
sequence produced by our teaching and learning strategy does
help to improve the propagation performance. Another notable
fact is that the standard error of TLLT is very small when
compared with some other baselines, such as DLP and LNP,
which suggests that TLLT is not sensitive to the choice of
initial labeled examples.

C. Text Categorization
To demonstrate the superiority of TLLT in dealing with

practical problems, we first compare the performances of
TLLT against GFHF, LGC, GTAM, LNP, and DLP in terms
of text categorization. A subset of 20Newsgroups4 data set

4http://qwone.com/~jason/20Newsgroups/
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Fig. 4. Experimental results of the compared methods on ten UCI benchmark data sets. The subfigures (a)–(j) represent Iris, Wine, Seeds, SPECTF, CNAE9,
BreastCancer, BreastTissue, Haberman, Leaf, and Banknote, respectively.

Fig. 5. Comparison of TLLT and other methods on three practical applications. (a) 20Newsgroups data set for text categorization. (b) USPS data set for
handwritten digit recognition. (c) COIL20 data set for object recognition. The y-axis in each subfigure represents classification accuracy obtained by various
algorithms, and the x-axis records the amount of initial labeled examples l(0) .

with 2000 newsgroup documents is employed for our exper-
iment. These 2000 documents are extracted from totally
20 classes, and each class has 100 examples.

The common graph was constructed for GFHF, LGC,
GTAM, DLP, and TLLT, and the related parameters are k = 10
and ξ = 5. The value of k for LNP is adjusted to 50.
The learning rates for TLLT (Norm) and TLLT (Entropy) are
optimally tuned to γ1 = 100 and γ2 = 0.01, respectively,
by searching the grid {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
We implement all the methods with the number of ini-
tial labeled examples l(0) changing from 200 to 800, and
report the classification accuracy averaged over the outputs of
200 independent runs under each l(0).

The experimental results are presented in Fig. 5(a),
from which we observe that both TLLT (Norm) and
TLLT (Entropy) outperform the other competing methods
under different choices of l(0). In particular, TLLT (Norm) and
TLLT (Entropy) comparably perform on this data set, and they

lead GFHF with a margin approximately 3%–4%. Besides, the
standard error of TLLT is quite small with different selections
of initial labeled examples, which again demonstrate that
TLLT is insensitive to the choice of initial labeled examples.

D. Handwritten Digit Recognition

Handwritten digit recognition is a traditional problem in
computer vision. This section compares the performances of
TLLT and the baseline algorithms, including GFHF, LGC,
GTAM, DLP, and LNP on handwritten digit recognition.
We adopt the USPS5 data set for comparison. In this data
set, there are 9298 images of digits represented by 255-
dimensional feature vectors. The digits 0–9 are considered as
ten different classes. We built a ten-NN graph with kernel
width ξ = 5 for all the methods except LNP, and the number
of neighbors k for LNP is tuned to 50. Besides, the learning

5http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Fig. 6. Running time (unit: second) of all the methods on the ten UCI data sets and three practical data sets. (a)–(j) correspond to UCI datasets Iris, Wine,
Seeds, SPECTF, CNAE9, BreastCancer, BreastTissue, Haberman, Leaf, and Banknote. (k)–(m) are practical datasets including 20Newsgroups, USPS, and
COIL20, respectively.

rates γ1 and γ2 for TLLT (Norm) and TLLT (Entropy) are set
to 100 and 0.1, respectively.

When the initial number of labeled examples
(i.e., l(0)) varies from 100 to 400, the accuracies obtained by
the compared methods are plotted in Fig. 5(b). We observe
that the baseline methods LGC and GFHF achieve very
encouraging performance on this data set, and the
corresponding accuracies are [0.9362, 0.9398, 0.9438, 0.9445]
and [0.9338, 0.9421, 0.9449, 0.9480] when l(0) = 100, 200,
300, 400, respectively. In contrast, the accuracies of
TLLT (Norm) and TLLT (entropy) are [0.9504, 0.9524,
0.9564, 0.9630] and [0.9489, 0.9521, 0.9569, 0.9658], respec-
tively, which are superior to LGC and GFHF.

E. Object Recognition
We also apply the proposed TLLT to object recognition

problems. COIL20 is a popular public data set for object
recognition, which contains 1440 object images belonging to
20 classes, and each object has 72 images shot from different
angles. The resolution of each image is 32×32, with 256 gray
levels per pixel. Thus, each image is represented by a
1024-dimensional element-wise vector.

We built a 5-NN graph with ξ = 50 for GFHF, LGC,
GTAM, DLP, and TLLT. The number of neighbors k for
LNP was tuned to 10. Other parameters were γ1 = 1 for
TLLT (Norm) and γ2 = 0.1 for TLLT (Entropy). All the
algorithms were implemented under l(0) = 100, 200, 300, 400
initial labeled examples, and the reported accuracies are the
mean values of the outputs of 200 independent runs. Fig. 5(c)
shows the comparison results, from which we observe that
TLLT hits the highest records among all comparators
with l(0) varying from small to large.

F. Running Time
In this section, we compare the running time of all the

methods on the data sets appeared in Sections VII-B–VII-E.

The experiments were conducted on a desktop with
Intel 3.2-GHz i5 CPU and 8-GB memory. For each data set,
we plot the CPU seconds averaged over 200 independent runs
under different values of l(0), and the results are shown in
Fig. 6. We notice that TLLT generally takes longer time than
the competing methods. This is because TLLT has the over-
head of selecting the most suitable examples in each iteration.
The exceptional cases are the data sets CNAE9, banknote,
20Newsgroups, and COIL20, on which either GTAM or DLP
needs the longest computational time. More importantly, TLLT
is able to improve the performance of baseline methods as
revealed in Figs. 4 and 5.

G. Parametric Sensitivity

In Section VI, we theoretically verify that TLLT is insen-
sitive to the change of Gaussian kernel width ξ . Besides, the
weighing parameter α in (8) is also a key parameter to be tuned
in our method. In this section, we investigate the parametric
sensitivity of each of the parameters ξ and α by examining
the classification performance of one while the other is fixed.
The above three practical data sets 20Newsgroups, USPS, and
COIL20 are adopted here, and the results are shown in Fig. 7.

Fig. 7 reveals that TLLT is very robust to the variations of
these two parameters, so they can be easily tuned for practical
use. The results in Fig. 7(a), (c), and (e) are also consistent
with the theoretical validation in Section VI.

H. Summary of Experiments

Based on the above experiments from
Sections VII-B–VII-G, we observe that: 1) the proposed
TLLT favorably performs to other baseline algorithms in
most cases, including the incorporated learning model GFHF;
2) TLLT is very robust to the selection of initial labeled
examples and the variation of the two tuning parameters ξ
and α; and 3) TLLT spends overall more time than other
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Fig. 7. Parametric sensitivity of TLLT. The first, second, and third rows
correspond to 20Newsgroups, USPS, and COIL20 data sets, respectively.
(a), (c), and (e) show the variation of accuracy with respect to the kernel
width ξ when α is fixed to 1. (b), (d), and (f) evaluate the influence of the
tradeoff α to final accuracy under ξ = 10.

methods as the teacher has to pick up the simplest examples
in each propagation for the stepwise learner.

VIII. CONCLUSION

This paper proposed a novel label propagation algorithm
through iteratively employing a TLLT scheme. The main
ingredients contributing to the success of TLLT are: 1) explic-
itly manipulating the propagation sequence to move from the
simple to difficult examples and 2) adaptively determining the
feedback-driven curriculums. These two contributions collabo-
ratively lead to higher classification accuracy than the existing
algorithms, and exhibit the robustness to the choice of graph
parameters. Empirical studies reveal that TLLT can accomplish
the state-of-the-art performance in various applications. In the
future, we plan to adapt the proposed TLLT framework to
more existing algorithms.

APPENDIX A
EFFICIENT COMPUTATION FOR COMMUTE TIME

To apply the Nyström approximation, we uniformly sample
q (q = 10% · n throughout this paper) rows/columns of the

original L to form a submatrix Lq,q , and then L can be
approximated by L̃ = Ln,qL−1

q,q Lq,n , where Ln,q represents
the n ×q block of L and Lq,n = L�

n,q . By defining V ∈ R
q×q

as an orthogonality matrix, �̃ as a q × q diagonal matrix, and

U =
(

Lq,q

Ln−q,q

)

L−1/2
q,q V�̃−1/2 (32)

we have (33) according to [41]

L̃ = Ln,qL−1
q,q Lq,n =

(
Lq,q

Ln−q,q

)

L−1
q,q

(
L�

q,q L�
n−q,q

)

=
(

Lq,q

Ln−q,q

)

L−1/2
q,q V�̃−1/2�̃�̃−1/2V�L−1/2

q,q
(
L�

q,q L�
n−q,q

)

= U�̃U�. (33)

Since L̃ is positive semidefinite, then according to (32), we
require

I = U�U

= �̃−1/2V�L−1/2
q,q

(
L�

q,q L�
n−q,q

)·
(

Lq,q

Ln−q,q

)

L−1/2
q,q V�̃−1/2.

(34)

Multiplying from the left by V�̃1/2 and from the right
by �̃1/2V�, we have

V�̃V� = L−1/2
q,q

(
L�

q,q L�
n−q,q

) ·
(

Lq,q

Ln−q,q

)

L−1/2
q,q

= Lq,q + L−1/2
q,q L�

n−q,q Ln−q,q L−1/2
q,q . (35)

Therefore, by comparing (33) and (35), we know that
the matrix U containing all the eigenvectors ui (i =
1, . . . , n) can be obtained by conducting SVD on Lq,q +
L−1/2

q,q L�
n−q,q Ln−q,q L−1/2

q,q , and then plugging V and �̃ to (32).
Similar to [41], we assume that the pseudoinverses are used
in place of inverses in above derivations when the matrix Lq,q

is not invertible.
The complexity for computing the commute time between

examples via Nyström approximation is O(q3), which is
caused by finding L−1/2

q,q in (35) and the SVD on Lq,q +
L−1/2

q,q L�
n−q,q Ln−q,q L−1/2

q,q . This significantly reduces the cost
of directly solving the original eigensystem that takes O(n3)
(n � q) complexity.

APPENDIX B
UPDATING �−1

L,L
Given �S,L, �L,S , and �L,L are the submatrices of the

kernel matrix � indexed by the associated subscripts; then
after one iteration, the kernel matrix on the labeled set is
updated by

�L,L :=
(

�L,L �L,S
�S,L �S,S

)

. (37)

�
−1
L,L :=

⎛

⎝
�−1
L,L + �−1

L,L�L,S
(
�S,S − �S,L�−1

L,L�L,S
)−1

�S,L�−1
L,L −�−1

L,L�L,S
(
�S,S − �S,L�−1

L,L�L,S
)−1

−(�S,S − �S,L�−1
L,L�L,S

)−1
�S,L�−1

L,L
(
�S,S − �S,L�−1

L,L�L,S
)−1

⎞

⎠ (36)
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As a result, its inverse can be efficiently computed by using
the blockwise inversion equation [42] as revealed by (36),
shown at the bottom of the previous page.

Note that in (36), we only need to invert an s × s matrix,
which is much more efficient than inverting the original l × l
(l � s in later propagations) matrix. Moreover, s will not
be quite large, since only a small proportion of unlabeled
examples are incorporated into the curriculum per propagation.
Therefore, �−1

L,L can be updated efficiently.
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