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Ensemble Teaching for Hybrid Label Propagation
Chen Gong , Member, IEEE, Dacheng Tao, Fellow, IEEE, Xiaojun Chang , and Jian Yang

Abstract—Label propagation aims to iteratively diffuse the
label information from labeled examples to unlabeled examples
over a similarity graph. Current label propagation algorithms
cannot consistently yield satisfactory performance due to two
reasons: one is the instability of single propagation method in
dealing with various practical data, and the other one is the
improper propagation sequence ignoring the labeling difficul-
ties of different examples. To remedy above defects, this paper
proposes a novel propagation algorithm called hybrid diffusion
under ensemble teaching (HyDEnT). Specifically, HyDEnT inte-
grates multiple propagation methods as base “learners” to fully
exploit their individual wisdom, which helps HyDEnT to be
stable and obtain consistent encouraging results. More impor-
tantly, HyDEnT conducts propagation under the guidance of an
ensemble of “teachers”. That is to say, in every propagation
round the simplest curriculum examples are wisely designated
by a teaching algorithm, so that their labels can be reliably
and accurately decided by the learners. To optimally choose
these simplest examples, every teacher in the ensemble should
comprehensively consider the examples’ difficulties from its own
viewpoint, as well as the common knowledge shared by all the
teachers. This is accomplished by a designed optimization prob-
lem, which can be efficiently solved via the block coordinate
descent method. Thanks to the efforts of the teachers, all the
unlabeled examples are logically propagated from simple to dif-
ficult, leading to better propagation quality of HyDEnT than the
existing methods. Experiments on six popular datasets reveal that
HyDEnT achieves the highest classification accuracy when com-
pared with six state-of-the-art propagation methodologies such
as harmonic functions, Fick’s law assisted propagation, linear
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neighborhood propagation, semisupervised ensemble learning,
bipartite graph-based consensus maximization, and teaching-to-
learn and learning-to-teach.

Index Terms—Block coordinate descent (BCD), ensemble
learning, label propagation, machine teaching.

I. INTRODUCTION

LABEL propagation is an important technique in semisu-
pervised learning [1], [2]. Given an undirected weighted

graph, the target of label propagation is to iteratively transfer
class labels from labeled examples to unlabeled examples so
that the unlabeled examples can be accurately classified. Label
propagation is a transduction problem [3], which means that
we are interested in the classification of a particular set of
examples rather than a general decision function for classify-
ing the future unseen examples. In other words, the unlabeled
examples to be classified by a label propagation algorithm
are available in advance, and they are directly assigned labels
without the aid of explicit decision function. Due to its encour-
aging performance and solid theoretical foundation, label
propagation has been applied to various computer vision tasks
such as saliency detection [4], image annotation [5], image
segmentation [6], etc.

Mathematically, label propagation can be described as fol-
lows. Given a labeled set L = {x1, x2, . . . , xl} containing l
labeled examples {xi}l

i=1 ∈ R
d (d is the dimensionality of

every example) and unlabeled set U = {xl+1, xl+2, . . . , xl+u}
of size u, we may build a weighted similarity graph G =
〈V, E〉, where V is the node set representing all n = l+u exam-
ples, and E is the edge set encoding the pairwise relationship
between these examples. Then the target of label propagation
is to iteratively propagate the labels from L to U so that all
the examples in U can be assigned correct labels. However,
the results generated by existing methods such as [6]–[9] are
often far from perfect. We consider that there are two main
reasons contributing to this phenomenon. First, the strength of
one propagation algorithm is very limited and there does not
exist a propagation method that can perfectly handle all the
practical situations. For example, the propagation process can
be misled by the outliers or “bridge points” [10], therefore
utilizing only one method is not reliable for achieving accu-
rate propagation. Second, the propagation sequence adopted by
existing methods is completely governed by the connectivity
among examples in the graph, namely the label information
will be transferred from one example to another as long as
there is an edge between them. This propagation sequence is
sometimes problematic because it does not explicitly consider
the propagation difficulty or reliability of different unlabeled
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(a) (b) (c)

Fig. 1. Framework of our HyDEnT algorithm. There are totally M learners and M corresponding teachers. (a) Graph G is built in which the labeled examples
and unlabeled examples x1–x6 are represented by red and blue nodes, respectively. (b) M teachers first pick up the simplest curriculum examples from x1–x6
from their own viewpoint (i.e., S(1) ∼ S(M)), and then compromise to a consistent result S∗ via the designed ensemble teaching algorithm. (c) All the
selected simplest examples are classified by M different learners, and the obtained label matrices are F(1), F(2), . . . , F(M). They are further integrated to the
final result F based on the weighting vectors ω(m) (m = 1, 2, . . . , M), in which the element ω

(m)
j (j = 1, 3, 5 in this example) denotes the weight of the mth

classifier’s decision on the curriculum example xj. After “learning” the curriculum examples in this round, the learners deliver a learning feedback to the
ensemble of teachers to help them adaptively establish the suitable curriculum in the next round.

examples. Above two shortcomings are very likely to incur
error-prone propagations and impair the final performance.

In order to address the above two defects that are ubiqui-
tous in the current label diffusion methodologies, this paper
proposes a new propagation algorithm called hybrid diffusion
under ensemble teaching (HyDEnT). Specifically, to remedy
the first shortcoming, we combine multiple existing propaga-
tion algorithms in a hybrid way to accomplish reliable prop-
agation. As a result, each of the incorporated base classifiers
will give full play to its ability and meanwhile complement
to others for obtaining satisfactory performance. In order to
deal with the second shortcoming, we regard all the involved
propagation algorithms as “learners” and associate each of
them with a “teacher”, so that the entire diffusion process
is guided by the ensemble of teachers and thus an optimized
learning sequence can be generated. Particularly, we assume
that different examples have different levels of difficulty, and
the teachers should consider the learners’ dynamic learning
performance to design a suitable propagation sequence, so that
all the unlabeled examples in U are logically classified from
simple to difficult. In each propagation round, the simplest
examples (i.e., a curriculum) agreed by the ensemble of teach-
ers are designated to the learners, and these simplest examples
are decided by comprehensively considering both individuality
and consistency of all the teachers. This modification to the
widespread propagation strategy facilitates the classification
of subsequent complex examples by using the accumulated
knowledge from the previously propagated simple examples.

The framework of the proposed algorithm is presented in
Fig. 1. The labeled examples [two red balls in Fig. 1(a)] and
unlabeled examples x1–x6 (blue balls) are represented by a
graph G, and the relationship between pairs of examples are
modeled by the edges between them. Suppose there are totally
M learners (i.e., base classifiers) constituted by M different
propagation models, in which the adjacency matrices [8], [11]

for describing G are W(1), W(2), . . . , W(M), respectively. Then
we introduce M teachers to “teach” these M learners, and
each teacher is responsible for teaching one learner. In each
propagation round [see Fig. 1(b)], the mth (m = 1, 2, . . . , M)
teacher generates the curriculum S(m) that is the simplest to
the mth learner, and then the overall simplest curriculum set
S∗ is established by comprehensively considering all the cur-
riculums S(1) ∼ S(M) recommended by different teachers.
Therefore, S∗ is established via an ensemble teaching way.
Given S∗, every learner will “learn” these simplest examples
[see Fig. 1(c)] by propagating the labels from L to S∗, and
the obtained label matrix is F(m) ∈ R

n×c (m = 1, 2, . . . , M,
and c is the total number of classes). After that, an integrated
label matrix F is computed as the sum of F(1), F(2), . . . , F(M)

weighted by ω(1),ω(2), . . . ,ω(M), respectively. We call this
hybrid diffusion because multiple label propagation models
are combined to achieve accurate learning. Finally, a learn-
ing feedback is delivered to the ensemble of teachers to assist
them to correctly determine the subsequent simplest curricu-
lum. Above teaching and learning process iterates until all
the examples in U have been selected, and the produced
label matrix is denoted by

◦
F. The (i, j)th element in

◦
F (or

F(m) and F mentioned above) encodes the probability of
the ith (i = 1, 2, . . . , n) example xi belonging to the jth
(j = 1, 2, . . . , c) class Cj.

The adopted hybrid label propagation combines the advan-
tages possessed by different learners, and thus can improve
the performance of every single classifier. Besides, the incor-
porated multiple teachers also cooperate with each other
to wisely reorganize the propagation sequence so that the
unlabeled examples are logically classified from simple to
difficult. As a result, the proposed algorithm is able to
outperform other existing typical methods, which will be
empirically revealed in Section VII. Furthermore, the pro-
cess of learning from simple to difficult is also consistent
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with humans’ cognitive process [12], [13], who gradually gain
rich and complex knowledge from the childish stage to the
mature stage.

Notations: Throughout this paper, we use bold capital letter,
bold lowercase letter and italic letter to represent matrix, vector
and constant, respectively. The superscript, e.g., “(m),” denotes
that the related variable is associated with the mth teacher or
learner. Given a matrix A, Ai is the ith row of A, and Aij

is A’s (i, j)th element. tr(A) denotes the trace of A given A
is square. The notations ‖A‖F and ‖A‖2,1 correspond to A’s
Frobenius norm and l2,1 norm, which are defined by ‖A‖F =√∑

i,j A2
ij and ‖A‖2,1 = ∑

i

√∑
j A2

ij, respectively. Besides,
we use “◦” to represent the Hadamard product between two
matrices, which means (A ◦ B)ij = AijBij.

II. RELATED WORK

This paper is related to semisupervised label propagation,
ensemble learning and machine teaching, therefore in this sec-
tion we review some representative literatures on these three
topics.

A. Semisupervised Label Propagation

Label propagation belongs to the scope of semisupervised
learning [1], of which the target is to classify a massive num-
ber of unlabeled examples given the existence of only a few
labeled examples. Most existing semisupervised algorithms are
based on support vector machines [14], [15] or similarity graph
model [6], [8]–[10], [16], [17], and label propagation falls into
the latter category.

Given an established similarity graph, a label propagation
algorithm gradually propagates the labels of seed nodes (exam-
ples) to the unlabeled nodes. In each propagation round, the
labels of all the examples are updated by considering both
their previous states and the influence of other examples. Then
the final steady state conveys the accurate labels of originally
unlabeled examples. For example, Zhu and Ghahramani [18]
proposed to iteratively propagate labels on a weighted graph
by executing random walks with clamping operations. The
probability of each unlabeled node to be absorbed by the
different labeled nodes is employed to infer the labels of
unlabeled examples. Different from [18] which works on
asymmetric graph Laplacian, Zhou et al. [9] utilized a sym-
metric graph Laplacian to implement propagation and achieve
satisfactory performance. Besides, Wang et al. [6] developed
the linear neighborhood propagation which assumes that any
node in the graph can be linearly reconstructed by its K
nearest neighbors. In contrast to the above methods that are
based on a static graph throughout the entire propagation,
Wang et al. [7] developed dynamic label propagation to adap-
tively update the edge weights so that the graph can always
faithfully reflect the similarities between examples during
propagation. Recently, Gong et al. [17] treated label propaga-
tion on a graph as fluid diffusion on a plane, and successfully
apply Fick’s law of diffusion in physical area to facilitate
propagation.

B. Ensemble Learning

An ensemble learning method [19], [20] incorporates mul-
tiple learning algorithms to obtain better performance than
that could be obtained from any of the constituent learn-
ing algorithms. In other words, an ensemble of classifiers is
a set of different classifiers of which the individual predic-
tions are combined in some weighted or unweighted way to
form an enhanced performance. The classifiers constituting the
ensemble should comply with two criteria:

1) diversity, namely each base classifier of the ensemble
should hold unique information and cover one side of
the entire underlying facts;

2) independence, namely every base classifier is able to
draw a conclusion that is not so bad all by itself.

Roughly speaking, there are three representative fashions
for building an ensemble learning algorithm, i.e., boosting,
bagging, and hybrid. Boosting sequentially trains a set of
weak classifiers and then combines all of them to form a
strong classifier, during which the later trained classifiers focus
more on the errors made by the earlier classifiers. Perhaps
the most well-known boosting algorithm is Adaboost [21].
AdaBoost is adaptive because the examples are automatically
reweighted after each iteration so that the subsequent weak
classifiers will pay more attention to the examples that are
probably mislabeled by the previous classifiers. Different from
boosting which trains weak classifiers sequentially, bagging
generates the weak classifiers in parallel, and then aggre-
gates them into a strong classifier. Random forest [22] is
a representative bagging method, in which every base clas-
sifier is a decision tree that accomplishes random feature
selection. In boosting and bagging, the base classifiers are
usually the same. In contrast, a hybrid method contains dif-
ferent base classifiers, and their outputs are properly fused
to yield the final result. The proposed HyDEnT is a hybrid
method.

Regarding ensemble label propagation, Woo and Park [23]
randomly sampled several unlabeled sets, and deployed the
method in [6] to build multiple base classifiers. Pan et al. [24]
proposed to use “consensus maximization fusion model” to
combine the label prediction results of multiple random walk
classifiers. Lin et al. [25] developed an ensemble propaga-
tion method for different labeled and unlabeled sources, in
which local and global consensus are particularly considered.
However, neither of above algorithms is hybrid nor has a
teaching component as in our method.

C. Machine Teaching

The early works regarding machine teaching mainly focus
on the theory of “teaching dimension” [26], [27]. Currently,
there are mainly two trends in developing machine teaching
algorithms. One trend assumes that the teacher knows the
real labels of curriculum examples [28]–[32], while in the
other trend the teacher only knows the difficulty of unlabeled
examples without accessing their real labels. Curriculum learn-
ing [33] and self-paced learning [34], [35] belong to the second
trend which argue that the learning process should follow the
simple-to-difficult sequence.
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Recently, Gong et al. [36], [37] proposed the frame-
work of teaching-to-learn and learning-to-teach (TLLT), which
extends curriculum learning by adding a learning feedback
to help teacher adaptively update the curriculums. Inspired
by Gong et al. [36], this paper attempts to adapt the TLLT
framework to hybrid label propagation.

III. CURRICULUM GENERATION VIA ENSEMBLE

TEACHING

This section introduces our ensemble teaching strategy. The
ultimate target of ET is to select the simplest curriculum exam-
ples for the learners in every propagation round. To this end, two
factors should be considered by each of the M teachers: first,
the curriculum examples in S(m) (m = 1, 2, . . . , M) decided
by the mth teacher should be simple in terms of its associated
learner; and second, these M teachers are not isolated and
they should share some common knowledge in determining
the curriculum. Therefore, the ensemble teaching model can
be formulated as the following optimization problem:

min
∑M

m=1
A
(
S(m)

)
+ β0�

(
S(1),S(2), . . . ,S(M)

)
(1)

where A(·) is a function for the mth teacher to select the
simplest examples from its own viewpoint, �(·) is a func-
tion modeling the relationship among different teachers, and
β0 > 0 is a tradeoff parameter. Next we will explain the
detailed expressions of A(·) and �(·).

A. Establishment of A( · )

The function A(·) is exploited to assist the individual mth
teacher to choose a curriculum set S(m) ⊂ U . In this section,
we temporarily drop the superscript (m) of the appeared vari-
ables for simplicity. Suppose the adjacency matrix of graph
G for the mth teacher–learner pair is W,1 then the graph
Laplacian is L = D − W, where D is the degree matrix with
diagonal elements computed by Dii = ∑n

j=1 Wij. Based on
W, the mth teacher will evaluate the difficulty of xi ∈ U from
xi’s reliability and discriminability [36].

1) Reliability: To assess the propagation reliability of xi ∈
U , we assign a random variable yi to the example xi, and treat
the propagations on G as a Gaussian process [38]. Therefore,
this Gaussian process is modeled as a multivariate Gaussian
distribution over the random variables y = (y1, . . . , yn)

�,
which has a concise form y ∼ N (0, �) with its covariance
matrix being � = (L + I/κ2)

−1
. Here I denotes the iden-

tity matrix, and the parameter κ2 controls the “sharpness” of
the distribution which is fixed to 100 throughout this paper.
Therefore, a curriculum S is reliable with respect to the labeled
set L if the conditional entropy H(yS |yL) is small, where yS
and yL denote the subvectors of y corresponding to S and L,
respectively. This is because small H(yS |yL) suggests that the
curriculum set S shows no “surprise” to the labeled set L.

Based on above consideration, we use the property of mul-
tivariate Gaussian [39] and select the most reliable curriculum

1Different propagation methods may have different ways for generating
adjacency matrix. For example, Zhu and Ghahramani [18] adopted Gaussian
kernel function, Gong et al. [17] leveraged Fick’s law of diffusion, and [6] is
based on the locally linear reconstruction.

by optimizing

min
S⊂U

H(yS |yL)

⇔ min
S⊂U

H(yS∪L) − H(yL)

⇔ min
S⊂U

(
s + l

2
(1 + ln 2π) + 1

2
ln
∣∣�S∪L,S∪L

∣∣
)

−
(

l

2
(1 + ln 2π) + 1

2
ln
∣∣�L,L

∣∣
)

⇔ min
S⊂U

s

2
(1 + ln 2π) + 1

2
ln

∣∣�S∪L,S∪L
∣∣

∣∣�L,L
∣∣ (2)

where �L,L and �S∪L,S∪L are submatrices of � associ-
ated with the corresponding subscripts. By further partitioning

�S∪L,S∪L =
(

�S,S �S,L
�L,S �L,L

)
, where �S,S is the submatrix of

� corresponding to S, we have
∣∣�S∪L,S∪L

∣∣
∣∣�L,L

∣∣ =
∣∣�L,L

∣∣
∣∣∣�S,S−�S,L�−1

L,L�L,S
∣∣∣

∣∣�L,L
∣∣ = ∣∣�S|L

∣∣

where �S|L is the covariance matrix of the conditional
distribution p(yS |yL) and is naturally positive semidefinite.
Therefore, the problem (2) is equivalent to

min
S⊆U

tr
(
�S,S − �S,L�−1

L,L�L,S
)
. (3)

2) Discriminability: A curriculum S is discriminable if the
included examples are significantly inclined to certain classes.
The tendency of an example xi belonging to a class Cj is mod-
eled by the average commute time between xi and all the
examples in Cj, which is formally represented by

T̄
(
xi, Cj

) = 1

nCj

∑
xi′ ∈Cj

T(xi, xi′). (4)

In (4), nCj denotes the number of examples in the class Cj;
and T(xi, xi′) is the commute time between examples xi and
xi′ that is defined as [40]

T(xi, xi′) =
∑n

k=1
h(λk)(uki − uki′)

2 (5)

where 0 = λ1 ≤ . . . ≤ λn are the eigenvalues of L, and
u1, . . . , un are the associated eigenvectors; uki denotes the
ith element of uk; h(λk) = 1/λk if λk �= 0 and h(λk) = 0
otherwise.

Therefore, suppose C1 and C2 are the two closest classes
to xi ∈ U measured by average commute time, then xi is
discriminable if the gap g(xi) = T̄(xi, C2) − T̄(xi, C1) is large.
That is, the simplest curriculum in view of discriminability is
found by solving

min
S={xik ∈ U}s

k=1

∑s

k=1
1/g
(
xik

)
(6)

where s is the amount of examples in the set S.
By putting (3) and (6) together, we arrive at the following

optimization problem:

minS={xik ∈ U}s
k=1

A(S) (7)

where A(S) appeared in (1) is defined by

A(S) = tr
(
�S,S − �S,L�−1

L,L�L,S
)

+
∑s

k=1
1/g(xik).

(8)
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However, (7) is symbolic and cannot be directly solved,
so we provide a mathematically tractable model for (7). In
each propagation round, the seed labels will be diffused to
the unlabeled examples that are direct neighbors (denoted by
the neighboring set B) of L on graph G, so we only need
to choose s distinct examples from B. Therefore, for the mth
teacher, we introduce a binary selection matrix S ∈ [0, 1]b×s

(b is the size of B) such that its (i, j)th element Sij represents
the appropriateness of the ith example in B being selected as
the jth element of the curriculum S. Ideally, we hope S to
have two properties:

1) every element Sij is preferred to be {0, 1}-binary, which
indicates that the teacher strongly discourages or encour-
ages xi to be a curriculum example;

2) S should be orthogonal, which ensures that every exam-
ple is selected only once by the mth teacher.

Above two ideal properties can be mathematically achieved by
optimizing minS ‖S◦S−S‖2

F+‖S�S−I‖2
F , where the first term

and second term realize the properties 1) and 2), respectively.
Besides, we introduce a diagonal matrix G ∈ R

b×b with the
diagonal elements Gii = 1/g(xi) for any xi ∈ B, then the
problem (7) can be reformulated as follows:

min
S

tr
(

S��B,BS − S��B,L�−1
L,L�L,BS

)

+ tr
(

S�GS
)

+ β1

(
‖S ◦ S − S‖2

F +
∥∥∥S�S − I

∥∥∥
2

F

)
(9)

where β1 is a tradeoff parameter. By further denoting R =
�B,B − �B,L�−1

L,L�L,B + G, (9) is simplified as

min
S

tr
(

S�RS
)

+ β1

(
‖S ◦ S − S‖2

F +
∥∥∥S�S − I

∥∥∥
2

F

)
(10)

which is the curriculum generation model for a single teacher.

B. Establishment of �( · )

The term �(·) exploits the relationship among M different
teachers so that they work collaboratively to render the opti-
mal curriculum. In this paper, we hope that all teachers can
maximally draw a consensus on the determination of diffi-
cult unlabeled examples, and then the remaining examples are
simple and should be included in the optimal curriculum S∗.
That is to say, we aim to find the solution of the following
optimization problem:

maxS(1),S(2),...,S(M) �
(
S(1),S(2), . . . ,S(M)

)
(11)

where �(·) is defined by

�
(
S(1),S(2), . . . ,S(M)

)
=
∣∣∣∣∣

M⋂
m=1

U − S(m)

∣∣∣∣∣ (12)

with “| · |” denoting the set size. The operation U − S(m)

computes the complementary set of S(m) in U .
For realizing (11), we put the selection matrices

S(1), S(2), . . . , S(M) produced by the M teachers together and
obtain a stacked matrix S̄ = (S(1), S(2), . . . , S(M)) with size
b × (s × M). As a result, we may use the l2,1 norm on S̄ to

discover the shared common knowledge across different teach-
ers, then the difficult examples agreed by all the teachers can
be found by solving

minS̄

∥∥S̄
∥∥

2,1 (13)

and the indices of all-zero rows in the optimized S̄ correspond
to the difficult examples agreed by all M teachers that cannot
be taken as curriculum.

C. Optimization

By combining (10) and (13), our ensemble teaching model
is formally represented by

min
S̄

Q(S̄) =
∑M

m=1
tr
(

S(m)�R(m)S(m)
)

+ β0
∥∥S̄
∥∥

2,1

+ β1

∑M

m=1

(∥∥∥S(m) ◦ S(m) − S(m)
∥∥∥

2

F

+
∥∥∥S(m)�S(m) − I

∥∥∥
2

F

)
(14)

where β0 > 0 is the tradeoff parameter.
The problem (14) can be easily solved via block coordinate

descent (BCD), which updates blocks of variables at every
iteration until convergence. For our method, at one time we
compute the gradient related to S(m) (m takes a value from
1, 2, . . . , M), which is denoted by ∇S(m)Q = (∂Q/∂S(m)),
and then decrease the objective function Q(S̄) by updating
S(m) along the opposite direction of the gradient ∇S(m)Q. As
such, the objective function can be gradually minimized by
cyclically updating S(1), S(2), . . . , S(M).

Next we derive the updating rule for S(m). According to
the definition of ‖ · ‖2,1 in the introduction, it is easy to
see that ‖S̄‖2,1 = tr(S̄�HS̄) where H is a diagonal matrix
with the diagonal elements Hii = (1/[2‖S̄i‖2]) (S̄i repre-
sents the ith row of the matrix S̄). Practically, S̄i could be
zero, so we slightly modify the strict definition of Hii as
Hii = (1/[2‖S̄i‖2+ζ ]) with ζ being a very small positive num-
ber. Therefore, by recalling that S̄ = (S(1), S(2), . . . , S(M)),
we know ‖S̄‖2,1 = ∑M

m=1 tr(S(m)�HS(m)). Consequently, the
subproblem related to S(m) is

min
S(m)

Q(S(m)) = tr
(

S(m)�R(m)S(m)
)

+ β0tr
(

S(m)�HS(m)
)

+ β1

(∥∥∥S(m) ◦ S(m) − S(m)
∥∥∥

2

F

+
∥∥∥S(m)�S(m) − I

∥∥∥
2

F

)
. (15)

To obtain the updating rule for S(m), we need to compute
the gradient ∇S(m)Q. We first present a useful lemma.

Lemma 1: Given an n1 × n2 matrix A, the derivative of
‖A ◦ A − A‖2

F with respect to A is ([d‖A ◦ A − A‖2
F]/dA) =

2(A ◦ A − A) ◦ (2A − E) where E is an all-one matrix of size
n1 × n2.

Proof: Given the (i, j)th element of A as Aij, then ‖A ◦
A − A‖2

F = ∑n1
i=1

∑n2
j=1 (A2

ij − Aij)
2
. Therefore, ([d‖A ◦ A −

A‖2
F]/dAij) = 2(A2

ij − Aij)(2Aij − 1). Consequently, ([d‖A ◦
A − A‖2

F]/dA) = ([d‖A ◦ A − A‖2
F]/dAij)

∣∣
i=1∼n1,j=1∼n2

=
2(A ◦ A − A) ◦ (2A − E), which completes the proof.
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Algorithm 1 BCD Method for Optimizing (14)

1: Input: R(m), β0, β1, ε = 10−4, iter_max = 300, initial S(m)

with 0 ≤ S(m)
ij ≤ 1, iter = 0

2: repeat
3: Compute S̄ as S̄ =

(
S(1), S(2), · · · , S(M)

)

4: Compute H as Hii = 1
2‖s̄i‖2+ζ

5: // Update S(m) (m = 1, 2, · · · , M) in parallel
6: for m = 1:M do
7: Compute gradient ∇S(m)Q via Eq. (16)
8: Decide the stepsize τ via Wolfe line-search [41]
9: S(m) := S(m) − τ∇S(m)Q

10: end for
11: iter := iter + 1
12: // Check termination condition
13: until

∥∥∥S̄(iter) − S̄(iter−1)
∥∥∥

F
< ε or iter = iter_max

14: Output: the optimal solution S̄∗

Based on Lemma 1, the gradient ∇S(m)Q is derived as

∇S(m)Q = 2
{

R(m)S(m) + β0HS(m) + β1

[
(S(m) ◦ S(m) − S(m))

◦
(

2S(m) − E
)

+ 2S(m)
(

S(m)�S(m) − I
)]}

= 2
{[

R(m) + β0H + β1

(
2S(m)S(m)� − I

)]
S(m)

+ β1

[
2
(

S(m) ◦ S(m) ◦ S(m)
)

− 3
(

S(m) ◦ S(m)
)]}

.

(16)

As a result, S(m) is updated by

S(m) := S(m) − τ∇S(m)Q (17)

where τ is the stepsize satisfying the Wolfe [41] line-
search conditions. Note that in our algorithm, the updating of
S(1), S(2), . . . , S(M) are not correlated, so their updating can
be efficiently conducted in parallel.

The entire BCD process for solving (14) is presented in
Algorithm 1, and its convergence analysis is deferred to
Section V. Suppose the solution of (14) is S̄∗, then we force
very small elements in S̄∗, e.g., less than 0.001, to 0, and keep
the other elements as they are. Therefore, the sparseness of the
ith row in S̄∗ indicates the overall difficulty of the ith example
in B evaluated by all the teachers. As a result, the candidate
examples corresponding to the s most nonsparse rows in S̄∗ are
selected as the curriculum examples for current propagation.
Moreover, by partitioning S̄∗ as S̄∗ = (S(1)∗, S(2)∗, . . . , S(M)∗)
in which the mth (m = 1, 2, . . . , M) block corresponds to
the optimal decision made by the mth teacher, the value of
(
∑

j S
(m)∗
ij )/(

∑
j S∗

ij) reflects the tendency of the mth teacher
to choose the ith example in B as a curriculum example.

IV. HYBRID LABEL PROPAGATION AND LEARNING

FEEDBACK

Given the simplest curriculum set S∗ = {x∗
1, x∗

2, . . . , x∗
s }

designated by the ensemble of teachers, the M learners should
learn these simple examples by propagating the labels from
L to S∗, and the obtained label matrices are F(1), . . . , F(M),
respectively. Finally, F(1), . . . , F(M) are integrated into a con-
sistent output F with the ith row being the label vector of the

ith example, which is computed by

Fi =
∑M

m=1
ω

(m)
i F(m)

i (18)

and ω
(m)
i = (

∑
j S

(m)∗
ij )/(

∑
j S∗

ij). Note that the weight ω
(m)
i

is equivalent to the tendency of the mth teacher to choose
the ith example in B as a curriculum example. As such, a
large weight is imposed on the label vector F(m)

i of the mth
learner in generating Fi if the mth teacher strongly recom-
mends xi as a curriculum example. This is because the strong
recommendation from the mth teacher indicates that it con-
siders the examples xi is quite simple for the mth learner,
therefore the learning result F(m)

i is trustable and should be
emphasized. In the tth propagation round, the label matrices
F(m)

i (m = 1, 2, . . . , M) are

F(m)[t]
i =

{
P(m)

i F[t−1], xi ∈ S∗[1:t−1] ∪ S∗[t]

F[0]
i , xi ∈ L[0] ∪ (U [0] − S∗[1:t]

)

(19)

where S∗[1:t] = S∗[1] ∪ · · · ∪S∗[t] with the superscript [t] rep-
resenting the tth propagation round, and the iteration matrix
P(m) = D(m)−1W(m) is related to the specific base classifier
(i.e., learner). Equation (19) suggests that the labels of the
tth curriculum and previously “learned” examples will change
during the tth propagation, whereas the labels of the initially
labeled examples in L[0] and the unclassified unlabeled exam-
ples in U [0] − S∗[1:t] are kept unchanged. The initial state for
xi’s label vector F[0]

i is

F[0]
i :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1/c, . . . , 1/c)︸ ︷︷ ︸
c

, xi ∈ U [0]

⎛
⎜⎝0, . . . , 1↓

jth element

, . . . , 0

⎞
⎟⎠, xi ∈ Cj ∈ L(0)

(20)

where c is the number of classes as defined in the introduc-
tion. Equations (19) and (20) together maintain the probability
interpretation

∑c
j=1 F[t]

ij = 1 for any example xi and all tth
(t = 0, 1, 2, . . .) propagation rounds.

When the tth propagation is finished, we require the learners
to deliver a learning feedback to the ensemble of teachers so
that the teachers can determine the proper (t+1)th curriculum
S∗[t+1]. Intuitively, if the tth learning result is satisfactory, the
teachers may assign a “heavier” curriculum to the learners
for the next propagation, otherwise they should relieve the
burden for the learners by decreasing the amount of curriculum
examples in S∗[t+1]. To achieve this effect, here we use the
feedback function designed in [36], which is

g
(
F[t]) = exp

[
−γ

1

s[t] H
(
F[t])

]

= exp

[
γ

s[t]

∑s[t]

i=1

∑c

j=1

(
F[t])

ij logc

(
F[t])

ij

]
(21)

where γ is the parameter controlling the learning rate. A small
γ leads to more examples incorporated into the curriculum
S∗[t+1], so less propagation rounds are needed for the learners
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to classify all the unlabeled examples. However, learning too
“heavy” curriculum at one time will make the learners more
easily to make mistakes. Therefore, both learning speed and
learning accuracy should be considered when choosing γ .

Based on (21), the number of examples included in the
(t + 1)th curriculum is

s[t+1] =
⌈

b[t+1] · g(F[t])
⌉

(22)

where b[t+1] is the size of set B[t+1] in the (t + 1)th iteration,
and �·� rounds up the element to the nearest integer.

Above ensemble teaching and hybrid learning iterates until
all the unlabeled examples are propagated (i.e., U = ∅), and
the obtained label matrix is denoted as

◦
F. Similar to [36],

starting from
◦
F, we adopt the following (23) to drive the

propagation process of every learner to the steady state:

◦
F

∗(m) = (1 − θ)
(

I − θP(m)
)−1 ◦

F (23)

where the parameter θ is set to 0.05. Therefore, the final
produced label matrix is

◦
F

∗ = (1/M)
∑M

m=1

◦
F∗(m). As a con-

sequence, the example xi is classified into the jth class, which
satisfies j = arg maxj′∈{1,...,c}

◦
F∗

ij′ . The complete HyDEnT
algorithm is summarized in Algorithm 2.

Discussion: Although the model established in this paper
focuses on ensemble learning, it can be easily adapted to
handling multimodal cases [42], [43]. Specifically, we may
associate each modality with a teacher and a learner, and then
combine the propagation outputs of different modalities as
explained in Section IV. To achieve such combination, we
may require all teachers make consistent decisions on deter-
mining the curriculum examples, which is very similar to the
idea detailed in Section III.

V. CONVERGENCE ANALYSES

In this section, we discuss the convergence property of the
BCD method in Algorithm 1. Before proving the convergence
of Algorithm 1, we first present a useful lemma.

Lemma 2 [44]: Given any two vectors a, b �= 0, the
following inequality holds:

‖a‖2 − ‖a‖2
2

2‖b‖2
≤ ‖b‖2 − ‖b‖2

2

2‖b‖2
.

Based on Lemma 2, we have the following theorem to
guarantee the convergence of Algorithm 1.

Theorem 1: Algorithm 1 monotonically decreases the value
of objective function in (14) until convergence.

Proof: To facilitate the proof, we decompose (14) as Q(S̄) =
Q1(S̄) + Q2(S̄), where

Q1(S̄) =
∑M

m=1

[
tr
(

S(m)�R(m)S(m)
)

+ β1

(∥∥∥S(m) ◦ S(m) − S(m)
∥∥∥

2

F
+
∥∥∥S(m)�S(m) − I

∥∥∥
2

F

)]

(24)

and

Q2(S̄) = β0
∥∥S̄
∥∥

2,1 = β0tr
(

S̄�HS̄
)

(25)

where H is a diagonal matrix defined in Section III-C.
Suppose that after one iteration, the variables S̄ is updated

as S̄new, then according to the definition of H, we have

Q1(S̄new) + β0

b∑
i=1

∥∥(S̄new
)

i

∥∥2
2

2
∥∥S̄i
∥∥

2

≤ Q1(S̄) + β0

b∑
i=1

∥∥S̄i
∥∥2

2

2
∥∥S̄i
∥∥

2

(26)

where (S̄new)i represents the ith row of matrix S̄new. Besides,
according to Lemma 2, for each i we obtain

∥∥(S̄new
)

i

∥∥
2
−
∥∥(S̄new

)
i

∥∥2
2

2
∥∥S̄i
∥∥

2

≤ ∥∥S̄i
∥∥

2 −
∥∥S̄i
∥∥2

2

2
∥∥S̄i
∥∥

2

. (27)

Therefore, it is straightforward to see

β0

b∑
i=1

⎡
⎣∥∥(S̄new

)
i

∥∥
2
−
∥∥(S̄new

)
i

∥∥2
2

2
∥∥S̄i
∥∥

2

⎤
⎦≤ β0

b∑
i=1

⎡
⎣∥∥S̄i

∥∥
2 −

∥∥S̄i
∥∥2

2

2
∥∥S̄i
∥∥

2

⎤
⎦.

(28)

By adding (26) and (28), we immediately have

Q1
(
S̄new

)+ β0

∑b

i=1

∥∥(S̄new
)

i

∥∥
2

≤ Q1
(
S̄
)+ β0

∑b

i=1

∥∥S̄i
∥∥

2.

(29)

By noticing
∑b

i=1 ‖(S̄new)i‖2 = ‖S̄new‖2,1 and
∑b

i=1 ‖S̄i‖2 =
‖S̄‖2,1, it is obvious that (29) is equivalent to

Q
(
S̄new

) ≤ Q
(
S̄
)
. (30)

Therefore, the objective function in (14) monotonically
decreases during the iterations.

Besides, it can be easily verified that the objective function
in (14) has the lower bound 0. Consequently, Algorithm 1 will
finally converge and thus Theorem 1 is proved.

VI. COMPLEXITY ANALYSES

To analyze the time complexity of Algorithm 2, we first
calculate the complexity of Algorithm 1, as it is used in line 7
of Algorithm 2. In single propagation round, the complexities
of lines 4 and 7 in Algorithm 1 are O(bsM) and O((b2s +
bs)M), respectively, where b is the size of neighboring set B
and s is the amount of curriculum examples in S∗. However,
both b and s vary in different propagation rounds, and they
are not larger than u (u is the number of originally unlabeled
examples), so the complexities of lines 4 and 7 are bounded
by O(Mu2) and O(Mu3) for simplicity. Suppose lines 2–12
are iterated T1 times, then the complexity of Algorithm 1 is
O(T1Mu3).

Regarding Algorithm 2, the graph construction and com-
putation of � for each teacher–learner pair in line 3 take
O(n2) and O(n3) complexities, respectively. To compute the
commute time between all pairs of examples in (10), one
has to conduct eigen-decomposition on L(m), of which the
complexity is O(n3). The complexity of line 7 is bounded
by O(T1Mu3) as explained above. It is also easy to find
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Algorithm 2 Summarization of HyDEnT Algorithm
1: Input: l labeled examples L = {x1,· · ·, xl} with known labels

y1,· · ·, yl; u unlabeled examples U = {
xl+1,· · ·, xl+u

}
with

unknown labels yl+1,· · ·, yl+u; Parameters β0, β1, γ ;
2: // Pre-compute variables of each learner
3: ∀ m = 1,· · ·, M, compute adjacency matrix W(m), graph

Laplacian L(m), iteration matrix P(m), covariance matrix �(m),
and pairwise commute time T(xi, xi′), ∀xi, xi′ ∈ L ∪ U ;

4: repeat
5: // Ensemble teaching
6: Compute R(m) appeared in Eq. (10);
7: Generate optimal curriculum S∗ agreed by all the teachers via

solving Eq. (14) (Algorithm 1);
8: // hybrid label propagation
9: For each learner, compute the label matrix F(m) via Eq. (19);

10: Compute the integrated label matrix F via Eq. (18);
11: // Establish learning feedback
12: Compute the value of feedback function g(F) via Eq. (21);
13: Compute the size of (t+1)-th curriculum s[t+1] via Eq. (22);
14: // Update sets
15: L :=L ∪ S∗; U :=U−S∗;
16: until U = ∅ ;
17: Drive the propagations of all M learners to the steady states via

Eq. (23), and the resultant label matrices are
◦
F∗(1), · · · ,

◦
F∗(M);

18: Compute the final label matrix by
◦
F

∗ = 1
M
∑M

m=1
◦
F∗(m);

19: Decide the label of original unlabeled example xi as yi =
arg maxj∈{1,··· ,c}

◦
F∗

ij;
20: Output: Class labels yl+1, · · · , yl+u;

that the complexities of lines 9, 12, and 17 are O(Munc),
O(uc), and O(Mn2), respectively, where (23) in line 17 is
computed by transforming it into a group of linear equa-
tions with an n × n coefficient matrix. Therefore, taking
all the above results into consideration and suppose that
lines 4–16 are repeated T2 times, our HyDEnT algorithm
takes O(Mn3 + (T1Mu3 + Munc + uc)T2

)
complexity. From

above analyses, we see that the most computationally expen-
sive steps in our algorithm lie in the calculations of covariance
matrix �(m) and commute time between all pairs of examples,
of which the complexities are O(Mn3) for all M teachers.
Fortunately, they can be precomputed ahead of conducting the
iterative propagation process. Therefore, the complexity of our
HyDEnT is acceptable.

VII. EXPERIMENTAL RESULTS

In this section, we provide thorough experimental results
to show the effectiveness of the proposed HyDEnT algorithm.
We first demonstrate that both ensemble teaching and hybrid
label propagation incorporated in our method are beneficial
to obtaining the encouraging performance, and then compare
HyDEnT with other state-of-the-art approaches on various
classification tasks related to image, video, and audio.

In this paper, we utilize harmonic functions (HF) pro-
posed in [18] and Fick’s law assisted propagation (FLAP)
presented in [17] as two learners in HyDEnT, as they are
state-of-the-art propagation algorithms developed so far. The
iterative propagation rules in HF and FLAP are different. HF
conducts label propagation on the adjacency matrix W with
Wij = exp(−‖xi − xj‖2/(2σ 2)) (σ is the Gaussian kernel
width) if xi and xj are connected. Differently, FLAP relates Wij

(a) (b)

(c)

Fig. 2. Verifications and illustrations of our developed HyDEnT algorithm.
(a) Compares the performances of two adopted learners (“HF” and “FLAP”),
“HP,” and “ET.” (b) Number of selected curriculum examples in different
propagation rounds. (c) Simplest face images of two individuals selected by
teachers during the second–fourth propagation rounds.

to the diffusion distance dij between xi and xj, and also favors
self-loop around each xi. We hope that these two learners
complement to each other to yield good performance.

A. Verification of Our Method

As mentioned in the introduction, our algorithm contains
two critical operations for boosting the performance, i.e.,
ensemble teaching and hybrid label propagation. Here we use
Yale2 face recognition dataset to empirically demonstrate the
usefulness of both operations.

The Yale dataset contains 165 grayscale images of 15
individuals, and each individual constitutes a class. Every
individual has 11 face images covering a variety of facial
expressions and configurations such as normal, happy, wear-
ing glasses, and so on. The resolution of every face image is
64×64, so we directly rearrange each image to a 4096-D long
vector as input for our experiment.

We first present the results of two deployed learners HF [18]
and FLAP [17]. Specifically, we investigate the classification
accuracies under different numbers of labeled examples l, and
for each l the reported accuracy is averaged over the outputs
of ten independent implementations. The splits of labeled set
and unlabeled set are different in these ten implementations;
however, in one implementation such split is identical for all
the compared settings. To show the effectiveness of hybrid
propagation denoted as “HP,” we average the generated label
matrices of HF and FLAP in each propagation, and report
the accuracy when the propagation process converges. To fur-
ther show the improvements brought by ensemble teaching
(dubbed “ET”), we utilize the teaching algorithm introduced
in Section III to select the simplest curriculum examples dur-
ing each propagation round, so that the unlabeled examples

2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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are classified from simple to difficult in the entire propaga-
tion process. Note that the ET setting is actually the HyDEnT
algorithm developed in this paper.

We build five nearest neighborhood (5-NN) graph for all the
settings including HF, FLAP, HP, and ET, and the involved
Gaussian kernel width σ is set to 1. Besides, both β0 and
β1 appeared in (14) are tuned to 100. The comparison results
are presented in Fig. 2(a). It is observed that the two learn-
ers HF and FLAP perform comparably on this dataset with
different choices of l (see blue and green curves). However,
when they are combined together and implemented in a hybrid
way, the deficiency of each of them can be repaired and thus
better results can be achieved (see black curve). Moreover,
when the learners are “taught” by the ensemble of teachers, we
notice that the classification accuracy can be further enhanced
(see red curve). Above observations suggest that the teach-
ing algorithm developed in Section III and hybrid propagation
explained in Section IV are helpful for obtaining satisfactory
performance.

We also plot the number of selected curriculum examples
(i.e., s) in one independent implementation when l = 120.
From Fig. 2(b), we see that HyDEnT needs five propagation
rounds to classify all the unlabeled examples, and most of the
unlabeled examples are classified in the middle stage (e.g., 2nd
and 3rd propagations). The reason may be that at this stage
the learners have gained the richest knowledge accumulated
in the early stage. However, when the propagation goes to
later stage, the difficulty of curriculums gradually increases,
so the teachers become very “conservative” and assign less
examples to the learners in one propagation. To demonstrate
this point, we present some face images selected by the teach-
ers during the 2nd–4th propagation rounds [see Fig. 2(c)]. We
see that the images chosen for the 2nd and 3rd propagations
are very similar to the labeled images, and thus they can be
easily and efficiently learned. In contrast, the curriculum face
images for the 4th propagation look very different from the
previous examples. The individual in the first row takes off his
glasses, and the man in the second row closes his eyes. Such
appearance variations make the examples difficult to learn, so
their classifications are postponed by the teachers. As a result,
Fig. 2(c) indicates that the unlabeled examples are generally
learned via a simple-to-difficult order, which is consistent with
our initial anticipation.

Finally, it can be noted that β0 and β1 in (14) are two criti-
cal tuning parameters in our proposed HyDEnT algorithm, so
here we investigate whether the output of HyDEnT is sensitive
to the variations of these two parameters. To be specific, we
change one of β0 and β1 from 100 to 103 while keeping the
other one fixed, and then examine the classification accuracies
generated by HyDEnT. The results presented in Fig. 3 clearly
indicate that HyDEnT is very robust to the variations of these
two parameters, so they can be easily tuned for practical use.

B. Single Teacher Versus Multiple Teachers

One feature of our HyDEnT method is that multiple teach-
ers are introduced to form a teaching ensemble, which is
better than simply employing single teacher. This makes

(a) (b)

Fig. 3. Parametric sensitivity of HyDEnT. (a) and (b) Classification accuracy
with respect to the change of β0 and β1, respectively.

HyDEnT stably yield satisfactory performance, especially in
the presence of noisy dataset.

We synthesize a NoisyGaussian dataset which is composed
of two data clusters generated from two Gaussian distri-
butions centered at (0, 0) and (2.5, 2.5), respectively. Each
Gaussian forms a class, and only one example in each class
is regarded as labeled (see Fig. 4). In this experiment, we
gradually add noise to the dataset by increasing the covari-
ance of two Gaussians, and then evaluate the robustness of
HyDEnT and different single teacher settings. Specifically, we
employ (10) as teaching model to, respectively, guide the prop-
agation process of HF and FLAP, and thus the two settings
with single teacher are denoted by single Teacher_HF and
single Teacher_FLAP accordingly.

From the results shown in Fig. 4, we observe that our
ensemble teaching strategy (i.e., HyDEnT) consistently gener-
ates higher accuracy than the two single teacher settings with
the noise level ranging from low to high. When the dataset is
relatively clean, namely the covariance matrix Cov = ( 0.5 0

0 0.5

)
,

it can be found that both single teacher settings and multi-
teacher ensemble are able to achieve almost 100% accuracy.
When more noises are introduced by the covariance matrix
Cov = ( 1 0

0 1

)
, we see that the accuracies of single Teacher_HF,

single Teacher_FLAP, and HyDEnT slightly drop by 4.5%,
3.5%, and 3.5%, correspondingly. However, if the dataset is
contaminated by much heavy noise as indicated in the last row
of Fig. 4, we see that the accuracy of single Teacher_FLAP
significantly descends to 81.0%. Such unsatisfactory result
happens because the propagation process is misled by the out-
liers located between the two classes, therefore many negative
examples are erroneously classified as positive as indicated by
the red circle in Fig. 4(h). This reveals that only employing
single teacher–learner pair is not safe for accurate propaga-
tion. In contrast, HyDEnT with ensemble teaching and hybrid
label propagation generates 92.5% accuracy although the noisy
data poses a great challenge for obtaining good result. From
this sense, we know that incorporating an ensemble of mul-
tiple teachers and learners helps to render stable propagation
results.

C. Comparison With Other Methods

In this section, we compare the proposed HyDEnT algo-
rithm with six representative propagation methods on six pop-
ular datasets, including UMIST [45], GTech,3 Scene15 [46],

3http://www.anefian.com/facereco.htm
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Fig. 4. Comparison of single-teacher and multiteacher settings on NoisyGaussian dataset under different covariances. Red and blue dots denote positive and
negative examples, respectively. Red triangle and blue circle represent labeled positive example and labeled negative example accordingly. The left, middle,
and right columns present the results of “single Teacher_HF,” “single Teacher_FLAP,” and the proposed “HyDEnT.” Different rows correspond to different
levels of noise controlled by the increased covariance.

Fig. 5. Some example images or frames in the adopted datasets including
UMIST, GTech, Scene15, NUS-WIDE, and HockeyFight. Each row displays
the examples belonging to one class in the corresponding dataset.

NUS-WIDE [47], HockeyFight,4 and ISOLET [48]. Among
them, the UMIST and GTech datasets are on face recognition,
Scene15 is on scene categorization, NUS-WIDE [47] focuses
on general image classification, HockeyFight is for violent
behavior detection, and ISOLET studies spoken letter recogni-
tion. The attributes of the adopted six datasets are summarized

4http://visilab.etsii.uclm.es/personas/oscar/FightDetection/index.html

in Table I, from which we can see that the employed datasets
cover a wide range of example quantity, category quan-
tity, investigated tasks, and example types. Some example
images/frames in the first five datasets are provided in Fig. 5.

The six baselines include classical propagation meth-
ods harmonic functions (HF) [18] and linear neighbor-
hood propagation (LNP) [6], state-of-the-art method Fick’s
law assisted propagation (FLAP) [17], recent graph-based
ensemble methodologies semi-supervised ensemble learn-
ing (SSEL) [23] and bipartite graph-based consensus max-
imization (BGCM) [49], and the most relevant teaching-to-
learn and learning-to-teach (TLLT) [36] that introduces single
teacher for label propagation. Note that HF and FLAP are
also the two learners in the implementation of our HyDEnT
algorithm, so comparing them with HyDEnT helps to see the
effect brought by the proposed teaching method. Besides, since
BGCM is an ensemble algorithm combining the outputs from
multiple models, we also use HF and FLAP as its two base
models to achieve fair comparison.

1) UMIST: The UMIST face recognition dataset consists of
totally 575 face images belonging to 20 individuals with dif-
ferent races, genders, and appearances. In our experiments, we
use the cropped 112 × 92 face images5 to compare the recog-
nition accuracies of HF, FLAP, LNP, SSEL, BGCM, TLLT,
and HyDEnT. Specifically, we randomly select 3, 6, 9, and 12

5http://www.cs.nyu.edu/ roweis/data.html
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TABLE I
OVERVIEW OF THE ADOPTED DATASETS

(a) (b) (c)

(d) (e) (f)

Fig. 6. Classification accuracies of all the compared methods on six popular datasets regarding image, video, and audio. (a) UMIST. (b) GTech. (c) Scene15.
(d) NUS-WIDE. (e) HockeyFight. (d) ISOLET.

images of each individual as labeled examples, and take the
remaining examples as unlabeled ones.

Throughout this paper, we build the identical 5-NN graph
for HF, FLAP, BGCM, TLLT, and HyDEnT on each dataset,
because it has been widely observed that a sparse graph usu-
ally leads to satisfactory performance [50], [51]. The number
of neighbors in the graphs for LNP and SSEL is set to 10,
as they operate on a different graph from HF, FLAP, BGCM,
TLLT, and HyDEnT. The tradeoff parameter α in BGCM is
tuned to 1 as suggested by Gao et al. [49]. The learning rate
γ for both TLLT and HyDEnT is tuned to 0.5. Similar to
Section VII-A, here we also use the pixel-wise gray value
feature to characterize each image, and observe the classifi-
cation accuracies of all the compared methods with different
sizes of labeled sets.

Every algorithm is independently implemented ten times, and
the reported accuracies and standard deviations are the mean
values of the outputs of these ten independent implementa-
tions. The performances of all the algorithms are presented in
Fig. 6(a), which suggests that our HyDEnT achieves the top level
performance among all the compared methods. BGCM comes

in the second place, and its accuracies are lower than HyDEnT
with margins approximately 6%, 5%, 4%, and 2% when l =
60, 120, 180, and 240, respectively. FLAP and HF also perform
worse than HyDEnT, so our proposed HyDEnT can improve
the results of either FLAP or HF by properly combining their
advantages in an ensemble teaching way. Furthermore, SSEL
and LNP achieve significantly worse results than HyDEnT, and
their standard deviations are also quite large. This indicates
that SSEL and LNP are very sensitive to the choice of initial
labeled examples. Comparatively, the error bars of HyDEnT
indicate that its standard deviations are very small, reflect-
ing that HyDEnT is stable and is able to obtain impressive
performance regardless of the initial labeled examples.

2) GTech: GTech face database contains the images of 50
people taken at the Center for Signal and Image Processing
at Georgia Institute of Technology. Each people has 15 color
images with cluttered background, and these 15 images cover
frontal and/or tilted faces with different facial expressions,
lighting conditions and scales. Here we use the cropped face
images for our experiments, which are further resized to the
resolution of 40 × 30.
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The accuracies of all the methods are particularly
investigated when l varies from 150 to 600. The compari-
son results presented in Fig. 6(b) indicate that our HyDEnT
is in the first place, which is followed by TLLT and BGCM.
Specifically, HyDEnT outperforms TLLT with a margin 4%,
3%, 2%, and 1% when l = 150, 300, 450, and 600, respec-
tively. Besides, it can be observed that HyDEnT is significantly
better than each of its two learners HF and FLAP, which also
demonstrates the strength of HyDEnT.

3) Scene15: Scene15 dataset contains the images of 15
natural scene categories including bedroom, kitchen, street,
store, and so on. Each category has 200–400 images, and aver-
age image size is 300 × 250 pixels. In our experiment, every
image is represented by a 72-D pyramid histogram of gradi-
ents (PHOGs) feature vector [52], and our task is to identify
which of the 15 scene categories it belongs to.

We compare the performances of various algorithm when
the number of originally labeled examples l changes from
300 to 750. Fig. 6(c) shows the results. Since scene recog-
nition is a very challenging task, all the compared methods
obtain relatively low classification accuracy on this dataset.
Among the comparators, we can see that HF, FLAP, and TLLT
achieve comparable performances. In contrast, the proposed
HyDEnT consistently beat all the baseline methods under dif-
ferent selections of l. Specifically, it can be noted that the
accuracies generated by our HyDEnT are higher than other
ensemble approaches like SSEL and BGCM, so HyDEnT can
effectively exploit the advantage of each of the adopted base
classifiers.

4) NUS-WIDE: The NUS-WIDE is a Web image dataset
created by Laboratory for Media Search in National University
of Singapore. In this dataset, the groundtruth label of every
image example has been manually annotated, and thus this
dataset is utilized here to evaluate the capability of an algo-
rithm on image classification. For our experiment, we only
reserve the classes that have more than 100 images, so a sub-
set of NUS-WIDE containing 47 254 images with 112 classes
is obtained.

Similar to the experiments on Scene15 dataset, here we also
use the 72-D PHOG feature vector to represent an image,
and implement the compared methods including HF, FLAP,
LNP, SSEL, BGCM, TLLT, and HyDEnT for ten times with
different choices of initially labeled examples. The experimen-
tal results are provided in Fig. 6(d), from which we see that
HF, FLAP, BGCM, TLLT, and HyDEnT achieve very simi-
lar performance. A notable fact is that when the number of
labeled examples is 11 200, the classification accuracy of our
HyDEnT on the remaining unlabeled images is as high as
83.87%, and this is a very impressive performance since NUS-
WIDE is a very challenging dataset focusing on general image
classification.

5) HockeyFight: In this section, we show that our method
can also be applied to video analysis. Detecting the violent
behaviors such as fighting and robbery is an important task
in video surveillance, so the HockeyFight dataset is employed
here to test the various compared methods on recognizing the
fighting behaviors during the hockey match. This dataset is
made up of 1000 video clips collected in hockey competitions,

among which 500 contain fighting behavior and 500 are non-
fighting clips. Therefore, the task of this dataset is to correctly
identify whether a video clip contains fighting behavior or
not. As suggested by Xu et al. [53], we utilize the motion
SIFT processed by kernel density estimation to form the action
descriptors, and then use the bag-of-words approach to char-
acterize each video clip as a histogram over 100 visual words.
As a result, every video clip in this dataset is represented by
a 100-D feature vector.

The experimental results are displayed in Fig. 6(e). We can
see that HF, FLAP, BGCM, TLLT, and HyDEnT generally
perform favorably to SSEL and LNP. The classification accu-
racies of HF are 84.00%, 87.30%, 90.65%, and 92.05% when
l = 100, 200, 300, and 400, respectively. After imposing a
single teacher on HF as suggested by TLLT, the accuracies
can be enhanced to 85.95%, 89.06%, 90.90%, and 92.10%.
However, if multiple teachers are incorporated as the proposed
HyDEnT, we see that the performance can be further improved
to 87.20%, 89.14%, 91.12%, and 92.66%. This reflects that the
teaching committee and hybrid label propagation inherited by
HyDEnT plays an important role in boosting the classification
accuracy.

6) ISOLET: In this section, we study the ability of HF,
FLAP, LNP, SSEL, BGCM, TLLT, and HyDEnT on English
spoken letter recognition. To this end, the ISOLET database
is adopted which consists of 7800 spoken letters “A”–“Z”
produced by 150 male and female speakers.

The accuracies averaged over ten implementations obtained
by HyDEnT and other baseline algorithms are displayed in
Fig. 6(f). We see that the performances of all the com-
pared methods can be improved when the number of labeled
examples gradually changes from small to large. The accu-
racy obtained by HF ranges from 77.76% to 94.13%, which
is slightly worse than FLAP and TLLT with the accura-
cies being 79.40%–94.49% and 79.24%–94.37%, respectively.
Although FLAP and TLLT have gained very encouraging
results, the proposed HyDEnT are still able to improve
their performances and its accuracies are 82.46%–95.58%.
Specifically, we note that when the available labeled exam-
ples are very scarce (e.g., l = 1300), the advantage of our
HyDEnT becomes more obvious than some very compet-
itive existing methods such as FLAP, BGCM, and TLLT.
Such superiority is due to the fact that HyDEnT arranges
more suitable curriculums for propagation than other meth-
ods, and this is very important when we have to classify a
large number of unlabeled examples given very few labeled
examples.

7) Significance Test: Above experiments have empirically
shown that the proposed HyDEnT performs better than the
compared baselines in most cases. In this section, we use the
paired t-test to statistically demonstrate such superiority of
HyDEnT to other methods.

The paired t-test is a statistical tool to determine whether
two sets of observations are essentially the same. In our
experiments, all the compared methods are independently
implemented ten times on different l for the six datasets, so
we may use paired t-test to examine whether the ten accu-
racies output by HyDEnT are significantly higher than those
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TABLE II
PAIRED t-TEST OF THE PROPOSED HYDENT TO THE COMPARED

ALGORITHMS (CONFIDENCE LEVEL: 0.9). “
√

” INDICATES THAT

HYDENT IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING

METHOD, AND “-” MEANS THAT THE PERFORMANCES

OF HYDENT AND THE CORRESPONDING

METHOD ARE COMPARABLE

generated by the comparator. Table II lists the test results of
HyDEnT versus every baseline algorithm, which suggests that
HyDEnT is significantly better than other methods in most
situations.

D. Illustration of Convergence

In Section V, we have theoretically proved that the designed
iterative BCD optimization process monotonically decreases
the objective function in (14) and finally converges to a sta-
tionary point. Here we plot the variation of objective values
[i.e., Q(S̄) in (14)] when the iteration proceeds on the above
six datasets including UMIST, GTech, Scene15, NUS-WIDE,
HockeyFight, and ISOLET. From the curves in Fig. 7, we see
that the objective value decrease rapidly on all the six adopted
datasets. This observation coincides with our previous theoreti-
cal findings and demonstrates that BCD is effective for solving
the ensemble teaching model in (14).

VIII. CONCLUSION

This paper proposed an ensemble teaching algorithm for
hybrid label diffusion. The teaching algorithm is formulated
as an optimization problem, which explicitly considers both
individuality of each teacher and shared common knowl-
edge among different teachers. Consequently, the incorporated
teachers are able to cooperate with each other to pick up the
overall simplest curriculum examples. Due to the efforts of the
teaching committee, all the unlabeled examples are logically

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Convergence process of the BCD method adopted by our HyDEnT
algorithm. (a) UMIST dataset. (b) GTech. (c) Scene15 dataset. (d) NUS-WIDE
dataset. (e) HockeyFight. (f) ISOLET dataset.

“learned” (i.e., classified) by different learners (i.e., propaga-
tion algorithms) via a simple-to-difficult order, and thus the
propagation quality can be improved. The experimental results
on several typical datasets reveal that the proposed approach
obtains higher classification accuracy than existing state-of-
the-art propagation methods, and this validates the rationality
and effectiveness of our ensemble teaching strategy.

REFERENCES

[1] X. Zhu and B. Goldberg, Introduction to Semi-Supervised Learning.
San Rafael, CA, USA: Morgan & Claypool, 2009.

[2] F. Dornaika and Y. E. Traboulsi, “Learning flexible graph-based
semi-supervised embedding,” IEEE Trans. Cybern., vol. 46, no. 1,
pp. 206–218, Jan. 2016.

[3] A. Gammerman, V. Vovk, and V. Vapnik, “Learning by transduction,”
in Proc. 14th Conf. Uncertainty Artif. Intell., Madison, WI, USA, 1998,
pp. 148–155.

[4] C. Gong et al., “Saliency propagation from simple to difficult,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015,
pp. 2531–2539.

[5] L. Cao, J. Luo, and T. S. Huang, “Annotating photo collections by label
propagation according to multiple similarity cues,” in Proc. 16th ACM
Int. Conf. Multimedia, Vancouver, BC, Canada, 2008, pp. 121–130.

[6] J. Wang, F. Wang, C. Zhang, H. C. Shen, and L. Quan, “Linear neigh-
borhood propagation and its applications,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 9, pp. 1600–1615, Sep. 2009.

[7] B. Wang, Z. Tu, and J. K. Tsotsos, “Dynamic label propagation for
semi-supervised multi-class multi-label classification,” in Proc. IEEE
Int. Conf. Comput. Vis., Sydney, NSW, Australia, 2013, pp. 425–432.

[8] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
Gaussian fields and harmonic functions,” in Proc. Int. Conf. Mach.
Learn., Washington, DC, USA, 2003, pp. 912–919.

[9] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Proc. Adv. Neural Inf. Process.
Syst., Whistler, BC, Canada, 2003, pp. 321–328.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 21,2020 at 08:56:58 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: ENSEMBLE TEACHING FOR HYBRID LABEL PROPAGATION 401

[10] C. Gong et al., “Deformed graph Laplacian for semisupervised learning,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2261–2274,
Oct. 2015.

[11] D. Wang, X. Gao, and X. Wang, “Semi-supervised nonnegative matrix
factorization via constraint propagation,” IEEE Trans. Cybern., vol. 46,
no. 1, pp. 233–244, Jan. 2016.

[12] J. L. Elman, “Learning and development in neural networks: The
importance of starting small,” Cognition, vol. 48, no. 1, pp. 71–99, 1993.

[13] F. Khan, B. Mutlu, and X. Zhu, “How do humans teach: On curriculum
learning and teaching dimension,” in Adv. Neural Inf. Process. Syst.,
Granada, Spain, 2011, pp. 1449–1457.

[14] T. Joachims, “Transductive inference for text classification using support
vector machines,” in Proc. Int. Conf. Mach. Learn., 1999, pp. 200–209.

[15] Y. Li and Z. Zhou, “Towards making unlabeled data never hurt,” in Proc.
Int. Conf. Mach. Learn., 2011, pp. 1081–1088.

[16] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Mach. Learn. Res., vol. 7, pp. 2399–2434, Nov. 2006.

[17] C. Gong, D. Tao, K. Fu, and J. Yang, “Fick’s law assisted propagation
for semisupervised learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 9, pp. 2148–2162, Sep. 2015.

[18] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CALD-02-107, 2002.

[19] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
Classifier Systems. Heidelberg, Germany: Springer, 2000, pp. 1–15.

[20] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca
Raton, FL, USA: CRC Press, 2012.

[21] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Computational Learning
Theory. Heidelberg, Germany: Springer, 1995, pp. 23–37.

[22] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[23] H. Woo and C. H. Park, “Semi-supervised ensemble learning using
label propagation,” in Proc. IEEE 12th Int. Conf. Comput. Inf. Technol.,
Chengdu, China, 2012, pp. 421–426.

[24] X. Pan, S. Hu, and Q. Mao, “An ensemble classification method based
on graph label propagation in clusters,” J. Inf. Comput. Sci., vol. 12,
no. 9, pp. 3455–3463, 2015.

[25] Y. Lin, X. Hu, and X. Wu, “Ensemble learning from multiple information
sources via label propagation and consensus,” Appl. Intell., vol. 41, no. 1,
pp. 30–41, 2014.

[26] A. Shinohara and S. Miyano, “Teachability in computational learning,”
New Gener. Comput., vol. 8, no. 4, pp. 337–347, 1991.

[27] F. J. Balbach and T. Zeugmann, “Teaching randomized learners,” in
Learning Theory. Heidelberg, Germany: Springer, 2006, pp. 229–243.

[28] A. Singla, I. Bogunovic, G. Bartók, A. Karbasi, and A. Krause, “Near-
optimally teaching the crowd to classify,” in Proc. Int. Conf. Mach.
Learn., Beijing, China, 2014, pp. 154–162.

[29] X. Zhu, “Machine teaching for Bayesian learners in the expo-
nential family,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 1905–1913.
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