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Fick’s Law Assisted Propagation for
Semisupervised Learning

Chen Gong, Dacheng Tao, Fellow, IEEE, Keren Fu, and Jie Yang

Abstract— How to propagate the label information from
labeled examples to unlabeled examples is a critical problem for
graph-based semisupervised learning. Many label propagation
algorithms have been developed in recent years and have obtained
promising performance on various applications. However, the
eigenvalues of iteration matrices in these algorithms are usually
distributed irregularly, which slow down the convergence rate
and impair the learning performance. This paper proposes
a novel label propagation method called Fick’s law assisted
propagation (FLAP). Unlike the existing algorithms that are
directly derived from statistical learning, FLAP is deduced on
the basis of the theory of Fick’s First Law of Diffusion, which
is widely known as the fundamental theory in fluid-spreading.
We prove that FLAP will converge with linear rate and show
that FLAP makes eigenvalues of the iteration matrix distributed
regularly. Comprehensive experimental evaluations on synthetic
and practical datasets reveal that FLAP obtains encouraging
results in terms of both accuracy and efficiency.

Index Terms— Convergence rate, Fick’s law of diffusion, label
propagation, semisupervised learning (SSL).

I. INTRODUCTION

IN MANY practical tasks such as object recognition,
multimedia retrieval and text categorization, the labeled

examples are usually inadequate or expensive to obtain, yet
a large amount of unlabeled examples are available. Though
these massive unlabeled examples do not have labels, they
may offer the prior of data distribution, which is beneficial
to accurate classification when labeled examples are scarce.
Semisupervised learning (SSL) [1] is one of the learning
strategies that aim to exploit these abundant unlabeled
examples for boosting learning performance. SSL has been
intensively investigated by many researchers from different
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perspectives, and in the following we will review some
typical approaches that are related to our work.

A. Related Work

It is well known that SSL algorithms should be conducted
under correct assumptions, otherwise the unlabeled examples
are likely to impair the performance significantly [1].
There are two basic assumptions commonly used by
graph-based SSL, i.e., cluster assumption and manifold
assumption. Most popular SSL algorithms are developed
based on one of these two assumptions.

1) Cluster Assumption: Cluster assumption assumes that the
classes are well-separated, such that the decision boundary
falls into the low density area in the feature space. Joachims [2]
proposed transductive support vector machines (TSVMs) by
adapting traditional support vector machines (SVMs) to the
transductive learning setting. In contrast to the traditional
SVM, it is unknown whether an unlabeled example is
on the right or wrong side of the decision boundary,
so TSVM incorporated the hat loss rather than the
hinge loss commonly adopted by SVMs. Similar to this idea,
Fung and Mangasarian [3] proposed a concave semisuper-
vised SVM in which they replaced L2-regularization with
the L1-regularization. Wang et al. [4] developed semisuper-
vised classification based on class membership by introducing
the membership vector. However, these methods are non-
probabilistic, namely the label posterior probability cannot be
obtained when making classification. Besides, the optimiza-
tions in these approaches are usually nonconcave and are
difficult to solve.

2) Manifold Assumption: Manifold assumption explores
the geometry of the data distribution by postulating that its
support has the geometric structure of a Riemannian manifold.
Most graph-based SSL approaches fall into this type. Graph-
based SSL regards labeled and unlabeled examples as
vertices on a graph and uses edges to describe the pairwise
similarity between them. The label information can then be
propagated from labeled examples to unlabeled examples
through the edges. Graph-based approaches have attracted
intensive attention in recent years due to their promising
performance and ease of implementation. The manifold
assumption requires that the labels should vary smoothly on
the graph. That is, the two examples connected by a strong
edge tend to share similar labels. Therefore, graph-based
methods often formulate SSL as optimization problems to
effectively penalize the drastic variations of labels along the
manifold. Graph cut algorithms [5] conduct SSL by finding
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a graph partition to classify all the examples. Zhu et al. [6]
and Zhou and Bousquet [7] exploited the traditional Graph
Laplacian and normalized Graph Laplacian, respectively, to
describe the smoothness of labels on the graph.

However, above methods simply deal with SSL in the
traditional L2 space, so they can only obtain the discrete
results on every example rather than the explicit formulation
of decision boundary in the whole feature space. Therefore,
they lack the ability to handle the unseen data. To address this
problem, Belkin et al. [8] proposed data-dependent manifold
regularization in the continues a reproducing kernel Hilbert
space by adopting the extended representer theorem. This
method was extended in [9] for scalable manifold regular-
ization. The idea of manifold regularization was successfully
applied to feature selection [10] and dimension reduction [11].

Different from above methods that only utilize
pairwise information of examples for transduction,
Wu and Schölkopf [12] developed the local learning
regularizer to predict each example’s label from those of
its neighbors. Besides, Wang et al. [13] developed linear
neighborhood propagation (LNP) by assuming that every
example on the graph can be optimally reconstructed by
its neighbors. These algorithms usually assume that the
neighbors are deterministic to the label of a test example.
However, this assumption does not always hold for various
data distributions, so above local methods may obtain
unsatisfactory results sometimes.

B. Motivation

The target of this paper is to design a new graph-based
SSL algorithm based on the manifold assumption. In contrast
to existing graph-based SSL algorithms that are derived from
the perspective of statistical learning, this paper explains label
propagation by Fick’s First Law of Diffusion in fluid mechan-
ics and presents a new SSL scheme, Fick’s law assisted propa-
gation (FLAP). In particular, FLAP simulates the diffusion of
fluid for label propagation, thus the labeled examples can be
regarded as the diffusive source with a high concentration of
label information. When the diffusion process starts, the flux of
label information will be transferred from the labeled examples
to the remaining unlabeled examples. When the diffusion
process is completed, all the examples on the graph will
receive a certain concentration of label information, providing
the foundation for final classification. Note that FLAP is more
lifelike because it is straightforwardly derived from statistical
physics. As a result, when and how much label information
is received or transferred by an example, or where these
labels should be propagated to, are directly governed by the
well-known Fick’s law, which is better than decided via some
heuristic and ad hoc requirements or criteria exploited in
conventional machine learning algorithms.

As a kind of iteration-based algorithm, it is proven that
FLAP can converge more quickly than other iterative methods
by analyzing the relationship between the convergence rate
and the eigenvalues of the iteration matrix. We show that
eigenvalues of the iteration matrix in FLAP are close to 1,
while those in other methods may scatter in a wide range.

This difference makes FLAP is superior to other iterative
methods in terms of convergence speed. We conduct the
experiments on several computer vision and pattern recog-
nition repositories, including handwritten digit recognition,
face recognition and teapot image classification. Thorough
empirical studies show FLAP obtains promising performance
by comparing with Minimum Cut (MinCut) [5], Harmonic
Functions (HF) [6], Local and Global Consistency (LGC) [7],
Linear Neighbourhood Propagation (LNP) [13], and Nonpara-
metric Transforms of Kernels (NTK) [14].

II. MODEL DESCRIPTION

Fick’s First Law of Diffusion governs mass transfer through
diffusive means and has been widely used to understand the
diffusion in solids, liquids, and gases. It postulates that the
flux diffuses from regions of high concentration to regions of
low concentration, with a magnitude that is proportional to
the concentration gradient. Along one diffusion direction, the
law is

J = −γ
∂ ˜f

∂d
(1)

where γ is the diffusion coefficient, d is the diffusion distance,
˜f is the concentration that evaluates the density of molecules
of fluid, and J is the diffusion flux that measures the quantity
of molecules flowing through the unit area per unit time.

Given a set of labeled examples L = {(xi , yi )}l
i=1 and a

set of unlabeled examples U = {(xi)}l+u
i=l+1, where xi ∈ Rm

for 1 ≤ i ≤ n, (n = l + u) are sampled from an unknown
marginal distribution and the labels yi for 1 ≤ i ≤ l take
values from {−1, 1}, a semisupervised learning algorithm aims
to propagate the label information from L to U .

It is thus natural to draw a parallel between this label
propagation in the dataset L

⋃

U and the molecule diffusion
in the fluid. In particular, the label information propagating
from L to U can be compared to the molecule diffusing from
high concentration regions to low concentration regions; each
labeled example can be compared to a high concentration
region, and each unlabeled example can be compared to a
low concentration region. By treating γ as the propagation
coefficient, d as the propagation distance, and ˜f as the label
information (denoted as f to avoid notation confusion), the
following explains the process of label propagation:

J = −γ
f (t)

j − f (t)
i

di j
. (2)

Equation (2) informs us that xi propagates its label
information to x j at the diffusion distance di j = 1/exp
(−‖xi − x j‖2/(2σ 2)), and their soft labels at time t are
f (t)
i and f (t)

j , respectively. Here soft label means that f takes
a value from a real range [−1, 1].

Fig. 1 shows the propagation process from a labeled
example xi to an unlabeled example x j , where each example
is modeled by a cube. The volume of both cubes is equal
to V , and the area of their interface is A. Therefore, after
a short time �t from t , the amount of label information
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Fig. 1. Parallel between fluid diffusion and label propagation. The left cube
with more balls is compared to the example with more label information.
The right cube with fewer balls is compared to the example with less label
information. The red arrow indicates the diffusion direction.

(i.e., the number of molecules) received by x j satisfies the
following:

f (t+�t)
j − f (t)

j

�t
V = J A (3)

where the variable J can be exactly expressed by Fick’s First
Law of Diffusion (2).

Because the label f j varies in a discrete manner with respect
to the iteration time t , �t in (3) can be simply set to 1. Note
that V = di j A and substituting (2) into (3), we have

f (t+1)
j = f (t)

j − γ
f (t)

j − f (t)
i

d2
i j

. (4)

By taking the initial state of x j into account, (4) is
modified to

f (t+1)
j = α

(

f (t)
j − γ

f (t)
j − f (t)

i

d2
i j

)

+ (1 − α)y j (5)

where y j = f (0)
j and it takes a value of 1, −1 or 0, if

x j is a positive, negative or unlabeled example, respectively.
α ∈ (0, 1) is the trade off between the received information
from xi and the initial state of x j . Equation (5) models the
label propagation process between two examples. However,
in practice, one example receives the label information from
all the other examples in the dataset. Therefore, if Jk→ j is
used to represent the propagation flux from xk to x j , then the
following equation holds:

(

f (t+1)
j − f (t)

j

)

V =
n
∑

k=1

Jk→ j Ak . (6)

We assume that ∀k ∈ {1, 2, . . . , n}, Jk→ j = J and Ak = A.
Then similar to the derivation of (5), after substituting Fick’s
First Law of Diffusion (2) into (6) and including y j , the
propagation process in the whole dataset is given by

f (t+1)
j = α

(

f (t)
j −

n
∑

k=1

γ
f (t)

j − f (t)
k

d2
kj

)

+ (1 − α)y j . (7)

Equation (7) explains the propagation process between one
example and the other examples in the dataset, and indicates
that the received label information of an unlabeled example

can be understood as an integration of the information emitted
by the other examples.

In semisupervised learning, we apply Fick’s First Law of
Diffusion to both unlabeled and labeled examples. Slightly
different from the original diffusion law that imposes the fluid
transmitting from regions of higher concentration to those of
lower concentration, FLAP simply allows the label informa-
tion exchanging between arbitrary two examples regardless
of their current label values. Thus, the labels of examples
can be changed during the propagation process. Fortunately,
Theorem 1 suggests that the labels of the labeled examples
will remain virtually unchanged after the propagation process.
Thus, the original labels of labeled examples, i.e., 1 or −1,
will not convert from one to another.

Theorem 1: The labels of the labeled example will not
change after the iteration process.

The proof of Theorem 1 is provided in Appendix A.
According to Fick’s First Law of Diffusion, we update the

labels of all examples simultaneously by denoting the label
vector f (t) = ( f (t)

1 f (t)
2 · · · f (t)

n )
T
, and the initial state vector

y = (y1 y2 · · · yn)
T
, and then at time t , we have

f (t+1) = αPf (t) + (1 − α)y (8)

where the iteration matrix P is defined by

P=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1−γ
n
∑

k=1,k �=1
d−2

1k γ d−2
12 · · · γ d−2

1n

γ d−2
21 1−γ

n
∑

k=1,k �=2
d−2

2k · · · γ d−2
2n

...
...

. . .
...

γ d−2
n1 γ d−2

n2 · · ·1 −γ
n
∑

k=1,k �=n
d−2

nk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(9)

To guarantee that P is a nonnegative stochastic matrix and
the summation of elements in every row is 1, we set 0 <

γ < (max
j

∑n
k=1,k �= j d−2

j k )
−1

. Equation (8) reveals that the

soft label of an example is the linear combination of its initial
state and the labels of all the examples including itself. We
conduct (8) iteratively until convergence

‖f (t+1) − f (t)‖2 < ε (10)

where ε is a predefined small positive number. The converged
vector f∗ can then be obtained after the iteration process.
Given a hard threshold 0, x j is determined as positive if
f ∗

j > 0 ( f ∗
j is the j -th element in the vector f∗) and

negative otherwise.
Though (8) is derived for binary classification, it can

be straightforwardly extended to multiclass classification by
replacing the label vector f and the initial state vector y with
the label matrix F and the initial state matrix Y, respectively

F(t+1) = αPF(t) + (1 − α)Y (11)

where matrices F and Y are of size n × C , and C denotes
the total number of categories. We follow the conventional
notation that Y j c′ = 1 if x j is labeled as y j = c′, and Y j c′ = 0
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otherwise. If x j is unlabeled, then Y j c′ = 0 for 1 ≤ c′ ≤ C .
Finally, x j belongs to the class c j = arg max1≤c′≤C F j c′ . The
stopping criterion for propagation is modified accordingly

‖F(t+1) − F(t)‖F < ε (12)

where ‖ · ‖F denotes the Frobenius norm. Because (11) is a
propagation model which simply transmits the label informa-
tion according to the similarity between pairs of examples, so it
can handle any kinds of data distributions. Moreover, FLAP
is a graph-based algorithm, thus it can effectively exploit
the manifold structure hidden in the dataset [1], [15], which
explains why it always obtains encouraging classification
results.

FLAP (11) converges at linear rate. This is shown in
Theorem 2. The result of Theorem 2 is directly applicable
to (8).

Theorem 2: The sequence {F(t)}, t = 1, 2, . . . generated
by (11) eventually converges to

F∗ = lim
t→∞ F(t) = (1 − α)(I − αP)−1Y (13)

linearly, i.e.

lim
t→∞

‖F(t+1) − F∗‖F

‖F(t) − F∗‖F
= θ < 1 (14)

where θ denotes the convergence rate.
Proof: Without loss of generality, the convergence of

FLAP is studied for multiclass classification. By iteratively
using (11), F(t) is given by

F(t) = (αP)t Y + (1 − α)

t−1
∑

i=0

(αP)i Y. (15)

Note that P is a stochastic matrix (Pi j > 0 and
∑

j Pi j = 1), then according to the Perron–Frobenius
Theorem [16], the spectral radius of P satisfies ρ(P) ≤ 1,
and thus we have

lim
t→∞ (αP)t = 0, lim

t→∞

t−1
∑

i=0

(αP)i = (I − αP)−1.

Therefore, the sequence {F(t)} will finally converge to (13).
To prove that FLAP converges at linear rate, we need to

demonstrate (14) holds. Considering that

F(t+1) = (αP)t+1Y + (1 − α)

t
∑

i=0

(αP)i Y (16)

we have (17) by plugging (13), (15), and (16) into (14)

‖F(t+1) − F∗‖F

‖F(t) − F∗‖F

=

∥

∥

∥

∥

[

(αP)t+1+(1−α)
t
∑

i=0
(αP)i −(1−α)(I − αP)−1

]

Y

∥

∥

∥

∥

F
∥

∥

∥

∥

[

(αP)t +(1−α)
t−1
∑

i=0
(αP)i −(1−α)(I − αP)−1

]

Y

∥

∥

∥

∥

F

.

(17)

Since P is symmetric, it can be decomposed into

P = U
UT (18)

where U is an unitary matrix and 
 = diag(λ1, λ2, . . . , λn)
is a diagonal matrix containing eigenvalues of P. According
to (18) and the Woodbury matrix identity [17], we have

(I − αP)−1 = I + αU(
−1 − αI)
−1

UT . (19)

By substituting (18) and (19) into (17), we obtain

‖F(t+1) − F∗‖F

‖F(t) − F∗‖F

=

∥

∥

∥

∥

{

U(α
)t+1UT + (1 − α)
t
∑

i=0
U(α
)i UT − F∗

}

Y

∥

∥

∥

∥

F
∥

∥

∥

∥

{

U(α
)t UT + (1 − α)
t−1
∑

i=0
U(α
)i UT − F∗

}

Y

∥

∥

∥

∥

F

= ‖{U(αt+1
t+1 + M)UT }Y‖F

‖{U(αt+1
t + M)UT }Y‖F
(20)

where

M = (1 − α)

[

t
∑

i=1

(α
)i − α(
−1 − αI)
−1

]

.

From (20) we can easily observe that the only difference
between the denominator and numerator is that one more
diagonal matrix 
 is multiplied to the first term in the bracket
of numerator. Thus (20) can be rewritten as

‖F(t+1)−F∗‖F

‖F(t)−F∗‖F
= ‖{Uαt+2diag(κ1 κ2 · · · κn)UT }Y‖F

‖{Uαt+1diag(π1 π2 · · · πn)UT }Y‖F

(21)

in which κi = λt+1
i (1 − λi )/1 − αλi and πi = λt

i (1 − λi )/
1 − αλi . If we denote

UJAUT � A, UJBUT � B

where JA = αt+2diag(κ1 κ2 · · · κn) and JB = αt+1diag
(π1 π2 · · · πn) that contain the eigenvalues of A and B,
respectively, then (21) is simplified as

‖F(t+1) − F∗‖F

‖F(t) − F∗‖F
= ‖AY‖F

‖BY‖F
. (22)

Moreover, since P is a stochastic matrix with all its eigenvalues
λi ∈ [−1, 1] (in fact, 1 is the single eigenvalue of P according
to the Perron–Frobenius Theorem [16]) and α ∈ (0, 1), so all
the eigenvalues of A and B are nonnegative, and the eigen-
values of A are smaller than those of B in the corresponding
position expressed in JA and JB . Therefore

‖AY‖F

‖BY‖F
=
∥

∥UJAUT Y
∥

∥

F
∥

∥UJBUT Y
∥

∥

F

=
√

√

√

√

tr
(

YT UJA
2UT Y
)

tr
(

YT UJB
2UT Y
) (23)

where tr(·) is the symbol of trace. Let Q = UJUT where
J = JB

2 − JA
2 ≥ 0, then we obtain the margin between the

denominator and numerator in (23)

tr
(

YT UJB
2UT Y
)− tr
(

YT UJA
2UT Y
)

= tr
[

YT U
(

JB
2 − JA

2)UT Y
] = tr
(

YT QY
)

. (24)

Note that Q = U
√

J(U
√

J)
T

and U
√

J are invertible
(det(U

√
J) = det(U) · det(

√
J) �= 0), so Q is a positive
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TABLE I

FLAP VERSUS POPULAR SSL ALGORITHMS

definite matrix. Furthermore, if Y is partitioned by columns
as Y = (Y1 Y2 . . . Yn), then

tr(YT QY) = tr

(

n
∑

i=1

Y T
i QYi

)

. (25)

Because Q is positive definite and Y1, Y2, . . . , Yn are
nonzero vectors (this is guaranteed, because each class should
has at least one labeled example), the result of (25) is definitely
above zero. Therefore, the denominator of (23) is larger than
the numerator, which indicates that

0 <
‖F(t+1) − F∗‖F

‖F(t) − F∗‖F
< 1. (26)

According to (26), we can conclude

lim
t→∞

‖F(t+1) − F∗‖F

‖F(t) − F∗‖F
= θ < 1. (27)

Thus, the linear convergence rate of FLAP for multiclass
classification is proved.

III. INTERPRETATION AND CONNECTIONS

A. Regularization Networks

To straightforwardly compare FLAP with other SSL algo-
rithms and show its superiority, we reformulate FLAP in the
context of the classical regularization theory

min
f∈Rn

Q(f)= 1

2

⎡

⎣

n
∑

k=1

n
∑

j=1

pkj
(

fk − f j
)2+τ

n
∑

k=1

( fk −yk)
2

⎤

⎦ (28)

where pkj is the (k, j)th element in the matrix P. The first term
in the right-hand side of (28) forms a specific prior knowledge
and enforces the labels in f varying smoothly. It indicates
that the soft labels of similar examples should not differ too
much from one another. The second fitting term means that the
decided labels should be consistent with the examples’ original
states well.1 The regularization parameter τ > 0 controls the
trade off between smoothness term and fitting term.

1Similar to LGC [7], LNP [13] and GTAM [18], we penalize the deviations
of the labels of all the examples from their initial states. This formulation
prefers the consistency for labeled data, and the compromise in assigning the
labels to the unlabeled data [13].

It is straightforward to show that the optimal solution of (28)
equals the iterative result of (8). The derivative of Q(f) with
respect to f is

∂ Q/∂f = 2(I − P)f + τ (f − y). (29)

Set the right-hand side of (29) to 0 and let α = 2/2 + τ ,
β = τ/2 + τ so that α + β = 1, then (29) is reformulated as

f − αPf − βy = 0 (30)

which leads to the same closed-form solution as (13)

f = β(I − αP)−1y. (31)

Theorem 3: The regularization form (28) is a convex opti-
mization problem.

Proof: By denoting

dk =
n
∑

j=1, j �=k

pkj

and calculating the Hessian matrix H0 of (28), we have

H0 =

⎛

⎜

⎜

⎜

⎝

2d1 + τ −2 p12 · · · −2 p1n

−2 p21 2d2 + τ · · · −2 p2n
...

...
. . .

...
−2 pn1 −2 pn2 · · · 2dn + τ

⎞

⎟

⎟

⎟

⎠

. (32)

From Gerschgorin circle theorem [16], we know that all
the eigenvalues of H0 belong to [τ, 4 max

1≤k≤n
(dk) + τ ], which

reveals that H0 is positive definite. Therefore, the optimization
problem (28) is convex and the convergent result is globally
optimal.

Theorem 3 also implies that the convergent point of
FLAP (31) corresponds to the global optimal solution.
Given (28), Table I compares FLAP with representative
SSL algorithms in a straightforward way, in which N(xk)
denotes the neighbors of the example xk and ωkj =
exp(−‖xk − x j‖2/(2σ 2)). It can be observed that the main dif-
ference between these methods is the definition of smoothness.
FLAP uses the matrix P to describe the smoothness, while
Mincut, HF, LNP, and LGC adopt the (normalized) graph
Laplacian to define the smoothness. This difference leads to
the faster convergence rate achieved by FLAP.
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The regularization framework of FLAP is also much related
to the semisupervised formulation of binary kernel spectral
clustering (BKSC) [19]. Suppose the adjacency matrix of
a graph is W, and the diagonal matrix D is defined by
Dkk =∑ j Wkj , ∀k = 1, 2, . . . , n, then BKSC is

min
ω,b

1

2

[

ωT ω − γ1fT D−1f + γ2

l
∑

i=1

( fi − yi )
2

]

. (33)

In (33), f = �ω + bel , where el is an all-one l-dimensional
column vector, and � is the kernelized data matrix with
each row representing an example. ω and b are unknown
vectors to be optimized, and γ1, γ2 are nonnegative parameters
balancing the three terms. BKSC (33) differs from FLAP (28)
regarding the prior knowledge. FLAP prefers the solution to be
smooth, while BKSC emphasizes the examples corresponding
to large Dkk .

B. Markov Random Fields

Markov random fields (MRFs) are a set of random variables
having the Markov property described by an undirected graph.
The first-order intrinsic Gaussian MRFs (FO-IGMRF) is an
MRF in which the joint distribution is Gaussian and the
precision matrix Q is rank reduced and meanwhile satisfies
Qe = 0 (e is a vector of all ones) [20]. Similar to other
propagation algorithms, e.g., [13], FLAP can also be cast into
the framework of FO-IGMRF. Defining the increment along
the edge in a graph as

�dkj = fk − f j . (34)

Suppose �dkj fits the Gaussian distribution with �dkj ∼
N(0, d2

kj /γ ), then we have

p(�dkj ) ∝ exp

[

− γ

2d2
kj

( fk − f j )
2
]

. (35)

Assuming that all the increments along the edges are con-
ditionally independent, then the joint probability over f is
calculated as the product of the probabilities over all the
increments

p(f) ∝
∏

p(�dkj ) = exp

[

−1

2
γ
∑ 1

d2
kj

( fk − f j )
2

]

. (36)

Suppose the adjacency matrix W of a graph is

Wkj =
{

γ d−2
kj , k �= j

0, k = j
(37)

then (36) is reformulated as

p(f) ∝ exp

[

−1

2
γ fT (D − W)f

]

= exp

[

−1

2
γ fT Lf

]

(38)

where L = D − W is the graph Laplacian. Since Le = 0,
L is exactly the precision matrix Q in FO-IGMRF.

C. Graph Kernels

Because of the popularity of graph-based methods for data
analyses, many diffusion kernels on graph nodes have been
developed, such as exponential diffusion kernel [21] and
Von Neumann diffusion kernel [22]. This section examines
the relationship between the proposed FLAP and these popular
diffusion kernels.

If we ignore the manually incorporated initial state term yi

in (7), and only focus on the propagation process itself, (7)
reduces to

f (t+1)
j = f (t)

j + γ

n
∑

k=1

d−2
kj f (t)

k − γ

n
∑

k=1

d−2
kj f (t)

j . (39)

By regarding f j as a variable w.r.t. the time t , we have

d f j

dt
= γ

n
∑

k=1

[

(1 − δkj )d
−2
kj fk − δkj

n
∑

i=1

d−2
i j f j

]

= γ

n
∑

k=1

[

(1 − δkj )d
−2
kj − δkj

n
∑

i=1

d−2
i j

]

fk (40)

where δkj is the Kronecker delta with δkj = 1 if k = j ,
and 0 otherwise. Therefore, we can write the variables
f j ( j = 1, . . . , n) as (40) into a compact matrix form

df
dt

= (P − I)f (41)

where P is the iteration matrix defined by (9), and
f = ( f1, . . . , fn)T is an n-dimensional variable vector of
time t . By denoting H = P−I, the above differential equation
leads to the solution f = exp(Ht)f (0), which results in the
graph kernel related to FLAP

KFLAP = exp(σ̃H) =
∞
∑

i=0

σ̃ i Hi

i ! (42)

where σ̃ is a real parameter. Since H is a positive semidefinite
matrix, KFLAP can be regarded as an exponential diffusion
kernel according to [21].

FLAP is also related to the von Neumann diffusion kernel,
which has the formation of

KVND = (I − α̃A)−1 =
∞
∑

i=0

α̃i Ai

with 0 < α̃ < ρ(A)−1 [22]. For FLAP, since P’s spectral
radius ρ(P) = 1, and α ∈ (0, 1) as explained in Section II, the
term (I − αP)−1 in (13) is actually a Von Neumann diffusion
kernel and encodes the similarities of pairs of examples.

IV. EXPERIMENTAL RESULTS

In this section, FLAP will be evaluated on typical synthetic
and vision datasets. Several popular graph-based SSL algo-
rithms serve as baselines for comparison, including HF [6],
LGC [7], LNP [13], NTK [14], and MinCut [5]. We focus
on two issues of these algorithms: one is the classification
accuracy on unlabeled examples given very few labeled exam-
ples for every dataset, and the other is the efficiency such
as CPU seconds and iteration times. In all the experiments
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Fig. 2. Propagation results on Square&Ring dataset. (a)–(c) Propagation processes of FLAP, LGC, and LNP. (d)–(f) Classification results brought by MinCut,
HF, and NTK.

below, the parameters of FLAP are set to α = 0.99, and
γ = η(max j

∑n
k=1,k �= j d−2

j k )
−1

where η is chosen within
[0, 1]. In HF, LGC and LNP, the parameter α is also set
to 0.99. For fair comparison, we construct the identical
K Nearest Neighborhood (K-NN) graph for all the algorithms,
and the σ in the expression of the diffusion distance has been
also respectively adjusted to achieve the best performance for
different datasets.

A. Synthetic Data

Square&Ring and DoubleMoon datasets are used to visu-
alize the propagation processes of three iterative methods,
including LGC, LNP and the proposed FLAP. The results of
the three noniterative methods, i.e., MinCut, HF, and NTK,
are also reported.

The Square&Ring dataset contains a square and a ring, both
of which are centered at (0.5, 0.5). The radius of the outer
ring is 1.3, and the length of each side of the inner square
is 1 (Fig. 2). In the DoubleMoon dataset, 500 examples are
equally divided into two moons that are centered at (0, 0) and
(6, 0), respectively. The width of each moon is set to 6 to make
the moons fatter. Compared with [7] and [23] that use the
DoubleMoon dataset for illustration, we reduce the interclass
distance to increase the classification difficulty (Fig. 3). Note
that there is only one labeled example in each class for both
datasets (see t = 0 in every subplot).

For implementing FLAP on the Square&Ring dataset, we
set K = 5, σ = 0.2, and η = 0.95. Fig. 2 reveals that
LGC wrongly propagates positive labels to the outer ring. Part
of the unlabeled examples cannot receive label information

through LNP until convergence. Most negative examples are
classified as positive by NTK. By contrast, FLAP, MinCut,
and HF are able to correctly classify all the examples. The
parameter settings of FLAP on DoubleMoon are K = 5,
σ = 0.2, and η = 0.6. The results are displayed in Fig. 3.
It can be observed that LNP propagates the positive label to
the upper moon by mistake in about t = 27. Mincut and NTK
also fail to obtain the perfect results. Comparatively, LGC,
HF, and FLAP perform better than the above methods. For
quantitative comparison, we also report the classification accu-
racies of these methods on Square&Ring and DoubleMoon
in Table II.

Moreover, to validate the efficiency of FLAP, we record
both iteration times and CPU seconds of the three iterative
methods. In this paper, all the algorithms are conducted on a
work station with 2.40GHz Intel Xeon CPU and 24G memory.
Table II suggests FLAP achieves comparable time costs with
LGC on the Square&Ring dataset. However, the convergent
result of LGC is incorrect shown by Fig. 2, and this can
be the reason why it converges quickly in this dataset. The
convergence curves are also shown in Fig. 4 and demonstrate
that FLAP converges very quickly on both datasets.

We further use the DoubleMoon dataset to test the ability
of FLAP for handling the problem of imbalanced data. The
number of negative examples is fixed to 250, while we
randomly sample 125, 50, 25, and 10 positive examples from
the bottom moon, so the relative ratio of positive examples to
negative examples are 1:2, 1:5, 1:10, and 1:25, respectively.
The initially labeled examples for this experiment are identical
to Fig. 3, and the propagation results are presented in Fig. 5.
It can be observed that FLAP can successfully classify all
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Fig. 3. Propagation results on DoubleMoon dataset. (a)–(c) Propagation processes of FLAP, LGC, and LNP. (d)–(f) Classification results brought by MinCut,
HF, and NTK.

TABLE II

PERFORMANCES OF ALL THE METHODS ON TWO SYNTHETIC DATASETS.

EACH RECORD FOLLOWS THE FORMAT ITERATION

TIME/CPU SECONDS/ACCURACY

Fig. 4. Comparison of convergence curves. (a) Result on Square&Ring.
(b) Result on DoubleMoon.

the examples except 1:25 situation. In Fig. 5(d), two positive
examples are mistakenly classified into the negative class. This
is mainly because of the following reasons:

1) The positive examples are so scarce that they fail to
represent the underlying manifold of the real distribution
of the positive examples (i.e., the moon shaped by
positive points).

Fig. 5. Classification outputs on the imbalanced DoubleMoon. (a)–(d) Results
of 1:2, 1:5, 1:10, and 1:25 situations.

2) The two mistakenly classified examples are closer to
the upper moon, so the negative labels can be more
conveniently propagated to them than the positive labels.

This experiment well demonstrates that FLAP is insensitive to
the problem of imbalanced data.

B. Real Benchmarks Data

In this section, the performances of FLAP, LGC, LNP,
HF, NTK, and MinCut are evaluated by testing on the two
public datasets United States Postal Service (USPS) and Brain
Computer Interface (BCI) in [15].
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TABLE III

EXPERIMENTAL RESULTS ON THE BENCHMARK DATASETS FOR THE

VARIETY OF SSL ALGORITHMS. [THE VALUES IN THE

TABLE REPRESENT ACCURACY (%)]

The USPS dataset contains ten digits, each with 150 images.
We combine digits two and five as the positive class, and form
all the others as the negative class. Therefore, the two classes
are imbalanced and the relative size of the two classes is 1:4.
The BCI dataset is used to study the brain-computer interface.
It contains 400 imagined movements (examples) with 200
using the left hand (negative class) and 200 using the right
hand (positive class).

In each dataset, we implement all the algorithms under
l = 10 and l = 100, and the final results are averaged
over 12 independent runs with different partitions of labeled
and unlabeled subsets. We built 9-NN and 8-NN graphs with
σ = 0.2 for USPS and BCI, respectively, and η in FLAP is set
to 0.1 and 0.01 for these two datasets. The number of principal
components in NTK is set to m = 100 to achieve the optimal
performance. Table III shows the accuracies of different algo-
rithms, in which the highest and the second highest records are
marked with red and blue color, respectively. We observe that
compared with all the baselines, the proposed FLAP obtains
encouraging performance generally. An exceptional case is
that FLAP performs slightly worse than LGC on USPS when
l = 100. Specifically, the experimental results on USPS also
demonstrate that FLAP is not sensitive to the problem of the
imbalanced data.

C. UCI Data

We adopt four UCI Machine Learning Repository datasets,2

Iris, Wine, BreastCancer, and National Classification of Eco-
nomic Activities-9 (CNAE-9) to compare FLAP with the
other graph-based algorithms. The classification accuracy and
iteration times under different sizes of the labeled set l, in
particular, are evaluated. Algorithms are implemented 30 times
independently under each l with randomly selected examples,
and the reported accuracy and iteration times are calculated
as the mean value of the outputs of these runs. Note that at
least one labeled example is guaranteed in each class when
the labeled sets are generated. Five state-of-the-art graph-
based SSL algorithms are adopted for baselines, including
LGC, LNP, MinCut, HF, and NTK.

We built 10-NN, 6-NN, 7-NN, and 10-NN graphs
for Iris, Wine, BreastCancer, and CNAE-9, respectively.

2http://archive.ics.uci.edu/ml/.

Fig. 6. Comparison of accuracy and iteration times. (a) and (b) Iris.
(c) and (d) Wine. (e) and (f) BreastCancer. (g) and (h) CNAE-9.

Other parameters of FLAP are σ = 0.2, η = 0.1 for Iris,
σ = 0.5, η = 0.01 for Wine, σ = 0.5, η = 0.001
for BreastCancer, and σ = 1, η = 0.1 for CNAE-9.
The m in NTK is set to 50 for all the four UCI datasets.
Fig. 6(a), (c), (e), and (g) demonstrates that FLAP is generally
able to reach the highest accuracy among the comparators
when l changes from small to large.

Moreover, Fig. 6(b), (d), (f), and (h) presents the iteration
times of all the iterative methods (LGC, LNP and FLAP) on
four UCI datasets, respectively. Other baselines including HF,
MinCut and NTK are not compared here because they are not
iteration-based. It can be observed that FLAP requires the least
iteration times in most cases. An exceptional case is that LNP
is more efficient than FLAP on the Wine dataset. However,
the accuracy of LNP is not as high as that of FLAP shown
by Fig. 6(c), so the results obtained by FLAP are
encouraging.

D. Handwritten Digit Recognition

Handwritten digit recognition is a branch of optical char-
acter recognition (OCR). We compare FLAP with baselines
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Fig. 7. Comparison of accuracy and iteration times on digit recognition
dataset. (a) and (b) Curves of accuracy and iteration times with the growing
of the labeled examples.

Fig. 8. Experiment on Teapot dataset. (a) Some typical images. (b) Accuracy
curve for comparison.

on the Optical Recognition of Handwritten Digits Dataset,3

(abbreviated as Digits) in which numbers 0 ∼ 9 are considered
as different classes. This dataset contains 5620 digital images
and the resolution of each image is 8 × 8. The pixel-wise
feature is described by a 64-D vector with elements represent-
ing the gray values. Labeled examples are randomly selected
from the whole dataset. We built a 10-NN graph for all the
methods, and choose σ = 7 and η = 0.01 for FLAP.

When l varies from small to large, the accuracy and iteration
times of the methods are plotted in Fig. 7(a) and (b), respec-
tively. This figure indicates that FLAP achieves the highest
accuracy with the least iteration times.

E. Teapot Image Classification

The Teapot dataset [24] contains 365 images of a teapot, and
the angle of the spout in every image is different [Fig. 8(a)].
The goal is to determine whether the orientation of the spout
is right or left. The resolution of each image is 12 × 16,
and hence the pixel-wise feature adopted is a 192-dimensional
vector.

A 10-NN graph with σ = 30 was established for every
algorithm. η for FLAP was set to 0.01 to get the optimal
performance. Fig. 8(b) shows the accuracy curve of several
algorithms when the size of the labeled data varies from
4 to 20, which reveals that FLAP performs better than other
algorithms.

3http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+
Handwritten+Digits.

Fig. 9. Experimental results on LFW face dataset. (a) Some representative
images. (b) Comparison of the recognition accuracy.

F. Face Recognition

We tested the ability of FLAP on face recognition by
using the challenging dataset Labeled Face in the Wild
(LFW ).4 The face images in this dataset are directly collected
under natural scenes, so the facial expressions, observation
angle, illumination conditions and background setting are
not intentionally controlled for recognition. The faces in
all the images are detected by the well-known Viola–Jones
detector [25].

In this experiment, we used a subset of LFW by choosing
the persons who have more than 30 face images. We chose the
images of Toledo, Sharon, Schwarzenegger, Powell, Rumsfeld,
Bush, Arroyo, Agassi, Beckham, and Hewitt for recognition,
which leads to totally 392 examples belonging to 10 people in
the subset [Fig. 9(a) for some examples]. We adopted the 73-D
feature developed in [26], which describes some biometrics
traits such as gender, race, age, and hair color. A 10-NN graph
with σ = 1 was built on the entire dataset, and η was set to 0.5.
The recognition rates of algorithms are compared in Fig. 9(b).
We observe that HF and MinCut perform comparably to FLAP,
while NTK and LNP are inferior to FLAP notably. In general,
FLAP achieves very satisfactory results and outperforms other
methods with l changing from 20 to 100.

G. Statistical Significance

Above experiments have empirically shown the superiority
of FLAP to other baselines in terms of classification accuracy.
In this section we use the 5×2 cross-validation F-test (5×2 cv
F-test) [27] to show the statistical significance of FLAP over
the other methods. The F-statistics value produced by the
5 × 2 cv F-test is to identify whether two algorithms achieve
the same performance on a certain dataset. The null hypothesis
is that they do obtain the same accuracy, and we reject this
hypothesis with 95% confidence if the F-statistics value is
greater than 4.74. For conducting the 5 × 2 cv F-test, five
replications of twofold cross-validation are performed, and
every datasets are equally and randomly split into two folds
in each replication; however, the splits in the five replications
were identical for all the algorithms. To compare the trans-
ductive accuracy of all the methods, in each replication we
randomly sample l labeled examples in one fold, and evaluate
the accuracy of classifiers on the examples of the other fold.
Given m( j )

i as the difference of error rates generated by

4http://vis-www.cs.umass.edu/lfw/.
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TABLE IV

F-STATISTICS VALUES OF BASELINES VERSUS FLAP ON THREE UCI

DATASETS. (THE RECORDS SMALLER THAN 4.74 ARE MARKED IN

RED, WHICH MEAN THAT 1) THE NULL HYPOTHESIS IS

ACCEPTED AND 2) THE CORRESPONDING BASELINE

ALGORITHM PERFORMS COMPARABLY TO FLAP)

two algorithms on fold j ( j = 1, 2) of replication i (i =
1, 2, . . . , 5), then the mean error rate and the variance of repli-

cation i are m̄i = (m(1)
i + m(2)

i )/2 and s2
i = (m(1)

i − m̄i )
2 +

(m(2)
i − m̄i )

2
, respectively. Therefore, according to [27], the

F-statistics value F = (
∑5

i=1
∑2

j=1 (m( j )
i )

2
)/2
∑5

i=1 s2
i obeys

the F-distribution with 10 and 5 degrees of freedom.
The statistical significance of FLAP on all the datasets is

validated by Table IV, in which the F-statistics values of
baselines versus FLAP are listed. Table IV suggests that the
hypothesis is rejected in most cases, which statistically verifies
that FLAP outperforms the baseline algorithms. Besides, we
observe that the null hypothesis is often accepted by MinCut
on Wine, and LNP on Teapot, which suggest that they achieve
comparable performances with FLAP on the corresponding
datasets. Figs. 6(c) and 8(b) also show this point.

H. Computational Cost

To further evaluate the computational efficiency of baselines
and the proposed FLAP, this section compares the CPU

TABLE V

CPU TIME (IN SECONDS) OF VARIOUS METHODS. (FOR EACH l, THE

SMALLEST RECORD AMONG ITERATIVE METHODS IS MARKED IN RED,

WHILE THE SMALLEST RECORD AMONG NONITERATIVE

METHODS IS HIGHLIGHTED IN BLUE)

seconds of all the algorithms on all the adopted vision datasets.
The results are presented in Table V. It can be observed that
HF is the most efficient algorithm among the noniterative
methods, and the proposed FLAP generally needs the least
CPU time compared with other iteration-based approaches.
By properly setting the parameter η, FLAP can perfectly
control the distribution of eigenvalues of its iteration matrix, so
it achieves the fastest convergence speed among the compared
iterative algorithms. The detailed reason will be explained
in the next section. Besides, we note that the noniterative
methods are more efficient than the iterative algorithms when
the dataset is small (e.g., Iris and Wine datasets). However,
when the database contains a large number of examples,
e.g., Digits with 5620 examples, the proposed iterative FLAP
begins to show its strength in terms of efficiency. Com-
pared with noniterative methods (MinCut, HF, and NTK) that
take more than 30 seconds to complete one implementation,
FLAP requires only less than 20 CPU seconds. The reason
is that noniterative methods usually need to invert a large
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matrix when massive examples exist, while FLAP successfully
avoids this inversion by conducting in an iterative way, so
FLAP is more suitable for dealing with relatively large data
collections.

I. Parametric Settings

Two parameters, K and η, are critical for FLAP to obtain
satisfying results. K controls the sparsity of an established
graph, and η plays an important role in balancing the accuracy
and efficiency.

1) Choosing η: The impacts of η for FLAPs performance
are twofold. Intuitively, from (15) we observe that a diagonally
dominant iteration matrix (such as P in FLAP) leads to higher
convergence rate. In other words, a small η helps to reduce
the iteration times. The following analyses will elaborate this
point strictly.

Lemma 4: Suppose Gn×n is the iteration matrix of an
iterative algorithm, e.g., FLAP defined in (11), of which the
eigenvalues are ξ1, ξ2, . . . , ξn , and then the upper bound of the
iteration times tmax satisfies

n
∑

i=1

(αξi )
2tmax(ξi − 1)2 = ε2/(lα2) (43)

where ε, l and α are the same as those defined above.
Lemma 4 is proven in Appendix B. According to Lemma 4,

we investigate what requirement of the eigenvalues of the
iteration matrix should meet to obtain the minimum tmax.
In fact, this question is equal to the following optimization
problem:

min tmax

s.t.
n
∑

i=1
(αξi )

2tmax(ξi − 1)2 = ε2

lα2
(44)

which can be rewritten as

min tmax + ρ0

(

n
∑

i=1

(αξi )
2tmax(ξi − 1)2 − ε2

lα2

)

(45)

where ρ0 is the Lagrange multiplier. If we denote

F (ξ1, . . . , ξn, ρ0)= tmax+ρ0

(

n
∑

i=1

(αξi )
2tmax(ξi −1)2− ε2

lα2

)

(46)

then solving (44) equals to finding the solution of
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂F
∂ρ0

=
n
∑

i=1
(αξi )

2tmax(ξi − 1)2 − ε2

lα2 = 0

∂F
∂λ1

= 4ρ0tmaxα
2tmaxξ2tmax−1

1 (ξ1 − 1) = 0
...

∂F
∂λn

= 4ρ0tmaxα
2tmaxξ2tmax−1

n (ξn − 1) = 0.

(47)

It can be concluded that (47) is maximally satisfied if
ξi equals to 0 or 1 (note that ε2/ lα2 ≈ 0). Fortunately,
Theorem 5 guarantees that all the eigenvalues of FLAP’s
iteration matrix P are almost equivalent to 1 by choosing a
small η.

Fig. 10. Distribution of eigenvalues on Iris. (a) LNP. (b) LGC. (c) FLAP.
Note that the ranges of the three x-axes are different.

Theorem 5: Let λi (1 ≤ i ≤ n) be the eigenvalues
of FLAP’s iteration matrix, then 1−2η ≤ λi ≤ 1 where η = γ
max

j

∑n
k=1,k �= j d−2

kj as defined in the beginning of Section IV.

Proof: To prove Theorem 5, we need a lemma from [28].
Lemma 6 [28]: Suppose A = (ai j ) is a stochastic matrix,

q = min{aii , i ∈ N}, then all the eigenvalues of A satisfy
|λi − q| ≤ 1 − q .

Now we begin to prove the Theorem 5. Since the iteration
matrix P of FLAP is a symmetric stochastic matrix, all its
eigenvalues are in the real range [−1, 1], so according to
Lemma 6, q in our case satisfies

q = 1 − γ max
j

n
∑

k=1,k �= j

d−2
kj

= 1 − η

⎛

⎝max
j

n
∑

k=1,k�= j

d−2
kj

⎞

⎠

−1

max
j

n
∑

k=1,k�=j

d−2
kj = 1 − η.

By substituting the expression of q into Lemma 6, we com-
plete the proof.

Above analyses explain why we set the parameter η (or γ )
to a relatively small positive number (e.g., η = 0.1 in Iris,
η = 0.01 in Wine, and η = 0.001 in BreastCancer, etc.).
By choosing a small η, P can be diagonally dominant and its
eigenvalues λi (1 ≤ i ≤ n) will be distributed very close to 1.
Fig. 10 shows that the eigenvalues of the FLAP iteration matrix
are only slight smaller than 1. In contrast, the eigenvalues of
the iteration matrices in LNP and LGC are widely scattered
in the range [−1, 1]. Therefore, FLAP is able to converge
relatively more quickly than LGC and LNP as Table V shows.

On the other hand, if η is set to an extremely small
value, then P will be very close to an identity matrix.
Equation (13) reveals that under this situation, the convergence
result is almost the same as the initial state Y, which means
the label information cannot be thoroughly propagated from
initially labeled examples to other unlabeled ones. Therefore,
an extremely small η will damage the classification accuracy
significantly.

In short, a small η leads to higher convergence rate, but
decreases the classification accuracy; a large η can boost the
accuracy at the cost of high computational time. Therefore,
η should be chosen by trading off the accuracy and efficiency.
By fixing l = 12 on the Iris dataset, we plot the accuracy
and iteration times of FLAP with respect to the variations
of η in Fig. 11(a) and (b). These two figures also indicate that
both the accuracy and iteration times will rise by gradually
increasing η. In the Iris dataset, we set η to 0.1 because the
accuracy is relatively high and the iteration times are also
acceptable under this setting.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 27,2020 at 08:23:29 UTC from IEEE Xplore.  Restrictions apply. 



2160 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2015

Fig. 11. Impact of parametric settings on accuracy and iteration times.
(a) and (b) Investigation of η. (c) and (d) Evaluation of K .

2) Choosing K : A suitable graph is very important for
improving the performance. As mentioned above, K is a
critical parameter determining the number of neighborhoods
and the sparsity of an established graph. This section studies
how K influences the classification accuracy and iteration
times. In Fig. 11(c) and (d), we fix η = 0.1 and change
the value of K from small to large. It can be observed that
if the graph is too sparse (e.g., K = 2), FLAP will not
achieve satisfying performance. However, when K is larger
than a certain value (e.g., K = 6), FLAP functions properly
and produces encouraging results. Besides, Fig. 11(d) reveals
that the choice of K will not influence the iteration times
significantly. Therefore, both the accuracy and iteration times
are not sensitive to the choice of K if K is not too small.
In other words, this parameter can be easily tuned.

J. Summary of Experiments

In general, all the compared methods are able to obtain
promising performance on various datasets. Specifically,
statistical tests reveal that FLAP achieves higher classification
accuracy than the other baselines in most cases (Table IV).
Among the iterative baselines including LGC and LNP, LGC
obtains the similar accuracy to FLAP. However, it usu-
ally requires more iteration times than FLAP due to the
irregular distribution of eigenvalues of its iteration matrix
(Figs. 6 and 7). Noniterative methods including HF, MinCut,
and NTK are usually more efficient than FLAP on small-size
datasets, but become very inefficient if the size of dataset is
relatively large (see Table V). MinCut and HF perform compa-
rably to FLAP (Figs. 6–9) because all of them share the same
innovation, i.e., exploring the manifold embedded in datasets.

V. CONCLUSION

We presented the FLAP algorithm to propagate labels for
SSL by adopting Fick’s First Law of Diffusion in fluid
mechanics. We showed FLAP can also be derived in the
context of the traditional regularization theory, which not only

relates the FLAP algorithm to existing algorithms but also
implies that the convergent point of FLAP is globally optimal.
It was also demonstrated that the parameter η played an
important role in determining classification performance and
iteration times. Comprehensive experimental results suggest
that FLAP obtains competitive performance when compared
with state-of-the-art SSL algorithms.

Similar to most label propagation algorithms, it is not
computationally tractable to straightforwardly apply FLAP to
big data problems. This is because the complexity of graph
construction is O(n3). However, recent development of hyper-
graph techniques, such as [24] and [29], can be employed to
address this problem.

APPENDIX A
PROOF OF THEOREM 1

Proof: According to Theorem 2, the sequence
{

F(t)
}

con-
verges to

F∗ = (1 − α)(I − αP)−1Y. (48)

By plugging (19) into (48), F∗ can be represented as

F∗ = (1 − α)[I + αU(
−1 − αI)
−1

UT ]Y
= Udiag

(

1−α
1−αλ1

1−α
1−αλ2

· · · 1−α
1−αλn

)

UT Y. (49)

According to Theorem 5 and Lemma 6, all the eigenvalues
λ1, λ2, . . . , λn are in the range [1 − 2η, 1] where η is set to a
very small number as suggested. Therefore, if we denote � =
diag (1 − α/1 − αλ11 − α/1 − αλ2 · · · 1 − α/1 − αλn)1/2,
then the upper bound of the relative error between � and I is

‖� − I‖F

‖�‖F
=
√

√

√

√

n
∑

i=1

[

(λi − 1)α

1 − αλi

]2/ n
∑

i=1

(

1 − α

1 − αλi

)2

≤ 2ηα

1 − α
. (50)

Note that the value of the right hand in above inequality is
very small because of the small η, so (50) reveals that � is
very close to the identity matrix I, hence F∗ in (49) can be
reformulated as

F∗ ≈ UIUT Y = Y (51)

which indicates that F∗ is very similar to the initial state Y.
Therefore, the labels of labeled examples are considered as
unchanged.

APPENDIX B
PROOF OF LEMMA 4

Proof: Suppose the general iterative expression of graph-
based SSL is

F(t+1) = αGF(t) + (1 − α)Y (52)

where G is the iteration matrix, then according to the stopping
criterion

‖F(t+1) − F(t)‖F < ε (53)
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we have the following inequality:
‖F(t+1) − F(t)‖F = αt+1‖(G − I)Gt Y‖F

≤ αt+1‖(G − I)Gt‖F‖Y‖F ≤ ε (54)

where ‖Y‖F = √
l. Similarly, G can also be decomposed

into G = VDVT , where V is an unitary matrix and
D = diag(ξ1, ξ2, . . . , ξn) is a diagonal matrix containing
n eigenvalues of G. If V is partitioned by columns as
V = (V1 V2 · · · Vn), then G = ∑n

i=1 ξi Vi VT
i . Moreover,

considering that the identity matrix I = VVT =∑n
i=1 Vi VT

i ,
we have

‖(G − I)Gt‖F =
∥

∥

∥

∥

∥

(

n
∑

i=1

ξi Vi VT
i − I

)(

n
∑

i=1

λt
i Vi VT

i

)∥

∥

∥

∥

∥

F

=
√

√

√

√

n
∑

i=1

ξ2t
i (ξi − 1)2tr(Vi VT

i ). (55)

Because ‖Vi‖2 = 1, so tr(Vi VT
i ) = 1 for 1 ≤ i ≤ n.

Hence (55) can be further simplified as

∥

∥(G − I)Gt
∥

∥

F =
√

√

√

√

n
∑

i=1

ξ2t
i (ξi − 1)2. (56)

Finally, by substituting (56) into (54) we have
n
∑

i=1

(αξi )
2tmax(ξi − 1)2 = ε2

lα2 . (57)

This reveals the relationship between the upper bound of iter-
ation times tmax and the eigenvalues of the iteration matrix G.
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