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Multi-Manifold Positive and Unlabeled
Learning for Visual Analysis

Chen Gong , Member, IEEE, Hong Shi, Jie Yang , and Jian Yang , Member, IEEE

Abstract— Positive and Unlabeled (PU) learning has attracted
intensive research interests in recent years, which is capable
of training a binary classifier solely based on positive and
unlabeled examples when the negative data are absent or too
are diverse. However, the existing PU learning methods largely
overlook the relationship between the examples when handling
the unlabeled data, leading to insufficient exploitation of data
structure which actually contains useful distribution informa-
tion. Therefore, by following the multi-manifold assumption
which is observed in many real-world vision problems, this
paper proposes a novel algorithm termed “Multi-Manifold PU
learning” (MMPU), which assumes that the data belonging to
different classes lie on different underlying manifolds. As such,
the structural information revealed by the dataset is deployed,
which is helpful in deciding the labels of unlabeled examples.
Our MMPU contains two main steps, namely, multi-manifold
exploration and positive confidence training, where the former
is accomplished by computing the local similarity, structural
similarity, and semantic similarity of pairwise data, and the latter
establishes a binary classifier in reproducing kernel Hilbert space
based on the real-valued confidence level of each example to be
positive. Experimentally, we not only test the proposed MMPU
on five highly nonlinear synthetic datasets but also apply MMPU
to various typical computer vision tasks, including handwritten
digit recognition, violent behavior detection, and hyperspectral
image classification. The results demonstrate that MMPU can
obtain a superior performance compared to the state-of-the-art
PU learning methodologies.
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I. INTRODUCTION

RECENT years have witnessed a dramatic increase of
interest in the study of Positive and Unlabeled learning

(PU learning) due to its usefulness and effectiveness [1]–[3].
The target of PU learning is to build a binary classifier solely
based on positive and unlabeled training examples, so PU
learning is very useful when the negative training data are
absent or too diverse, such as

• Image Retrieval [4]: The query images constitute the
positive examples, while the candidate image examples
are treated as unlabeled as they contain both relevant and
irrelevant images to the queries. In this application, we do
not have explicit negative training examples, and thus PU
learning can be adopted to identify the images of user’s
interest in the unlabeled set.

• Automatic Face Tagging [2]: A set of user’s face images
(i.e. positive examples) are firstly provided by him-
self/herself, and then PU learning can be employed to
automatically tag the photos in the user’s photo album
by discriminating the user’s face from others’ faces.

• Hyperspectral Image Classification [5]: In remote sens-
ing, sometimes the users are only interested in detecting
one specific land cover type without considering other
classes (e.g. the class of “tree” for studying forest expan-
sion). In this case, it is easy to annotate some tree regions
(i.e. positive data), but is difficult to exhaustively and
representatively collect diverse non-tree regions (i.e. neg-
ative data), so PU learning can be utilized to conduct the
detection of positive data.

Note that in above typical PU learning applications, every
unlabeled example for building a PU classifier can be pos-
itive or negative, but the corresponding groundtruth label
is unknown during the training stage. Therefore, it poses a
great challenge for a PU learning algorithm to obtain the
accurate two-class decision function. Although PU learn-
ing can be regarded as a special case of semi-supervised
learning [6]–[8] when the labeled negative examples are
not provided, their solutions are quite different. This is
because the existing semi-supervised models cannot work
properly without the existence of negative training data, so the
algorithms that targets PU learning should be specifically
designed.
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Up to now, the existing PU learning methods can be
attributed to three main categories according to how the
unlabeled examples for training are dealt with. The methods of
first category follow a two-step strategy which firstly identify a
set of definite negative examples from unlabeled examples, and
then adopt a traditional supervised learning algorithm to learn
from these reliable negative examples as well as the original
positive examples. Here the first step is critical to determining
the final performance, and the inaccurate identification of
definite negative examples may lead to disastrous outputs. The
typical algorithms of this type include SEM [9], PEBL [10]
and ROC-SVM [11], which adopt “spy technique”, 1-DNF,
and Rocchio algorithms [12] to accomplish the first step corre-
spondingly. The second category regards the unlabeled data as
highly noisy negative data, among which the original positive
examples are deemed as mislabeled. Therefore, PU learning
is transformed to the learning problem with one-sided label
noise [13]–[15], as all known positive examples have clean
labels. The representative works include biased SVM [16],
weighted Logistic regression [17], and Loss Decomposition
and Centroid Estimation [18]. The third category formulates
PU learning as a cost-sensitive learning problem, in which
each unlabeled example is viewed as a weighted positive
example as well as a weighted negative example. A pioneering
work is [19], which develops the weighted SVM and allocates
different weights to the loss functions regarding positive and
negative classes. After that, a non-convex ramp loss for PU
learning is proposed in [20]. To fix the non-convexity issue,
a convex unbiased double hinge loss is presented in [2].
To further address the overfitting problem inherited by [2],
Kiryo et al. [3] suggest to force the loss value above zero, and
the induced loss is called non-negative risk estimator. In the
third category, every unlabeled example is injected to the loss
functions regarding both positive and negative classes, which
leads to the inappropriate penalties as the real label of an
example should be unique. Consequently, their performances
are still to be improved.

From above analyses, we see that different categories of
existing methods have their own shortcomings. More criti-
cally, they isolatedly treat each of the unlabeled examples
when computing the class probability or loss value. This
largely ignores the relationship between data points, and
thus the structural property carried by the training set has
not been fully exploited. To this end, this paper relates the
examples via manifold assumption and proposes a Multi-
Manifold PU learning (termed “MMPU”) algorithm. To be
specific, we assume that the data observations lie on multiple
smooth low-dimensional manifolds, and each of the manifolds
corresponds to a class. Such multi-manifold phenomenon has
been widely observed in various computer vision applications,
such as image set classification [21], gait analysis [22], [23],
one-shot face recognition [24], motion segmentation [25], and
object recognition [26]. Therefore, by discovering and utiliz-
ing the manifolds that support the entire dataset, our MMPU
is able to obtain very encouraging performance in a variety
of vision problems. The implementation of MMPU needs
two steps. In the first step, a graph on the positive and
unlabeled examples is built according to their similarities in the

feature space [27], [28], where the local similarity, structural
similarity and semantic similarity between pairs of examples
are particularly considered. Based on the established graph,
in the second step we treat the available positive examples
as queries and rank the remaining unlabeled data along the
manifolds, so that each of them will receive a confidence value
to be positive. We further utilize the recent positive-confidence
learning strategy [29] and formulate our problem as a risk
minimization framework, which can be easily solved in
the Repreducing Kernel Hilbert Space (RKHS). Due to the
proper utilization of multi-manifold structural information,
our MMPU yields superior performance to the state-of-the-
art PU methods on a wide range of vision problems such as
handwritten digit recognition, violent behavior detection, and
hyperspectral image classification.

II. RELATED WORK

In this section, we review the representative works on
multi-manifold learning and PU learning, as these two learning
frameworks are very relevant to the topic of this paper.

A. Multi-Manifold Learning

The early-staged manifold learning papers mainly work
on single manifold, such as the well-known Isomap [30],
LLE [31], and Laplacian Eigenmaps [32]. However, due to
the complexity of practical data, single manifold cannot com-
prehensively describe the entire data distribution, so many
researchers propose to use a mixture of manifolds to model the
data observations [33]. Up to now, multi-manifold assumption
has been intensively adopted in many learning tasks such
as clustering, dimensionality reduction, and semi-supervised
learning.

For clustering, it is assumed that each manifold represents a
class and spectral theory is usually employed to achieve such
clustering. For example, Wang et al. [34] employ spectral
decomposition to divide the dataset into several sub-manifolds.
Afterwards, they utilize the local geometric information of
data points to handle the intersections and obtain the improved
clustering results [35]. Besides, Gong et al. [36] estimate the
local tangent space by weighted low-rank matrix factorization,
and the estimated local structure is further used to assist
the discovery of global structure. The local property is also
employed by [37], in which local principal components analy-
sis is performed in the selected neighborhoods so that the
discrepancy between the principal subspaces of neighborhoods
can be decided.

For dimensionality reduction, Li et al. [38] maximize
the nonparametric manifold-to-manifold distances and mean-
while preserve the locality of manifolds to achieve
the discriminant multi-manifold dimensionality reduction.
Valencia-Aguirre et al. [39] extend the traditional Laplacian
Eigenmaps to multi-manifold situations by computing the
relationship among the examples of different classes based
on an intra-manifold comparison. Apart from intra-manifold
structure, the inter-manifold structure is also deployed by [22]
to jointly learn the embedding results from different manifolds.
Similarly, LLE is also adapted to multi-manifold cases based
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on the manifold-to-manifold distance and point-to-manifold
distance [40].

For semi-supervised learning, the first work considering
multiple manifolds is [41]. This work adopts a “cluster-then-
label” strategy and uses the Hellinger distance to depict the
intuition that two points on different manifolds or in the
regions with different density should be considered dissimilar.
Differently, Xing et al. [42] propose a novel multi-manifold
semi-supervised Gaussian mixture model by introducing a
local tangent space based geometrical similarity.

Multi-manifold learning has been broadly applied to a wide
range of visual applications. For example, Lu et al. [21]
propose the multi-manifold deep metric learning to recog-
nize an object of interest from a set of image instances
captured from varying viewpoints or under varying illumi-
nations. Lu et al. [24] also come up with a novel discrim-
inative multi-manifold analysis method for face recognition
from a single example by learning discriminative features
from the non-overlapping image patches. Goh and Vidal [25]
hypothesize that the point trajectories associated with dif-
ferent motions reside in different manifolds, and they cast
motion segmentation as a clustering problem on multiple
manifolds.

From above literature review, we see that multi-manifold
learning is beneficial for many learning algorithms to boosting
the performance, yet it has not been utilized by PU learning
to properly identify the positive and negative classes in the
unlabeled set.

B. Positive and Unlabeled Learning

PU learning is an emerging topic in weakly-supervised
learning, which aims to train a binary classifier by simply
harnessing positive examples and unlabeled examples. So far,
the developed algorithms can be divided into the following
three categories.

In the first category, some definite negative examples are
detected in the first step, and then a conventional supervised
classifier is applied to the detected negative examples as well
as the original positive examples in the second step. To accom-
plish the first step, Liu et al. [9] introduce an interesting “spy”
technique which sends “spy” examples from the positive set to
the unlabeled set so that the probability of an unlabeled exam-
ple belonging to the positive class can be estimated. Besides,
Yu et al. [10] explore the feature frequencies in positive set
and unlabeled set, and develop the 1-DNF technique to iden-
tify the definite negative examples. Moreover, Liu et al. [16]
and Xiao et al. [43] respectively adopt the naive Bayesian
classifier and K-means to determine the most likely negative
examples and positive examples in the unlabeled set. For
the second step, some traditional supervised algorithms such
as SVM are implemented repeatedly or all at once to fulfill
the binary classification [44]. Although the methods of first
category are simple, they suffer from a critical drawback that
the model output is strongly dependent on the quality of the
first step. If the extracted negative examples are inaccurate in
the first step, the classifier trained in the second step will be
severely biased.

The second category formulates PU learning as a learn-
ing problem with one-sided noisy labels. That is to say,
all unlabeled examples as treated as negative with incorrect
labels, and the positive examples are “clean”, i.e., without any
label noises. Here the examples that are originally positive in
the unlabeled set are regarded as mislabeled. Li et al. [16]
propose the biased SVM which imposes different regular-
ization parameters on the slack variables that control the
tolerance of in-margin examples or even errors. Similarly,
Lee and Liu [17] devise the weighted Logistic regression to
handle the noisy labels, and the weights are selected on a val-
idation set. However, the regularization weights for both biased
SVM and weighted Logistic regression are tuned via some
empirical or heuristic ways, so the model performance is very
sensitive to their choices. To solve this problem, Shi et al. [18]
propose an unbiased estimation of the true risk on PU datasets
by utilizing the techniques of loss decomposition and centroid
estimation. Considering that the positive examples are not uni-
formly sampled in many real-world applications, He et al. [45]
propose an instance-dependent PU algorithm in which the
probability of an example being positive is related to its feature
representation. The methods of second category require the
estimation of class prior in the training set, which could be
difficult and error-prone. An inaccurate estimation may hurt
the performance of PU algorithm.

The algorithms of third category transform PU learning to
a cost-sensitive learning problem, in which each unlabeled
example is viewed as a weighted positive example as well as a
weighted negative example. So far, the algorithms belonging to
this category have achieved the state-of-the-art performances.
The first work of this category is arguably [19], which pro-
poses the weighted SVM to assign corresponding weights to
the class-specific losses. After that, Plessis et al. [20] favor to
weight the per-class cost of every example according to the
estimated class priors and propose a non-convex ramp loss
to conduct PU classification. However, the non-convexity of
the loss function in [20] may lead to the difficulty for the
subsequent optimization, so a convex unbiased double hinge
loss is presented in [2], which is composed of a weighted
ordinary convex loss for unlabeled data and a weighted com-
posite convex loss function for positive data. The scalability
of this method is improved by a modified Sequential Minimal
Optimization (SMO) approach with a significant reduction in
memory and computation [4]. Unfortunately, [2] has a signifi-
cant drawback that it may easily lead to the overfitting problem
as the empirical risks of this method on training examples
might be negative. Therefore, Kiryo et al. [3] amend the loss
function in [2] by lower-bounding the loss value to be zero,
and the designed loss is called non-negative risk estimator.
Note that all the methods of this category simultaneously com-
pute the losses of every unlabeled example on both positive
and negative classes, so they inevitably introduce noises as the
groundtruth label of an example is unique.

Other typical PU models include [46] based on positive
margin, [47] based on generative adversarial learning, [48]
for multi-label ranking, and [49] for semi-supervised learn-
ing. From above analyses, we see that there are no
manifold-based PU algorithms that are specifically designed
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for vision applications. Besides, most of the existing PU
methods such as [2], [3], [5], and [18] directly learn the
model parameters on the PU dataset without sufficiently
exploiting the data distribution, so they are not likely to gen-
erate good performance when multi-manifold structure exists
in the dataset. Due to the existence of multiple manifolds,
the data distribution can be quite complicated, so the two-step
paradigm employed by our MMPU could be better which
firstly identifies the data distribution and then learns the model
parameters.

III. MULTI-MANIFOLD EXPLORATION

Let X ∈ R
d (d is data dimensionality) and Y ∈ {+1,−1}

be the input and output random variables, and P(X,Y ) be the
joint distribution of (X,Y ). Suppose we have a set of examples
X = {(x1, y1), · · · (xp, yp), (xp+1, yp+1), · · · , (xn, yn)} iden-
tically and independently drawn from the distribution P(X,Y ),
where {xi }n

i=1 are features of the n examples, and yi ’s are the
labels of the corresponding examples. Note that the first p
examples in X are assumed to be positive which are denoted
as the positive set P , and the remaining u = n − p examples
are unlabeled which are included in the unlabeled set U . There-
fore, given the hypothesis space as F , the target of PU learning
is to find a suitable decision function f ∈ F : R

d → R based
on X = P ∪ U so that the unseen test example x can obtain
the correct label assignment sgn( f (x)) ∈ {−1, 1}.

The proposed MMPU algorithm contains two steps, namely
multi-manifold exploration and positive confidence training,
and this section explains the details of the first step. The target
of multi-manifold exploration is to discover the underlying
multiple manifolds hidden in the dataset, so that they can
aid the subsequent model training on PU dataset. Since PU
learning is about binary classification, there are totally two
manifolds which correspond to the positive class and negative
class accordingly. To discover them, we build a graph G =
�V, E� over the training set X where V is the node set
consisted of all n examples and E is the edge set depicting
their similarities. Note that the traditional graph construction
techniques are not suitable here as they are based on the
assumption that there is only one manifold in the dataset.
Consequently, they cannot be directly used for discovering the
multi-manifold structure as the confusion will happen in the
intersections of manifolds.

Inspired by [35], we exploit the geometric information of
data to establish the graph such that different manifolds can
be separated as much as possible. To be specific, in the
intersecting regions, the data points on the same manifold will
have similar local tangent spaces while the tangent spaces
of examples belonging to different manifolds can be quite
dissimilar. Therefore, it is necessary to find the local tangent
space of a data point in advance.

A. Tangent Space Computation

Formally, the tangent space of x on a manifold is defined
as �x = span(Ub) where Ub is the first b singular vectors
of the covariance matrix formed by x and its neighbors in
Euclidean space. However, in the intersecting regions of two

manifolds, the two points of different manifolds can be quite
close, so their associated covariance matrices will be very
similar, which leads to the indistinguishable tangent spaces.
Therefore, [35] favors to employ the Mixtures of Probabilistic
Principal Component Analysis (MPPCA) to compute the local
tangent space of x, and such manipulation is based on two
observations, i.e. 1) the global nonlinear manifold can be
approximated by a series of local linear manifolds, and 2) the
principal component analyzer can successfully travel through
the intersecting regions of different manifolds.

Suppose the adopted MPPCA contains the mixture of M
principal component analyzers θm = {μm,Vm , σ

2
m}M

m=1, where
μm ∈ R

d , Vm ∈ R
d×b, and σ 2

m is a scalar. Therefore, for the
m-th analyzer (m = 1, 2, · · · ,M), the original d-dimensional
example x can be represented by a b-dimensional latent vector
x̃, namely

x = Vm x̃ + μm + �m , (1)

where μm represents the data mean, and the latent variable x̃
and the noise �m are Gaussians satisfying x̃ ∼ N (0, I) and
�m ∼ N (0, σ 2

mI), respectively. Consequently, the marginal
distribution of x is expressed as

P(x|m) = 1

(2π)d/2|Cm |1/2
× exp

�
−1

2
(x − μm)

�C−1
m (x − μm)

�
, (2)

where Cm is the covariance matrix that has the formation
Cm = σ 2

mI + VmV�
m . As a result, the parameters μm , Vm

and σ 2
m can be learned via maximizing the log-likelihood of

observing the totally n examples {xi}n
i=1, namely

Likelihood =
n�

i=1

ln

�
M�

m=1

κm p(xi |m)
�
, (3)

where κm (m = 1, 2, · · · ,M) are mixing proportions sat-
isfying κm ≥ 0 and

�M
m=1 κm = 1. Specifically, the well-

known Expectation Maximization (EM) algorithm is adopted
to estimate the parameters, which is consisted of the following
E-step and M-step.

1) E-Step: Given the parameters θm in the current iteration,
we have

Rim = κm p(xi |m)�M
m=1 κm p(xi |m)

, (4)

κnew
m = 1

n

�n

i=1
Rim , (5)

μnew
m =

�n
i=1 Rim xi�n

i=1 Rim
, (6)

where the superscript “new” denotes the updated variables.
2) M-Step: In this step, we update the parameters Vm and

σ 2
m as

Vnew
m = SmVm(σ

2
mI + T−1

m V�
mSmVm)

−1
, (7)

(σ 2
m)

new = 1

b
tr

�
Sm − SmVmT−1

m (Vnew
m )�

	
, (8)

where

Sm = 1

nκnew
m

�n

i=1
Rim (xi − μnew

m )(xi − μnew
m )�, (9)
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and

Tm = σ 2
mI + V�

mVm . (10)

Therefore, the example xi is assumed to come from the m
-th
local analyzer if P(xi |m
) = maxm P(xi |m), and the local
tangent space of xi (denoted as �xi ) is then spanned by the
row vectors of Vm
 , namely �xi = span(Vm
).

B. Multi-Manifold Graph Construction

Benefiting from the method for computing the tangent space
of an example introduced in Section III-A, we may build a
graph G that captures the multi-manifold structure hidden in
the entire dataset X . In our paper, the similarity of two points
in the graph are governed by the following three factors:

• Local Similarity: It is defined within a local area and
is determined by the Euclidean distance between two
examples.

• Structural Similarity: It is evaluated by the similarity of
the tangent spaces of two examples, which is critical to
distinguishing different manifolds in their intersections.

• Semantic Similarity: It is related to the high-level class
information carried by the examples.

The local similarity between xi and x j is binarized as

slocal
i j =

�
1, xi ∈ K N N(x j ) or x j ∈ K N N(xi )

0, otherwi se
(11)

where K N N(x) denotes the set of K nearest neighbors of
x measured by the Euclidean distance. We adopt K N N
graph as it is sparse which usually leads to satisfactory
performance [50]–[52].

Given the tangent spaces of xi and x j as �xi and �x j ,
the structural similarity of xi and x j is defined by

sstructural
i j =similari ty(�xi ,�x j )=



b�

k=1

cos(zk)

�h
, (12)

where h > 0 is a tuning parameter, and 0 ≤ z1 ≤ · · · ≤ zb ≤
π/2 are a series of principal angles between the two tangent
spaces �xi and �x j which is recursively defined as

cos(z1) = max
u1∈�xi ,v1∈�x j ,�u1�=�v1�=1

u�
1 v1 (13)

and

cos(zk) = max
uk∈�xi ,vk∈�x j ,�uk�=�vk�=1

u�
k vk, k = 2, · · · , b

(14)

where u�
k ui = 0 and v�

k vi = 0 for i = 1, 2, · · · , k−1.
The semantic similarity of a pair of examples depends on

whether the two examples have the same class label, and the
value is 1 if both of them are in the positive set P , namely

ssemant ic
i j =

�
1, xi ∈ P and x j ∈ P
0, otherwi se.

(15)

By taking above three factors into consideration, the integrated
similarity of xi and x j is formally defined as

wi j = max


slocal
i j sstructural

i j , I[ssemant ic
i j = 1]

�

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, xi ∈ P and x j ∈ P�
b�

k=1
cos(zk)

�h

, xi ∈ K N N(x j ) or x j ∈ K N N(xi ),

at most one of xi , x j ∈ P
0, otherwise

(16)

where “I[·]” is an indicator function which returns 1 if
ssemant ic

i j = 1. Therefore, the adjacency matrix W of graph
G is formed as (W)i j = wi j , and the (i, i)-th element of
the induced diagonal degree matrix D is computed by Dii =�n

j=1 Wi j .

IV. POSITIVE CONFIDENCE TRAINING

Given the graph G quantified by the adjacency matrix W,
we can get the confidence of every example being positive
via the technique of manifold ranking [53], [54]. Specifically,
we regard the initial positive examples in P as queries, and
rank the rest unlabeled examples in U according to their
similarities to the positive examples revealed by G. To this
end, an n-dimensional column vector y = (y1, y2, · · · , yn)

�
is employed where yi = 1 if xi ∈ P and yi = 0 if xi ∈ U .
Therefore, the ranking result can be obtained by

r =
�

I − α̃D−1W
	−1

y, (17)

where I is the identity matrix throughout this paper, α̃ is the
free parameter set to 0.99 [53], [54], and ri (i.e. the i -th ele-
ment of r) reflects the closeness of xi to the positive examples.
To make ri have probabilistic interpretation, we normalize
the vector r to the range [0, 1], and set the i -th elements
to 1 if xi ∈ P . Consequently, the variable r̄, which is the
normalized r, reveals the confidence of xi to be positive.

Here, the positive confidence value of every example
encoded in r̄ is able to reflect the class information to some
extent. However, the confidence values are continuous which
brings about ambiguity. Moreover, our target is to obtain a
well-trained PU classifier f that is generalizable to unseen test
data and can accomplish the out-of-sample prediction. There-
fore, in the following we aim to establish a binary classifier
on the data with positive confidence values. According to [55],
given a classifier f (x) and some loss function �(·), we want
to minimize the following classification risk:

R( f ) = EP(X,Y )[�(y f (x))], (18)

where EP(X,Y ) is the expectation over P(X,Y ). Empirically,
given n training examples {xi }n

i=1 and a decision function
f (x), above risk minimization process can be formulated as

min
f

n�
i=1

[�( f (xi))+ 1 − r̄i

r̄i
�(− f (xi ))]. (19)

where r̄i is the i -th element of vector r̄.
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To enable our MMPU to handle non-linear cases, we build
our model in the Reproducing Kernel Hilbert Space (RKHS).
An RKHS HK is a Hilbert space H of functions on
a set D with the property that for all x ∈ D and
f ∈ H, the point evaluations f → f (x) are continu-
ous linear functionals [56]. Consequently, according to the
Moore-Aronszajn theorem [57], there exists a unique positive
definite kernel K (·, ·) on D × D which has an important
property that ∀x1, x2 ∈ D, K (x1, x2) = �K (·, x1), K (·, x2)�H.
Therefore, if we employ the hinge loss as our loss function
(i.e., �( f (x), y) = max(0, 1 − y f (x)) = [1 − y f (x)]+), and
further introduce the regularizer � f �2

H to (19) to prevent
overfitting, the optimization model for MMPU is expressed as

min
f ∈Hk

n�
i=1

�[1 − f (xi )]+ + Ri [1 + f (xi )]+
� + λ

2
� f �2

H, (20)

where Ri = (1 − r̄i )/r̄i and λ is the nonnegative trade-off
parameter.

According to the representer theorem, the minimizer of (20)
can be written as the expansion of kernel functions on all n
training examples, namely

f (x) =
n�

i=1

αi K (x, xi )+ b, (21)

where α = [α1, α2, · · · , αn ]� denotes coefficient vector and
b is the biased term. In this work, we employ the graph
diffusion kernel [58], [59] instead of the traditional Gaussian
kernel so that the similarities of data reflected by the kernel are
compatible with their relationship on the manifolds, namely
K = (I− α̃D−1/2WD−1/2)−1 where the (i, j)-th element of K
refers to K (xi , x j ). By incorporating b into α as α = (α� b)�
and augmenting the kernel matrix K as K = (K 1) with
1 being the all-one column vector, (21) can be written in
a concise form as f (x) = Kα. As a result, by introducing
the slack variables {ξi }n

i=1 and {ζi }n
i=1, the primal problem

equivalent to (20) is

min
ξi ,ζi ,α

n�
i=1

(ξi + Riζi )+ λ

2
α�K�Kα (22)

s.t .
n�

j=1

α j K (xi , x j )+ b ≥ 1 − ξi , i = 1,· · ·, n (23)

−
n�

j=1

α j K (xi , x j )+ b ≥ 1 − ζi , i = 1, · · · , n (24)

ξi ≥ 0, ζi ≥ 0, i = 1, · · · , n (25)

where (23) and (24) correspond to the hinge losses on positive
and negative classes, respectively.

To solve above constrained optimization problem, we intro-
duce the Lagrangian variables β = (β1, · · · , βn), τ =
(τ1, · · · , τn), θ = (θ1, · · · , θn) and ψ = (ψ1, · · · , ψn), and
arrive at the following Lagrangian function:

J (α, ξ , ζ , b,β, θ , τ ,ψ)

= λ

2
α�K�Kα +

n�
i=1

ξi +
n�

i=1

Riζi

+
n�

i=1

βi (1−ξi −
n�

j=1

α j K (xi , x j )− b)

+
n�

i=1

θi (1 − ζi +
n�

j=1

α j K (xi , x j )+ b)

−
n�

i=1

ξiτi −
n�

i=1

ζiψi . (26)

To obtain the dual form, we compute the derivative of J
to b, ξi and ζi , and then set the results to zero, namely⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂J
∂b

= −
n�

i=1

βi +
n�

i=1

θi =0

∂J
∂ξi

=1 − βi − τi = 0

∂J
∂ζi

=Ri − θi − ψi = 0

(27)

which leads to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n�
i=1

βi =
n�

i=1

θi

βi + τi =1 ⇒ 0 ≤ βi ≤ 1 (∵ τi i s nonnegative)

θi + ψi =Ri ⇒0 ≤ θi ≤ Ri (∵ ψi i s nonnegative).
(28)

By substituting the above results into (26), we have the
reduced Lagrangian function as

J R(α,β, θ) = λ

2
α�K�Kα + β�1 + θ�1 − β�Kα + θ�Kα.

(29)

Taking derivative of the reduced Lagrangian function
J R(α,β, θ) with respect to α, we obtain

∂J R

∂α
= λK�Kα − K�β + K�θ , (30)

which implies

α = 1

λ

�
K�K

	−1
K�(β − θ), (31)

where
�
K�K

�−1
is replaced by

�
K�K + �I

�−1
in practical

implementation with � being a small positive number. By sub-
stituting (31) back to (29), we obtain the dual form of the
original problem (22)∼(25), which is

max
β,θ

n�
i=1

βi +
n�

i=1

θi − 1

2λ
(β − θ)�K̃(β − θ)

s.t .
n�

i=1

βi =
n�

i=1

θi

0 ≤ βi ≤ 1, i = 1, . . . , n

0 ≤ θi ≤ Ri , i = 1, . . . , n

where β and θ are dual variables and K̃ = K
�
K�K

�−1
K�.
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By merging β and θ into a vector h as h =
�
β
θ

	
, and also

denoting E1 =
�

In
In

	
and E2 =

�
In−In

	
with In being the n ×n

identity matrix, (32) is equivalent to

min
h

1

2λ
h�E2K̃E

�
2 h − 1�E�

1 h

s.t . 1�E�
2 h = 0

02n ≤ h ≤
�

1
R

�
(32)

where R = (R1, R2, · · · , Rn)
� and 02n represents the

2n-dimensional all-zero column vector. Note that (32) is a
standard quadratic programming problem, and it can be easily
solved via many off-the-shelf toolboxes. In this paper, we use
the “quadprog” command in Matlab to find its solution.

Algorithm 1: Pseudo-code of training the proposed
MMPU
Input: Number of neighbors K , trade-off parameter λ,

h = 0.01, α̃ = 0.99
Output: the optimal classifier parameter α

1 Construct the initial K NN graph G;
2 Compute slocal

i j , sstructural
i j and ssemant ic

i j via (11), (12)
and (15), respectively;

3 Compute the multi-manifold similarity matrix W via (16)
and the associated degree matrix D;

4 Find ranking result r via (17) ;
5 Compute graph diffusion kernel matrix

K = (I − α̃D−1/2WD−1/2)−1;
6 Find the solution of problem (32) via existing QP solver;
7 Compute the classifier parameter via (31)

The entire process for training the proposed MMPU classi-
fier is summarized in Alg. 1. In Alg. 1, the computational
complexity for building the graph G and calculating the
similarity matrix (i.e. Lines 1–3) is O(n2). The complexity
for obtaining r (i.e. Line 4) is at most O(n3) as (17) can be
transformed to solving a linear system. Line 5 takes O(n3)
complexity due to the inverse operation. Besides, the worst
complexity for the QP solver in Line 6 is O(4n2) by noting
that the Hessian matrix 1

λE2K̃E�
2 is sparse, and the complexity

of Line 7 is O(2n3 + 2n2). Therefore, the total complexity of
Alg. 1 is at most O(4n3 + 7n2).

V. EXPERIMENTS

In this section, we test the capability of our proposed
MMPU algorithm on both synthetic and real-world datasets.
The compared methodologies include:

• One-class SVM (OCSVM) [60]: In this method, only the
examples in P are employed to obtain the one-class
support vector machines classifier.

• Weighted SVM (WSVM) [19]: This is one of the tra-
ditional PU learning methods which assigns different
weights to an example w.r.t. both positive and negative
classes.

• Double Hinge Loss (DH) [2]: This convex estimator
is proved to converge to the optimal solution for PU
learning problem under the framework of empirical risk
minimization.

• Multi-Layer Perceptron With Non-Negative PU Risk Esti-
mator (NNPU-MLP) [3]: This method devises a novel
non-negative risk estimator and then applies it to the
multi-layer perceptron classifier.

• Linear classifier With Non-Negative PU Risk Estimator
(NNPU-Linear) [3]: The results are generated by incor-
porating the above-mentioned non-negative risk estimator
to the linear classifier.

• Loss Decomposition and Centroid Estimation
(LDCE) [18]: This is a recently proposed PU method
which decomposes the hinge loss to a label-dependent
term and a label-independent that help to estimate the
mean of the unlabeled data.

A. Synthetic Data

To visually compare the classification results of MMPU and
the baseline methods, we present their outputs on three 2D
datasets (i.e. TwoMoons, TwoLines, and TwoSpirals) and two
3D datasets (i.e. TwoKnots and Roll&Plane).

All 2D datasets are presented in the “initial” subfigures of
Fig. 1. The TwoMoons dataset consists of 640 examples, which
are equally divided into two moons, and each moon forms
a class. The entire dataset is contaminated by the Gaussian
noise with standard deviation 0.15. Among the 320 positive
examples, only 32 are included into P (see the red dots) and
the remaining positive examples are regarded as unlabeled.
The TwoLines dataset is made up of 402 examples distributed
along two lines (i.e. two classes) with the standard deviation 1,
and only 10 positive examples are explicitly labeled. More
seriously, the two lines intersect at the point (0, 0), which
may confuse the compared algorithms. The TwoSpirals dataset
contains two nonlinear spirals with each of them constituting a
class. In this dataset, 100 out of 500 original positive examples
are labeled, and the number of unlabeled examples is 900. The
intersecting point of these two spirals is also located at (0, 0).

All 3D datasets are illustrated in Fig. 2, in which the
subfigures of “initial” show the initial states of the investigated
datasets. From Fig. 2, we see that the TwoKnots dataset is
shaped like a knot composed of two crossing rings with
radius 0.8, and each ring represents a class. This dataset is con-
taminated by the Gaussian noise with standard deviation 0.3,
and only 9/721 ≈ 1.25% positive examples have been labeled.
The Roll&Plane dataset forms like a Swiss roll penetrated by a
plane, among which the plane represents the positive class and
the roll constitutes the negative class. Note that this dataset is
quite challenging as the two manifolds intersects four times in
the 3D space, and this poses a great difficulty for an algorithm
to correctly discriminate the data points from different classes.

For OCSVM, the Gaussian kernel is adopted, and the kernel
width is respectively tuned to 1, 0.001, 10, 0.01 and 0.01 on
TwoMoons, TwoLines, TwoSpirals, TwoKnots and Roll&Plane
datasets to achieve the optimal performance. The positive class
prior for implementing DH is estimated via the �1-distance
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Fig. 1. The performance comparison of various methods on 2D datasets. In each dataset, the “initial” subfigure presents the initial annotation of the
corresponding dataset, where the red dots represent positive examples and the black dots denote unlabeled examples. In the output of every compared method,
the red dots and blue dots denote the determined positive examples and negative examples, respectively.

minimization proposed in [61]. In NNPU-MLP and NNPU-
Linear, the γ for step size discount is set to the default
value 1, and [3] has shown that the final performance is not
sensitive to the choice of this parameter. In LDCE, we set the
regularization parameter λ to 1, 1, 1, 10, 1, and the tolerance β
to 0.01, 1, 10, 0.1, 0.01 on TwoMoons, TwoLines, TwoSpirals,
TwoKnots and Roll&Plane correspondingly by searching the
grid {0.001, 0.01, 0.1, 1, 10, 100}. For our proposed MMPU,
the regularization parameter λ is adjusted to 10, 1, 1, 1, 1 on

these five datasets, and the parameter K for graph construction
is 10, 10, 5, 7, 5 correspondingly.

The qualitative comparison of all methods on 2D and 3D
datasets are illustrated in Figs. 1 and 2. We can easily find that
almost all baseline methods fail in handling the datasets with
multiple nonlinear manifolds. The incorrect label transmission
from one class to another often occur, such as the WSVM,
DH, NNPU, LDCE on TwoMoons dataset, and the OCSVM,
DH, NNPU-Linear, LDCE on Roll&Plane. OCSVM can only
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Fig. 2. The performance comparison of various methods on 3D datasets. In each dataset, the “initial” subfigure presents the initial annotation of the
corresponding dataset, where the red dots represent positive examples and the black dots denote unlabeled examples. In the output of every compared method,
the red dots and blue dots denote the determined positive examples and negative examples, respectively.

identifies a small number of positive examples which are
enclosed by the regions supported by P , therefore the massive
positive examples in U are missing. Besides, the manifolds
reflected by some of the compared methods are discontinues,
such as OCSVM, DH and LDCE on TwoSpirals, where the
data points along one continues manifold is often incorrectly
interrupted by the examples of the other manifold. In addition,
WSVM performs worse than any other approach on TwoLines
and TwoSpirals datasets as it mistakenly classifies all data
to the positive class on both datasets. In contrast, only our
MMPU can discover the multiple manifolds and achieve
perfect classification on both 2D and 3D datasets. Overall,
we see that the existing methods cannot capture the underlying
multi-manifold structure hidden in the dataset, so they are very
likely to introduce classification errors along the manifolds or
at the intersecting regions. Due to the capability of exploring
multiple manifolds, our MMPU will not affected by the
manifold intersections and is able to successfully distinguish
the points belonging to different manifolds.

Such advantage of MMPU is also statistically verified by the
quantitative comparisons in Tab. I, from which we can clearly
observe that MMPU is much better than other methods on
all datasets, and the average accuracy of MMPU is almost
9% higher than the second best method (i.e. NNPU-MLP).

NNPU-MLP can achieve comparable results with our MMPU
on TwoLines and Roll&Plane datasets, but it is significantly
inferior to MMPU on the remaining three synthetic datasets.
Therefore, we see that proper exploitation of multi-manifold
is critical for our method to reach high classification accuracy.

B. Handwritten Digit Recognition

It has been widely acknowledged that the representations of
handwritten digits follow a concise manifold structure [62].
Therefore, in this section, we apply our MMPU method to
handwritten digit recognition, and compare its performance
with OCSVM, WSVM, DH, NNPU-MLP, NNPU-Linear and
LDCE. Specifically, we adopt the MNIST dataset for our
experiment. The MNIST dataset contains 70,000 digit images
across ten classes (i.e. “0”∼“9”), and the resolution of every
image is 28 × 28. We adopt the GIST descriptor to represent
these images and thus each image example is characterized by
a 512-dimensional feature vector.

Considering that two pairs of numbers including “2” vs.
“7” and “6” vs. “9” are quite similar which easily lead to
the confusion of various classifiers, we conduct two sets of
experiments on MNIST by applying all compared methods
to distinguish between “2” and “7”, and “6” and “9” in
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TABLE I

QUANTITATIVE EXPERIMENTAL RESULTS OF COMPARED METHODS ON FIVE SYNTHETIC DATASETS. THE AVERAGE
RESULTS OVER THE ALGORITHM OUTPUTS ON THE FIVE DATASETS ARE ALSO REPORTED. THE

BEST RECORD ON EACH DATASET IS HIGHLIGHTED IN BOLD

Fig. 3. Some examples of MNIST2&7 and MNIST6&9 datasets.

the original MNIST dataset. The two sets of experiments
are denoted as “MNIST2&7” and “MNIST6&9” which have
totally 14283 and 13834 examples, respectively. Some exam-
ple images of the two datasets are presented in Fig. 3. For
each experiment, we randomly select t = 30% and t = 60%
positive examples to form the positive set P and incorporate
the remaining 70% and 40% positive examples as well as all
negative examples to the unlabeled set U . Therefore, it can be
seen that the case of t = 30% is generally more challenging
then t = 60% as a large proportion of positive examples are
hidden in the unlabeled set U . Under each labeling rate t ,
we conduct five-fold cross validation on all compared methods
and report their average test accuracies and standard deviations
over the five independent implementations. To achieve fair
comparison, the selected positive examples and the dataset
splits are kept identical for all the compared methodologies.

The parameters of all investigated models have been
carefully tuned. The Gaussian kernel width for OCSVM
is set to the optimal value 1 by searching the grid
{10−3, 10−2, · · · , 103}. In NNPU-MLP and NNPU-Linear,
the parameter β for preventing overfitting is tuned to 0.5.
In LDCE, the regularization parameter λ and tolerance β are
set to 10 and 0.1, respectively. For the proposed MMPU,
we build the 10-NN graph, and the regularization parameter λ
is set to 1.

TABLE II

THE ACCURACIES OF VARIOUS METHODS ON MNIST2&7 DATASET WHEN
30% AND 60% POSITIVE EXAMPLES ARE LABELED. THE BEST

RECORD UNDER EACH NOISE LEVEL IS MARKED IN BOLD

The average accuracies achieve by all compared methods
on MNIST2&7 and MNIST6&9 are presented in Tab. II and
Tab. III, respectively. We can see that our MMPU achieves
very impressive results on these two datasets, and the obtained
accuracies are above 99% when the labeling rate t = 30%
and t = 60%. In contrast, OCSVM generally performs worse
than any other PU model as it ignores the unknown positive
examples in U and only assumes that the positive class is
revealed by the data in P . DH and NNPU-MLP are superior
to WSVM and NNPU-Linear because they are able to generate
nonlinear decision boundaries which are close to the optimal
solution. However, they are still inferior to our MMPU as they
are not capable of discovering the multi-manifold structure
hidden in the dataset. Another important observation from
Tabs. II and III is that although only a small fraction of the
original positive examples are revealed (e.g. 30%), our MMPU
algorithm can still touch very high classification accuracy,
which again demonstrates the importance of utilizing manifold
property of dataset for PU learning.

C. Violent Behavior Detection

Recently, there is a surge of research interest in detecting
the violent behavior in a video sequence as this technique is
very useful for protecting public safety. Therefore, we adopt
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TABLE III

THE ACCURACIES OF VARIOUS METHODS ON MNIST6&9 DATASET WHEN
30% AND 60% POSITIVE EXAMPLES ARE LABELED. THE BEST

RECORD UNDER EACH NOISE LEVEL IS MARKED IN BOLD

Fig. 4. Some example video frames in the HockeyFight dataset.

the HockeyFight1 dataset to test the ability of all methods
in recognizing the fight behavior. The adopted HockeyFight
dataset contains 1000 video clips collected in ice hockey
competitions, of which 500 contain fight behavior and 500 are
normal non-fight sequences. The task of our experiment is to
determine whether the fight behavior appears in given video
clip of this dataset. From the examples provided in Fig. 4,
we see that this dataset is quite challenging, as the crowded
scenes with multiple interactive athletes may not represent
the fighting behavior, while the scenes with only two athletes
may contain the violent fighting activity. By following [50]
and [63], we employ the space-time interest point (STIP) and
motion SIFT (MoSIFT) as action descriptors, and thus each
video clip of the dataset can be represented as a histogram
over 100 visual words by further using the Bag-of-Words
(BoW) quantization. Therefore, every video clip in this dataset
is characterized by a 100-dimensional feature vector.

Similar to the experiment in Section V-B, here we also
investigate the performances of all compared methods on two
different labeling rates such as t = 30% and t = 60%, and
conduct five-fold cross validation on these methods so that
they are trained on 80% video examples and tested on the
remaining 20% examples. The dataset splits are kept identical
for all methods including OCSVM, WSVM, DH, NNPU-
MLP, NNPU-Linear, LDCE and our MMPU. The average
test accuracies achieved by them are compared in Fig. 5.
From Fig. 5(a), we notice that MMPU touches the highest
recognition accuracy 84.8% when t = 30%, which leads
the second best DH with a margin of 3%. This indicates
that MMPU is effective when the labeled positive examples

1http://visilab.etsii.uclm.es/personas/oscar/FightDetection/index.html

Fig. 5. The test accuracies of various methods on HockeyFight dataset.
(a) and (b) show the results when t = 30% and t = 60%, respectively. The
best record under each t is highlighted in red, and the second best record is
indicated in blue.

are scarce. When the number of positive examples increases
so that the labeling rate t = 60%, the situation becomes
simpler than the setting of t = 30%, as more positive examples
are observed. As a result, the accuracy of WSVM can be
boosted to 87.3%, which is slightly better than MMPU as
revealed by Fig. 5(b). The reason for the good performance
of WSVM under t = 60% is that the weights of an example
regarding positive class and negative class can be precisely
estimated if sufficient positive examples are disclosed, and
thus a substantial performance gain can be observed. Overall,
our proposed MMPU is among the top two methods on the
HockeyFight dataset, which is a very impressive result.

Furthermore, we also investigate the parametric sensitivity
of our method to the two key tuning parameters K and λ,
where K governs the number of neighbors for graph con-
struction and λ determines the weight of model complexity
regularizer in (20). Specifically, we change one of them from
small to large while keeping the other one to a constant value,
and then examine the average test accuracy output by MMPU.
Both situations of t = 30% and t = 60% are studied, and
the results are presented in Fig. 6. From this figure, it can
be clearly observed that the performance of MMPU is not
sensitive to the variations of these two parameters within
a wide range, so these parameters can be easily tuned for
practical applications.
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Fig. 6. The parametric sensitivity of (a) K and (b) λ of our MMPU under
the labeling rates t = 30% and t = 60%.

TABLE IV

THE ACCURACIES OF VARIOUS METHODS ON Japserridge DATASET WHEN

30% POSITIVE EXAMPLES ARE LABELED. THE BEST AND SECOND

BEST RECORDS FOR EACH LAND TYPE IS MARKED

IN RED AND BLUE, RESPECTIVELY

TABLE V

THE ACCURACIES OF VARIOUS METHODS ON JapserRidge DATASET WHEN

60% POSITIVE EXAMPLES ARE LABELED. THE BEST AND SECOND

BEST RECORDS FOR EACH LAND TYPE IS MARKED
IN RED AND BLUE, RESPECTIVELY

D. Hyperspectral Image Classification

Hyperspectral image classification is an important task in
remote sensing area, of which the target is to classify every
pixel into one of several pre-defined land types (i.e. classes)
according to its spectral feature. Most existing works aim to
identify all appeared land types in an hyperspectral image,
however in some cases we only need to figure out one specific
land category for certain task-driven purpose. As mentioned
in the introduction, at this time we may simply treat the
class of interest as positive and take the remaining pixels
(i.e. examples) as unlabeled.

For our experiment, we adopt a typical hyperspectral dataset
JapserRidge for model evaluation. This dataset is formed by a

Fig. 7. The experimental results of compared methods on JasperRidge dataset
in terms of four classes such as “soil”, “water”, “tree”, and “road” with
t = 60%. The determined positive pixels and negative pixels are represented
in red and blue, respectively. “GT” is short for groundtruth.

remotely sensed image with the resolution of 100 × 100, and
each pixel is recorded by totally 198 spectral channels ranging
from 380 nm to 2500 nm. This scenery contains four categories
including “tree”, “soil”, “water”, and “road”, therefore every
method should run four times by taking each of the four classes
as positive. Similar to above experiments, we also investigate
two cases where the labeling rate t = 30% and t = 60%.

The accuracies of all methods on classifying the four
categories and their averages are presented in Tabs. IV and V.
We can see that our MMPU generally lies in the first or
second place among the compared methods regarding different
classes, therefore its averaged accuracy on all classes is
higher than any other comparator. Although NNPU-MLP and
WSVM can obtain the top level results on some classes, their
outputs are not stable as they cannot consistently produce high
accuracy on all categories. Consequently, they are worse than
MMPU in terms of average accuracy. Furthermore, the classifi-
cation results generated by different approaches when t = 60%
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are visualized in Fig. 7. We see that OCSVM cannot yield
complete regions as it assumes that the positive class is only
represented by the examples in P and thus largely ignoring the
potential positive pixels in U . NNPU-MLP and NNPU-Linear
cannot identify tree and road regions as all pixels are classified
as negative by them. The road region is also neglected by
LDCE as the road pixels only account for a small fraction
of total image pixels. In contrast, the outputs of our MMPU
are very close to the groundtruth on all classes, and the small
regions in each class are also precisely detected.

VI. CONCLUSION

This paper proposes a novel PU learning algorithm termed
MMPU based on the multi-manifold assumption which
is ubiquitous in many typical computer vision problems.
By assuming that the data points of different classes lie on
different manifolds, MMPU is quite effective in discovering
the underlying structure of datasets which helps to boost
the model discriminability. By comparing MMPU with rep-
resentative state-of-the-art PU methods on both synthetic and
practical datasets, the superiority of the developed MMPU can
be easily observed. In the future, we may devise an accelera-
tion technique to efficiently find the multi-manifold structure
as the involved EM step for tangent space computation is
relatively slow. Besides, since the multi-manifold property can
often be found in multi-view learning [64] and multi-label
learning [65], we may further discover their relationship and
apply our method to more learning paradigms.
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