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A Regularization Approach for Instance-Based
Superset Label Learning

Chen Gong, Tongliang Liu, Yuanyan Tang, Fellow, IEEE, Jian Yang, Jie Yang, and Dacheng Tao, Fellow, IEEE

Abstract—Different from the traditional supervised learning
in which each training example has only one explicit label,
superset label learning (SLL) refers to the problem that a train-
ing example can be associated with a set of candidate labels,
and only one of them is correct. Existing SLL methods are
either regularization-based or instance-based, and the latter of
which has achieved state-of-the-art performance. This is because
the latest instance-based methods contain an explicit disam-
biguation operation that accurately picks up the groundtruth
label of each training example from its ambiguous candidate
labels. However, such disambiguation operation does not fully
consider the mutually exclusive relationship among different
candidate labels, so the disambiguated labels are usually gen-
erated in a nondiscriminative way, which is unfavorable for the
instance-based methods to obtain satisfactory performance. To
address this defect, we develop a novel regularization approach
for instance-based superset label (RegISL) learning so that
our instance-based method also inherits the good discrimina-
tive ability possessed by the regularization scheme. Specifically,
we employ a graph to represent the training set, and require
the examples that are adjacent on the graph to obtain similar
labels. More importantly, a discrimination term is proposed to
enlarge the gap of values between possible labels and unlikely
labels for every training example. As a result, the intrinsic con-
straints among different candidate labels are deployed, and the
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disambiguated labels generated by RegISL are more discrimina-
tive and accurate than those output by existing instance-based
algorithms. The experimental results on various tasks convinc-
ingly demonstrate the superiority of our RegISL to other typical
SLL methods in terms of both training accuracy and test
accuracy.

Index Terms—Concave convex procedure (CCCP), disam-
biguation, regularization, superset label learning (SLL).

I. INTRODUCTION

N SUPERSET label learning (SLL), one training exam-
Iple can be ambiguously labeled with multiple candidate
labels, among which only one is correct. This is different from
the conventional supervised classification which works on the
training examples with each of them only has one explicit
label.

SLL has a variety of applications. For example, an episode
of a video or TV serial may contain several characters chatting
with each other, and their faces may appear simultaneously in
a screenshot. We also have access to the scripts and dialogues
indicating the characters’ names. However, these information
only reveals who are in the given screenshot, but does not
build the specific one-to-one correspondence between the char-
acters’ faces and the appeared names. Therefore, each face
in the screenshot is ambiguously named, and our target is to
determine the groundtruth name of each face in the screen shot
[see Fig. 1(a)]. Another similar application is that in a pho-
tograph collection, such as newsletters or family album, each
photo may be annotated with a description indicating who are
in this photo. However, the detailed identity of each person
in the photo is not specified, so matching the persons with
their real names is useful [see Fig. 1(b)]. SLL problem also
arises in crowdsourcing, in which each example (image or text)
is probably assigned multiple labels by different annotators.
Nevertheless, some of the labels may be incorrect or biased
because of the difference among various annotators in terms of
expertise or cultural background, so it is necessary to find the
most suitable label of every example resided in the candidate
labels [see Fig. 1(c)]. In above applications, manually labeling
the groundtruth label of each example will incur unaffordable
monetary or time cost, so SLL can be an ideal tool for tackling
such problems with ambiguously labeled examples.

SLL [1] is also known as “partial label learning” [2]—[4]
and “ambiguously label learning” [5], [6]. For the consistency
of our presentation, we will use the term SLL throughout
this paper. SLL is formally defined as follows. Suppose we
have n training examples X = {x1,x2,...,X,} € R4 with
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KATE?
CHARLIE?

Vladimir Putin?
Barack Obama?

KATE: May | ask you something?
CHARLIE: Me? I'd be thrilled. I've been waiting.

September 28, 2015.

(@) (b)

Fig. 1.

Russia’s President Vladimir Putin and U.S. President Barack
Obama shake hands at a meeting after the 70th session of
the United Nations General Assembly in New York on
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Vladimir Putin?
A Barack Obama?

2 i

Annotator 1: Cow
Annotator 2: Deer
Annotator 3: Elk

(©)

Some example applications of SLL. (a) Screenshot of “Lost” TV serial (Season 1), in which three characters’ faces are detected. From the scripts

provided below, we can infer that both Kate and Charlie appear in this screenshot. However, it still remains unclear that which face corresponds to Kate and
which face belongs to Charlie. (b) News image and its description from the news website “http://fox17online.com/.” From the textual description we know
that these two people are Vladimir Putin and Barack Obama. However, which face corresponds to Vladimir Putin or Barack Obama is not clearly indicated.
(c) Image of elk, which is an animal very similar to both cow and deer. In the application of crowdsourcing, the involved annotators may have different levels
of expertise, so different labels are possibly provided by the different annotators, which can be either correct or incorrect.

dimensionality d, and their candidate labels are recorded by
n label sets S, S, ..., Sy, respectively. Therefore, the entire
candidate label space consisted of ¢ possible class labels has
the size 2¢. Besides, we assume that the groundtruth labels
of these n training examples are yi, y2,...,y, with y; € &;
(i = 1,2,...,n), whereas they are unknown to the learn-
ing algorithms. Therefore, given the output label set denoted
by Y = {1,2,...,c}, the target of an SLL algorithm is to
build a classifier f based on X so that it can accurately
predict the single unambiguous label y; € ) of an unseen test
example x;.

A. Related Work

To the best of our knowledge, the concept of SLL was first
proposed by Grandvalet [7], who elegantly adapts the tradi-
tional logistic regression to superset label cases. After that,
there are mainly two threads for tackling the SLL problem:
1) regularization-based models and 2) instance-based models.

1) Regularization-Based Models:  Regularization-based
models try to achieve maximum margin effect by developing
various loss functions. For example, Jin and Ghahramani [§]
first assumed that every element in the candidate set S;
(i=1,2,...,n) has equal probability to be the correct label,
and designs a “naive” superset label loss. Next, considering
that it is inappropriate to treat all the candidate labels equally,
they further propose to disambiguate the candidate labels,
i.e., directly discovering each example’s groundtruth label
from its multiple candidate labels, so that a discriminative
loglinear model can be built. Besides, Cour et al. [2], [9]
held that the above naive loss is loose compared to the
real superset label 0-1 loss Lo (f(x;), Si) = 1[f(x;) ¢ St
so they propose another novel surrogate loss that is a
tighter approximation to the real 0-1 loss than the naive
loss. To be specific, this loss function is formulated as

LU, S) = WIA/ISD Ljes fix)] + Ljs, VI

IThe operation “L[-]” returns 1 if the argument within the bracket holds
true, and O otherwise.

where W[-] can be hinge, exponential or logistic loss. Here,
the first term computes the mean value of the scores f(x;) of
the labels in S;. However, this averaging strategy has a critical
shortcoming that its effectiveness can be largely decreased by
the false positive label(s) S; — y; in the candidate label set S;.
As a result, the training process will be dominated by these
false positive labels and the final model output can be biased.
Therefore, Nguyen and Caruana [10] developed the superset
label hinge loss that maximizes the margin between the max-
imum model output among candidate labels and that among
the remaining noncandidate labels, namely L(f(x;),S;) =

max(0, 1 — [maxy,es, f(Xi,yii @) — maxygs, /(5. Vi )
where @ is the model parameter. Differently,
Hiillermeier and Cheng [11] proposed a generalized

loss with its expression L(f(x;),S;) = minycs, W[y, f(x;)],
where W[-] represents the logistic loss. However, above two
formulations do not discriminate the groundtruth label y;
from other candidate labels. Therefore, Yu and Zhang [4]
devised a new SLL maximum margin formulation based
on support vector machines (SVMs) which directly
maximizes the margin between the groundtruth label
and all other labels. The corresponding loss function is
L(fx),S) = fx,yi; ) — maxy#yif(x,-,y;; w). Different
from above methods that only assume that one example is
associated with a set of candidate labels, Jie and Orabona [12]
considered a generalized setting in which each training exam-
ple is a bag containing multiple instances and is associated
with a set of candidate label vectors. Each label vector
encodes the possible labels for the instances in the bag, and
only one of them is fully correct.

For the theoretical aspect, Cid-Sueiro [13] studied the
general necessary and sufficient condition for designing
an SLL loss function, and provide a detailed procedure
to construct a proper SLL loss under practical situations.
Cid-Sueiro e al. [14] also revealed that the consistency of
loss functions depends on the mixing matrix, which refers
to the transition matrix relating the candidate labels and the
groundtruth label. More generally, Liu and Dietterich [15]
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discussed the learnability of regularization-based SLL
approaches, and reveal that the key to achieving learnability is
that the expected classification error of any hypothesis in the
space can be bounded by the superset label 0-1 loss averaged
over the entire training set.

Other representative regularization-based SLL algorithms
include [6], [16], [17] that utilize coding theory, [1] that
employs the conditional multinomial mixture model, and [18]
that leverages the low-rank assumption [19], [20] to capture
the example-label correspondences.

2) Instance-Based Models: Instance-based models usually
construct a nonparametric classifier on the training set, and
the candidate label set of a training example can be either
disambiguated or kept ambiguous as it originally presents.
Hiillermeier and Beringer [5] proposed a series of nonpara-
metric models, such as superset label K-nearest neighborhood
classifier and decision tree. The models in [5] do not have a
disambiguation operation and directly use the ambiguous label
sets for training and testing. Differently, Zhang and Yu [3] pro-
posed an iterative label propagation scheme to disambiguate
the candidate labels of training examples. Furthermore, consid-
ering that the disambiguation process in current methods sim-
ply focuses on manipulating the label space, Zhang et al. [21]
advocated making full use of the manifold information [22]
embedded in the feature space, and propose a feature-aware
disambiguation.

B. Our Motivation

Although the method proposed in [3] generally obtains the
best performance among all existing SLL algorithms, it still
suffers from several drawbacks. First, as an instance-based
method, it falls short of discovering the mutually exclusive
relationship among different candidate labels, and does not
take specific measures to highlight the potential groundtruth
label during the disambiguation process. Second, as an iter-
ative algorithm, the convergence property of the propagation
sequence is only empirically illustrated and does not have a
theoretical guarantee.

To address above two shortcomings, we propose a regu-
larization approach for instance-based superset label learning,
and termed it as “RegISL.” The advantages of our RegISL are
twofold: first, to make the disambiguated labels discrimina-
tive, we design a proper discrimination regularizer along with
the related constraints to increase the gap of scores between
possible candidate labels and unlikely candidate labels. As a
result, the potential groundtruth labels will become prominent,
whereas the unlikely labels will be suppressed. Second, to
avoid the convergence problem of iterative algorithm like [3],
we solve the designed optimization problem via the augmented
Lagrangian multiplier (ALM) method [23], [24] which will
always finds a stationary solution. Besides, due to the non-
convexity of the augmented Lagrangian objective function, we
show that it can be decomposed as the difference of two con-
vex components and then minimized by the concave convex
procedure (CCCP) [25].

We empirically test our RegISL and other representa-
tive SLL methodologies [1]-[5], [17] on various practical
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Fig. 2. Tllustration of graph G = (V, £), where in this example the seven
circles represent the node set V = {xq,Xxa, ..., x7}, and the lines connecting
them constitute the edge set € = {Wyp, W3, ..., We7}. The edge weights
Wi Lk=1,2,..., 7) are indicated besides the edges in blue color.

applications, such as character-name association in TV show,
ambiguous image classification, automatic face naming in
news images, and bird sound classification. The experimen-
tal results suggest that in most cases the proposed RegISL is
able to outperform other competing baselines in terms of both
training accuracy and test accuracy.

II. MODEL DESCRIPTION

This section introduces our nonparametric instance-based
method RegISL. In the training stage (Section II-A), a graph
G = (V,€&) is established on the training set to capture the
relationship between pairs of training examples, where V is
the node set representing all n training examples and & is
the edge set encoding the similarities between these nodes
(see Fig. 2). In this paper, two examples x; and x; are linked
by an edge in G if one of them belongs to the K nearest
neighbors of the other one, and the edge weight (i.e., the sim-
ilarity between x; and x;) is computed by the Gaussian kernel
function [26], [27]

lIx; — x|?
Wi = exp(—‘zT) (1)

where 6 denotes the kernel width. In contrast, Wy is set to
0 if there is no edge between x; and xi. After that, a reg-
ularized objective function is built on G, which is able to
disambiguate the candidate labels and discover the unique real
label of every training example. In the test stage (Section II-B),
the test example X, is assigned label y; (y; takes a value from
1,2,...,c with ¢ being the total number of classes) based
on the disambiguated labels of its K nearest neighbors in the
training set.

A. Training Stage

For our instance-based RegISL, the main target of training
stage is to pick up the real label y; of each training example
x; from its candidate label set S;. The established graph G can
be quantified by the adjacency matrix W, where its (7, k)th
element is Wy if i # k and O otherwise [28], [29].

Similar to [3], the candidate labels of a training example
x; (i takes a value from 1,2,...,n) is represented by a c-
dimensional label vector Y;, which is

Y. 1/]1S;l, x; has the candidate label j
Y00, otherwise

2)

where |S;| denotes the size of set S;. Note that the sum of all
the elements in every Y; is 1 according to the definition of (2).
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Furthermore, we use the vectors Fi,F,, ..., F, € RI*¢ to
record the obtained labels of training examples X1, X3, .. ., Xy,
respectively, in which F;; can be understood as the probability
of x; belonging to the class j, then our regularization model
for RegISL can be expressed as

non n
% DD WilEi—Fl3 +a ) Y (F-Yy)’

i=1 k=1 i=1 jeQ;
n
2
- B IFill3
i=1

c
st. Y Fy=1 F;>0, Vi=12...n 3)
j=1

min
Flv“aFll

In (3), the set €2; includes the subscripts of zero elements in
Y;, “||-ll2” computes the I, norm of the vector, and « and 8
are non-negative tradeoff parameters controlling the relative
weights of the three terms in the objective function.

The first term in the objective function of (3) is called
smoothness term, which requires the two examples connected
by a strong edge (i.e., the edge weight is large) in G to obtain
similar labels [28], [30], [31], so minimizing this smooth-
ness term will force F; to get close to Fy if Wy is large.
The second term is called fidelity term, which suggests that
if x;’s candidate label set S; does not contain the label j
(i.e., Y;; = 0), then the jth element in the finally obtained
label vector F; should also be zero. Although there are many
other ways to character the difference between F; and Y,
here we simply adopt the quadratic form as it is perhaps the
simplest way to compare F;; and Y;;. This form has also been
widely used by many semi-supervised learning methodologies,
such as [30], [32], and [33]. The third discrimination term
along with the normalization constraint ) ;_, F;; = 1 and non-
negative constraint F;; > 0, critically makes the obtained F;
to be discriminative. That is to say, by requiring the elements
in F; non-negative and summing up to 1, minimizing —||F,-||%
(i.e., maximizing ||F,~||%) will widen the gap of values between
possible labels and unlikely labels of x;, and thus yielding dis-
criminative and confident label vector F;. The detailed reasons
are explained as follows.

Suppose that we are dealing with a binary classification
problem (i.e., ¢ = 2), and the label vector of example
x; is F; = [F;;,Fp]. If x; is initially associated with the
ambiguous candidate labels 1 and 2 (i.e., Y; = [0.5,0.5]),
we hope that the finally obtained F; can approach to [1, 0]
or [0, 1], which confidently implies that x; belongs to the
first or second class. In contrast, the output close to F; =
[0.5,0.5] is not encouraged because such F; does not con-
vey any information for deciding x;’s real label. To this
end, we impose the non-negative and normalization con-
strains on F; as in (3), then its elements F;; and Fjp
will only select the values along the red line in Fig. 3.
Furthermore, we take the red line as x-axis and plot the
squared /> norm of F; under different F;; and F;; (see
the blue curve). It can be clearly observed that ||Fi||% hits
the lowest value when both F;; and F; are equal to 0.5,
and ||Fl~||% gradually increases when [F;;, Fj»] approaches to
[0, 1] or [1,0]. Therefore, the label vector F; with large
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Fig. 3.  Motivation of our introduced discrimination term along with the
non-negative and normalization constraints. Suppose the example x;’s label
vector is F; = [F;1, Fj»], then the valid outputs of F; satisfying the constrains
in (3) are on the red line F;; + F» = 1 (F;; > 0, Fjp > 0). Taking this
red curve as x-axis and (0.5, 0.5) as original point, the value of ||Fi||% with
varying F;; and F;; is recorded by the blue curve. We observe that the smallest
||Fi||% corresponds to the most ambiguous label vector [0.5, 0.5], while ||F,'||%
becomes large when F; = [F;j, Fjp] gets close to the discriminative results
[1,0] and [O, 1].

norm is encouraged by the discrimination term in (3), so
that the obtained F; prefers definite results [0, 1] or [1, 0]
and meanwhile avoids the ambiguous outputs that are close
to [0.5, 0.5].

For ease of optimizing (3), we may reformulate it into a
compact formation. Based on G’s adjacency matrix W, we
further define a diagonal degree matrix D with the ith diag-
onal element representing x;’s degree computed by D; =
Z]’-’: | Wi;. Therefore, a positive semi-definite graph Laplacian
matrix can be calculated as L = D — W. Besides, we stack
the row vectors Y;,Y2,..., Y, a8 Y = (YT, Y;, e, Y,T)T
to establish a n x ¢ candidate label matrix Y. Similarly,
the label matrix F to be optimized is established by F =
(FT, F;r, A FnT)T. Furthermore, by defining 1., 1,, and O,
as the c-dimensional all-one vector, n-dimensional all-one vec-
tor, and n x c-dimensional all-zero matrix, respectively, (3) can
be rewritten as

min w(FTLF) +o[HO (F - V)| - BIFI}

st. F1. =1,, F > O,x,. “4)

In (4), “||-||F” computes the Frobenius norm of corresponding
matrix, and “®” refers to the elementwise product. H is a
{0, 1}-binary matrix with the element H;; = 1 if Y; = 0 and
0 otherwise.

Since (4) is a constrained optimization problem, we may use
the method of ALM to find its solution. Compared to the tradi-
tional Lagrangian method, ALM adds an additional quadratic
penalty function to the objective, which leads to faster conver-
gence rate and lower computational cost [34]. Therefore, by
introducing the multipliers A1 and A» to deal with the non-
negative constraint and normalization constraint, respectively,
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the augmented Lagrangian function is expressed as

J(E, Ay, Ay, o) = tr(FTLF) +aHO (F-Y)|?
1
—ﬂmw%+§—u@ﬂﬁd—ATAQ
o

o
— AJ (F1, —1,) + SIIF1, LI3  ®)

where M = max{O,x., A1 —oF} is an auxiliary variable that
enforces the obtained optimal F (i.e., F*) to be non-negative.
The operation “max(A, B)” returns a matrix with its (i, j)th
element being the largest element between A;; and B;. The
variable o > 0 is the penalty coefficient.

Based on (5), the optimal solution of (4) can be obtained
by alternately updating F, A, A», and o, among which Aj,
Ay, and o can be easily updated via the conventional rules of
ALM, namely

Ay = max{Opxc, Ay — oF} (6)
Ay =Ny —o(F-1.—1,) (7
o= min{,oa, 108}. (8)

In (8), the operation “min” selects the smallest value in the
bracket, and p = 1.1 is the parameter that makes o gradually
increase in each loop so that the normalization constraint can
be finally satisfied.

However, the updating of F is difficult because (5) regard-
ing F is nonconvex due to the nonpositive term —ﬂ||F|I%.
Therefore, we use the method of CCCP proposed by
Yuille and Rangarajan [25] to update F. CCCP can be regarded
as a majorization-minimization algorithm [35] that solves
the original nonconvex problem as a sequence of convex
programming. Specifically, the main idea of CCCP is to
decompose the nonconvex objective function J(F) as the dif-
ference of two convex functions Jy(F) and J>(F), namely
J(F) = J1(F) — Jo(F); and in each iteration J>(F) is replaced
by its first order Taylor approximation J>(F), and the origi-
nal objective function J(F) is then approximated by the convex
J(F) = J;(F) —J»(F). Theoretical analyses suggest that CCCP
is always able to converge to a local minima [36]. In our case,
we choose the two convex functions J; (F) and J,(F) as

Ji(F) = w(FTLF) + «|[HO (F - Y)|
+ (MM — A Ay) — A (F1. — 1,)
+ SIFL — 1,3

L (F) = BIIFII7.

Therefore, in the rth iteration we may linearize J,(F) at F®
via Taylor approximation, and obtain LH(F) =8 [||F(’)||127 +
2tr(FOT(F — F®))]. As a result, the approximated objective
function J(F) for updating F is

J(F) = J1(F) — J»(F)
- tr(FTLF> +a|HO F-Y)|>

1
+ —tr(MTM - AlTAl)
20
o
— Ay (F1.— 1,) + S IIF1, 1,3

_ B [HF(’) i + 2tr<F(’>T(F - F(’)>>]. ©)
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Algorithm 1 CCCP for Minimizing (5)

1: Input: initial F©; stopping criteria 4y = 20, €9 = 107°
2: Setr=0;

3: repeat

4 Minimizing J(F) in Eq. (9) via GD;

5 t:= t+1;

6: until t = t,,,, or ||F(’) — FU=D ||F < ¢

7: Output: F that minimizes Eq. (5)

Algorithm 2 ALM for Optimizing (4)

1: Input: training examples X = {xi, ..., X,} with ambigu-
ous label sets Sy, ..., Sy; tuning parameters «, 8, K, 6;
stopping criteria loopy,, = 40, €1 = 10~*

2: Construct KNN graph G, compute the graph Laplacian
matrix L;

3: Compute Y via Eq. (2);

4: Set loop = 0;

5: repeat

6:  Update F via CCCP in Algorithm 1;
7.
8
9

Update A via Eq. (6);
Update A, via Eq. (7);
. Update o via Eq. (8);
10:.  loop = loop + 1;
11: until loop = 100pyqy or |FUooP) — Flloor=h ||F <€
12: Output: optimal F* that minimizes Eq. (4)

In this paper, we employ the well-known gradient descent
(GD) method to ~ﬁnd the optimal F that minimizes (9), in which
the gradient of J(F) with respect to F is computed as

VI(F) =2LF +22[HO (F— Y)] - M — Ay - 1]

+ o(Fl, —1,) - 1] —28F® (10)
and the updating rule for GD is subsequently F := F—t VJ(F)
with t being the stepsize. The detailed CCCP for updating F
in each loop is provided in Algorithm 1, and the entire ALM
optimization process for finding (4)’s solution F* is summa-
rized in Algorithm 2. It can be easily verified that the objective
function and constraints in (4) are twice continuously differ-
entiable, therefore according to [37] the convergence of the
ALM process is theoretically guaranteed. Based on F*, every

training example x; (i = 1,2, ..., n) will receive its unique
valid label as y; = arg max;_jo F7, and the corresponding

disambiguated label vector is F; with f,-j =1lifj=y;and 0
otherwise.

B. Test Stage

Given the disambiguated labels F|,F,,...,F, of the n
training examples, we predict the label y, of a test example
X; via two steps. First, we find the x;’s K nearest training
examples {Xk[},K: , in the Euclidean space, and compute the
similarity between x; and {x;,}X | (i.e., {Wy}X ) via (1). The
disambiguated labels of these K training examples are denoted
by {Fki}ll(z 1- Second, a soft label vector F; is calculated as the
weighted sum of {Fk,-},K: by F; = ZlK: | W, Fy., and x;’s label
is finally decided as y, = argmax;_; , . Fj.
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TABLE I
SUMMARY OF THE ADOPTED DATASETS

# Examples # Features # Classes Average # labels Application
Lost 1122 512 16 2.23 Character-name association in TV Serial
MSRCv2 591 512 23 1.71 Ambiguous image classification
Soccer Player 17472 279 171 2.09 Automatic face naming in news images
Bird Song 4998 38 13 2.18 Bird sound classification

III. EXPERIMENTAL RESULTS

In this section, we compare the performances of our pro-
posed RegISL with several existing typical SLL methods
on various practical applications, such as character-name
association in TV show, ambiguous image -classification,
automatic face naming in news images, and bird sound
classification.

A variety of methods belonging to different threads men-
tioned in the introduction (Section I-A) serve as baselines for
our comparison, which include the following.

1) Regularization-Based — Methods: ~ The  compared
approaches include SVM-like methodologies max-
imum margin SLL (M3SL) [4], convex loss for
superset labels (CLSL) [2] and its simplified version
with the naive loss (CLSL_Naive) proposed in [8];
coding theory-based methodology error-correcting
output codes (ECOC) [17]; and probability-based
logistic stick-breaking conditional multinomial model
(LSB-CMM) [1]. Note that another typical SVM-like
method [10] is not compared because its accuracy
is consistently lower than the latest M3SL with a
considerable margin as reported in [4].

2) Instance-Based Methods: The compared approaches
include the traditional superset label KNN (SLKNN) [5],
and the state-of-the-art method instance-based
SLL (ISL) [3].

For fair comparison, all the above baselines except SLKNN
are implemented by using the codes directly provided by the
authors. Although the code of SLKNN is not publicly avail-
able, it is very easy to reproduce and we implement this
algorithm by ourselves.

In each of the experiments below, we randomly split the
dataset into five nonoverlapped folds, and conduct the fivefold
cross validation on all the compared methods. In each parti-
tion, 80% examples with their ambiguous labels constitute the
training set, and the rest 20% examples are used for testing.
Note that in each partition we keep the ratio of the number
of examples from each class in the training set approximately
identical to that in the test set. The partitions are also kept
identical for all the compared methods. The mean training
accuracy and test accuracy averaged over the five different par-
titions are calculated to assess the classification ability of all
the competing algorithms. Besides, we also use the Friedman
test [38] with 90% confidence level to investigate whether
the proposed RegISL is significantly superior/inferior to the
adopted baselines.

A. Character-Name Association in TV Serial

As mentioned in Section I, it is meaningful to study how to
build the one-to-one correspondence between each character
appeared in the video and the real name indicated by the script.
To this end, we use the Lost dataset provided in [2] and [9]
to associate the characters in the TV serial Lost with their
groundtruth names. This dataset contains totally 1122 regis-
tered face images across 16 characters, and each character has
18-204 images. Given a scene, each of the appeared faces cor-
responds to an example and it is ambiguously labeled by all
the names in the aligned script. The average amount of can-
didate labels for a single example in this dataset is 2.23. In
our experiment, we resize every face image to 30 x 20 pixels
which is further characterized by a 512-dimensional GIST fea-
ture [39]. Please refer to Table I for the details of the adopted
datasets.

The regularization parameter C in both CLSL and
CLSL_Naive is set to the default optimal value 1000. The
maximum value for regularization parameter Cpax in M3SL
is set to 0.01 as recommended by Yu and Zhang [4]. The opti-
mization problems in M3SL are efficiently solved by utilizing
the off-the-shelf solvers LIBLINEAR [40] and CVX [41]. In
ECOC, the codeword length L is adaptively determined as
L = 100 x log,(c)], where “[-]” rounds up the inside value
to the nearest integer, and c is the number of classes as defined
in Section I. The inherited SVM utilizes the RBF kernel with
the width y = 0.5, and the regularization parameter is C = 5.
In LSB-CMM, the number of mixture components is 10, and
the parameter for the involved Dirichlet prior is @ = 0.05 [1].
The balancing parameter « in the iteration expression of ISL
is set to 0.9 according to [3]. For fair comparison, the num-
ber of neighbors K in ISL, SLKNN and RegISL is set to the
same value 5. In this paper, the two tradeoff parameters o
and B in RegISL are tuned to 1000 and 0.01, respectively.
In Section III-F, we will study the sensitivity of these two
parameters and also explain why we set @ and B to these
values.

The training accuracy and test accuracy obtained by all the
algorithms are presented in Table II, in which the highest and
second highest records are highlighted in red and blue color,
respectively. Because SLKNN is a lazy learning algorithm that
does not have a training process, its training accuracy is incom-
putable and thus is not reported. From Table II, we have some
interesting findings.

First, the disambiguation operation mentioned in Section I is
critical to improve the performance. We observe that SLKNN
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TABLE 11
EXPERIMENTAL RESULTS ON Lost DATASET. EACH RECORD REPRESENTS
“MEAN ACCURACY + STANDARD DEVIATION.” THE BEST AND SECOND
BEST RECORDS ARE MARKED IN RED AND BLUE, RESPECTIVELY.
“/(x)” INDICATES THAT REGISL IS SIGNIFICANTLY BETTER
(WORSE) THAN THE CORRESPONDING METHOD

Training Accuracy Test Accuracy

CLSL [2] 0.785 + 0.016 /  0.701 =+ 0.030 /
CLSL_Naive [2] 0.734 + 0.017 \/  0.663 + 0.018 \/
ISL [3] 0.821 + 0.018 y/  0.708 + 0.032

M3SL [4] 0.742 + 0.005 \/  0.668 =+ 0.028 \/
ECOC [17] 0.728 + 0.013 \/  0.659 + 0.036 \/
LSB-CMM [1]  0.782 + 0.024 \/  0.692 + 0.021 /
SLKNN [5] - 0.603 = 0.020 \/
RegISL 0.852 + 0.011 0.726 + 0.026
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Fig. 4. Example images of the MSRCv2 dataset. The labels of segmented
regions are regarded as the candidate labels of the entire image (see the labels
below the images), in which the label of the most dominant region is deter-
mined as the unique groundtruth label of the corresponding image, such as

and ECOC obtain the lowest test accuracy because they do
not contain such disambiguation operation, so the noisy can-
didate labels of the training examples may impair the training
quality and also decrease the test accuracy. CLSL generates
higher training accuracy and test accuracy than CLSL_Naive
because CLSL improves CLSL_Naive by not equally treat-
ing all the candidate labels any more. Therefore, CLSL pays
more attention to the true positive labels of training examples
than CLSL_Naive during the training stage and produces more
satisfactory performance.

Second, the regularization technique adopted by our RegISL
enhances the quality of existing disambiguation operation.
Table II clearly shows that the proposed RegISL achieves
the best performance among all the comparators. The aver-
aged training accuracy and test accuracy are 0.852 and 0.726,
respectively. Comparatively, another state-of-the-art instance-
based method ISL performs slightly worse than RegISL, which
suggests that introducing regularization to ISL helps to boost
the classification accuracy. We think that two factors consid-
ered by (3) contribute to the improved performance: one is
the smoothness term that models the label similarity between
different examples on the graph, and the other one is the dis-
crimination term that highlights the most likely labels from
all the possible candidate labels for every training example.
These two factors make the entire disambiguation operation
of RegISL more accurate than ISL, which further brings about
higher training accuracy. Besides, it is straightforward that
a better disambiguated training set containing less incorrect
labels will lead to more encouraging test performance, that
is why our RegISL also obtains the best test accuracy when
compared with other baselines.

B. Ambiguous Image Classification

To test the classification ability of different methods on
ambiguous image classification, we follow [1] and [17] and
use the MSRCv2 dataset for our comparison. This dataset con-
tains 591 natural images with totally 23 classes. Every image
is segmented into several compact regions with specific seman-
tic information, and the labels of segmented regions form the
candidate label set for the entire image. Among the segmented

the labels “cow,” “chair,” “book,” and “airplane” that are marked in red.

TABLE III

EXPERIMENTAL RESULTS ON MSRCv2 DATASET. EACH RECORD
REPRESENTS MEAN ACCURACY £ STANDARD DEVIATION.
THE BEST AND SECOND BEST RECORDS ARE MARKED IN

RED AND BLUE, RESPECTIVELY. /(x) INDICATES
THAT REGISL IS SIGNIFICANTLY BETTER (WORSE)
THAN THE CORRESPONDING METHOD

Training Accuracy

Test Accuracy

CLSL [2] 0.274 £ 0.017 /  0.208 £+ 0.051 /
CLSL_Naive [2] 0.229 + 0.019 / 0.168 &+ 0.047 /
ISL [3] 0.634 + 0.015 /  0.328 4+ 0.043

M3SL [4] 0.398 £+ 0.020 /  0.285 £ 0.025 /
ECOC [17] 0.555 + 0.030 y/  0.251 4+ 0.032 /
LSB-CMM [1] 0.369 + 0.007 /  0.292 £+ 0.027 /
SLKNN [5] - 0.236 + 0.042 /
RegISL 0.697 £ 0.019 0.333 + 0.032

regions, the label of the most dominant region is taken as
the single groundtruth label for the given image (see Fig. 4).
Similar to the experiment on Lost dataset, we also adopt the
512-dimensional GIST feature to represent the images, and
all feature vectors are normalized to unit length for all the
competing methodologies.

The parameter settings of CLSL, CLSL_Naive, M3SL,
ECOC, and LSB-CMM on MSRCv2 are the same with those
on Lost dataset, because they are directly suggested by the
authors. The graph parameters K and 6 for ISL, SLKNN and
RegISL are, respectively, set to 10 and 0.1, where the optimal
K is chosen from the set {5, 10, 15, 20}, and @ is selected from
{0.01, 0.1, 1, 10}.

The experimental results are reported in Table III, which
reveals that all the methods obtain relatively low accuracy.
This is because MSRCv2 dataset is quite challenging for SLL.
First, this dataset is not large, but contains as many as 23
classes (see Table I), so the training examples belonging to
every class are very sparse. Besides, the number of examples
having a certain candidate label ranges from 24 to 184, there-
fore such insufficient and skewed training examples pose a
great difficulty for training a reliable classifier. Second, Fig. 4
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reveals that the images in MSRCv2 are very complex, and the
dominant foreground is often surrounded by the background
regions with false positive labels, which will mislead both the
training and test stages. Although this dataset is quite chal-
lenging, Table III clearly indicates that the proposed RegISL
still outperforms other methods with a noticeable margin in
terms of either training accuracy or test accuracy. Specifically,
it can be observed that RegISL leads the second best method
ISL with the margins roughly 0.06 on training accuracy and
0.005 on test accuracy, which again demonstrate the superior-
ity of our regularization strategy to the existing nonregularized
instance-based model. In contrast, the training accuracy and
test accuracy obtained by the remaining approaches like CLSL,
CLSL_Naive, M3SL, ECOC, LSB-CMM, and SLKNN do not
exceed 0.6 and 0.3, which are much worse than our RegISL.

C. Automatic Face Naming in News Images

It is often the case that in a news collection every image
is accompanied by a short textual description to explain the
content of this image. Such a news image may contain several
faces and the associated description will indicate the names of
the people appeared in this image. However, the further infor-
mation about which face matches which name is not specified.
Therefore, in this section, we use the Soccer Player [18], [42]
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The convergence curves of RegISL on the four adopted datasets. (a) Lost. (b) MSRCv2. (c) Soccer Player. (d) Bird Song.

TABLE IV
EXPERIMENTAL RESULTS ON Soccer Player DATASET. EACH RECORD
REPRESENTS MEAN ACCURACY £ STANDARD DEVIATION. THE HIGHEST
AND SECOND HIGHEST RECORDS ARE MARKED IN RED AND BLUE,
RESPECTIVELY. 4/(x) INDICATES THAT REGISL IS SIGNIFICANTLY
BETTER (WORSE) THAN THE CORRESPONDING METHOD

Training Accuracy Test Accuracy

CLSL [2] 0.654 + 0.005 /  0.371 & 0.004 /
CLSL_Naive [2] 0.648 £ 0.003 /  0.366 & 0.005 /
ISL [3] 0.676 + 0.003 0.538 =+ 0.007

M3SL [4] 0.648 & 0.004 \/  0.473 + 0.005 \/
ECOC [17] 0.681 £ 0.001 0.547 £ 0.004 x
LSB-CMM [1]  0.672 & 0.001 /  0.525 4 0.003 /
SLKNN [5] - 0.501 £ 0.003 \/
RegISL 0.678 + 0.002 0.538 =+ 0.001

dataset to test the classification ability of various methods on
dealing with news data.

The Soccer Player dataset is collected by Zeng et al. [18],
which includes the names and images of soccer players
from famous European football clubs downloaded from the
“http://www.zimbio.com” website. There are totally 8640
images containing 17 472 faces across 1579 names. By follow-
ing [18] and [42], we only retain 170 names that occur at least


http://www.zimbio.com
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Fig. 6. Influence of tuning parameters «, B, and K to the final model output on the four datasets. The first column [(a) and (d)] shows the training accuracy
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and test accuracy obtained by RegISL under different choices of «. The second column [(b) and (e)] presents the variations of training accuracy and test
accuracy with the increase of B. The third column [(c) and (f)] plots the training accuracy and test accuracy under different K.

20 times, and treat the remaining names as “Null” class. As
a consequence, the faces appeared in every image are manu-
ally annotated using the real names from the descriptions or as
Null class. Each face is represented by a 279-dimensional fea-
ture vector describing the 13 interest points (facial landmarks)
detected by [43].

Table IV reports the experimental results, which reflect that
ECOC achieves the best results on this dataset. Regarding
the training accuracy, our RegISL is significantly better than
CLSL, CLSL_Naive, M3SL, LSB-CMN, and comparable to
ISL and ECOC. For test accuracy, RegISL performs favor-
ably to CLSL, CLSL_Naive, M3SL, LSB-CMN, and SLKNN.
However, it is inferior to the results generated by ECOC.
Furthermore, we note that RegISL only falls behind ECOC by
0.003 in training accuracy and 0.009 in test accuracy, and it
also generates the top level performance among the compared
instance-based methods like SLKNN, ISL, and RegISL, so the
performance of RegISL is still acceptable on this dataset.

D. Bird Sound Classification

Briggs et al. [44] established a dataset Bird Song which con-
tains 548 bird sound recordings that last for ten seconds. Each
recording is consisted of 1-40 syllables, leading to totally 4998
syllables included by the dataset. Each syllable is regarded
as an example and is described by a 38-dimensional feature
vector. Since every recording contains the songs produced by
different species of birds, our target is to identify which exam-
ple (i.e., syllable) corresponds to which kind of bird. In this

TABLE V

EXPERIMENTAL RESULTS ON Bird Song DATASET. EACH RECORD
REPRESENTS MEAN ACCURACY £ STANDARD DEVIATION. THE
BEST AND SECOND BEST RESULTS ARE MARKED IN RED
AND BLUE, RESPECTIVELY. 4/(X) INDICATES THAT
REGISL IS SIGNIFICANTLY BETTER (WORSE)

THAN THE CORRESPONDING METHOD

Training Accuracy

Test Accuracy

CLSL [2] 0.615 £ 0.003 /  0.414 £+ 0.004 /
CLSL_Naive [2] 0.613 + 0.001 \/  0.414 £+ 0.003 /
ISL [3] 0.736 + 0.004 /  0.559 £ 0.011 /
M3SL [4] 0.658 £ 0.048 /  0.478 £ 0.036 /
ECOC [17] 0.361 + 0.013 y/  0.359 £+ 0.015 /
LSB-CMM [1] 0.663 £+ 0.006 /  0.482 £+ 0.022 /
SLKNN [5] - 0.552 4+ 0.009 +/
RegISL 0.766 £ 0.008 0.583 £ 0.002

dataset, the bird species appeared in every record are manu-
ally annotated, so they serve as the candidate labels for all the
syllables inside this recording.

The number of neighbors K for ISL, SLKNN and our
RegISL is set to 10, and the kernel width 6 in (1) is tuned
to 1 to achieve the best performance. The tradeoff param-
eters o« and B are adjusted to 1000 and 0.01 as mentioned
in Section III-A. We present the training accuracy and test
accuracy of all the compared methods in Table V. A notable
fact revealed by Table V is that the instance-based methods
(e.g., SLKNN, ISL, and RegISL) generate better performance
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than the regularization-based methodologies such as CLPL,
CLPL_Naive, M3PL, LSB-CMM, and ECOC. Among the
three instance-based methods, ISL and SLKNN have already
achieved very encouraging performances. However, our pro-
posed ReglISL can still improve their performances with a
noticeable margin regarding either training accuracy or test
accuracy. Therefore, the effectiveness of RegISL is demon-
strated, which again suggests that integrating the regularization
technique with the instance-based framework is beneficial to
achieving the improved performance.

E. Illustration of Convergence

In Section II, we explained that the iteration process of
ALM in our algorithm will converge to a stationary point.
Here, we present the convergence curves of RegISL on the
adopted four datasets, including Lost, MSRCv2, Soccer Player,
and Bird Song. In Fig. 5, the difference of the optimization
variable F between successive loops is particularly evaluated.
We observe that the value of [[FUoP) — FUoop=D, oraduy-
ally vanishes when the loops proceed, and the ALM process
usually reaches the convergent point between the 13th—40th
loop. Therefore, the convergence of the optimization process
employed by our RegISL is demonstrated.

F. Effect of Tuning Parameters

The tradeoff parameters o and B8 in (3), and the number of
neighbors K are three key tuning parameters in our RegISL
model. They should be manually adjusted before implement-
ing the proposed algorithm. Therefore, this section investigates
how their variations influence the training accuracy and test
accuracy produced by RegISL. The four datasets appeared in
Sections III-A-III-D are used here for our experiments.

In every dataset, we investigate the effects of «, 8, and K
on the model output by fixing two of them and then examining
the classification accuracy with respect to the change of the
remaining one. From the experimental results shown in Fig. 6,
we see that the performance of RegISL is generally not sensi-
tive to the choices of these three parameters. In other words,
the involved parameters can be easily tuned to achieve sat-
isfactory performance. Specifically, we observe that in most
cases ReglISL hits the highest accuracy on the four datasets
when o = 1000 and g = 0.01, therefore we use this param-
eter setting for all the experiments in Sections III-A-III-D.
Besides, it can be seen that RegISL obtains the best per-
formance on Lost, MSRCv2, Soccer Player, and Bird Song
datasets when K = 5, 10, 10, 10, respectively, and this pro-
vides us the foundation for choosing the optimal K on the
four datasets.

IV. CONCLUSION

In this paper, we propose a novel RegISL, which is dubbed
as RegISL. Based on the graph G, ReglISL disambiguates
the candidate labels of training examples by considering
both the label smoothness between different examples, and
the label discriminative property for every single example.
As a consequence, the possible groundtruth labels in the
candidate set become manifest while the values of false

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 3, MARCH 2018

positive candidate labels are suppressed. Thorough experi-
mental results on various practical datasets suggest that in
most cases the proposed RegISL achieves better training
and test performances than the existing representative SLL
methods.

Considering that the classification accuracy of our devel-
oped RegISL depends on the quality of constructed graph G,
in the future we plan to find a way to build a more accurate
graph for conducting RegISL. Besides, due to the prevalence
of label noise problem [45] today, it would be valuable to
extend RegISL to the situation when the groundtruth labels of
a small fraction of training examples are not included by their
candidate label sets.
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