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Abstract

Training with confident positive-labeled instances has received a lot of atten-

tion in Positive and Unlabeled (PU) learning tasks, and this is formally termed

“Instance-Dependent PU learning”. In instance-dependent PU learning, whether

a positive instance is labeled depends on its labeling confidence. In other words,

it is assumed that not all positive instances have the same probability to be in-

cluded by the positive set. Instead, the instances that are far from the potential

decision boundary are with larger probability to be labeled than those that are

close to the decision boundary. This setting has practical importance in many

real-world applications such as medical diagnosis, outlier detection, object de-

tection, etc. In this survey, we first present the preliminary knowledge of PU

learning, and then review the representative instance-dependent PU learning

settings and methods. After that, we thoroughly compare them with typical

PU learning methods on various benchmark datasets and analyze their perfor-

mances. Finally, we discuss the potential directions for future research.
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1. Introduction

In binary classification, a conventional supervised model is trained on a set

of positive data and negative data. In contrast, Positive and Unlabeled learn-

ing (PU learning) works on the training set which only contains some labeled

positive instances and many unlabeled instances. Here unlabeled instances can5

be positive or negative ones, but their real labels are unknown to the learning

algorithm [1, 2]. Therefore, the main difference between PU leaning and tradi-

tional supervised learning is that a PU learning algorithm is not accessible to

the explicitly labeled negative instances.

PU learning is quite effective when the negative training instances are miss-10

ing or extremely diverse. Recently, PU learning has attracted intensive atten-

tion, because PU data naturally appear in many important applications. For

example:

(1) Medical diagnosis: The medical record of a certain patient only contains

the diagnosed diseases of the patient in the history, but does not include15

diseases that the patient does not suffer from. If a patient is not diagnosed

with a specific disease in the medical record, it does not mean that the

patient has no such disease [3].

(2) Fake comment detection: The fake comment detection system of a

shopping website can only identify certain definite fake comments, (a.k.a.20

positive instances), but cannot return valid or real comments [4, 5]. Con-

sequently, there is only a small portion of positive data available, and the

rest of the unlabeled remarks can be real or fake, so PU learning can be

used to construct more accurate detector to distinguish fake comments

from the real ones.25

(3) Remote sensing: In remote sensing, we may only focus on identifying

a particular type of land (e.g., vegetation for monitoring the forest ex-

pansion) from a hyperspectral image [6]. In this case, the negative class
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representing “non-forest areas” are diverse, so it is difficult to adequately

collect various representative non-forest areas.30

(4) Multi-label learning: In multi-label learning, it is often the case that the

provided labels are incomplete and the absence of a label does not imply

that this label is not proper for the example. Therefore, PU learning can

be employed to discover the hidden correct labels based on the known

labels [7, 8].35

From the above examples, we see that PU learning is very important in solv-

ing many real-world problems. In fact, most of the conventional PU learning

approaches assume that the positive-labeled data are uniformly picked up from

the positive distribution in a random way [9, 10]. However, in many practical

applications of PU learning nowadays, the positive data are not uniformly gen-40

erated any more. Instead, they are selected in a biased way [11, 12, 13]. For

example, in disease diagnosis, the doctors are more likely to annotate the cases

that are definitely illness or healthy. Therefore, instance-dependent PU learning

has gained much attention which assumes that whether a positive example will

be observed depends on its feature. One simple case is that a data point that45

is far away from the potential decision boundary has a larger probability to be

annotated.

Inspired by these important applications, researchers are very interested in

analyzing instance-dependent PU learning settings and have devised a variety of

techniques to solve this problem. Without going too deep, our survey firstly in-50

troduces traditional PU learning (Section 2), and then provides a comprehensive

review on instance-dependent PU learning regarding labeling mechanism (Sec-

tion 3), typical algorithms (Section 4), relationship with other fields of machine

learning (Section 5), and empirical comparisons on some benchmark datasets

(Section 6).55

In fact, there are several existing literature surveys on PU learning, such as

[14, 15, 16, 17]. However, they only review the conventional instance-independent

PU learning without touching the recent advances in more realistic instance-
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dependent PU learning. Therefore, we want to use this survey to summarize

the recent progresses on instance-dependent PU learning and draw more re-60

searchers’ attention on this useful and interesting topic.

Some major notations that will be later used are displayed in Table 1.

Table 1: Important symbols used in this survey.

Symbols Definition

x The feature vector of an instance

y True label of an example

ȳ Observed label of an example

s Indicator variable for labeled instance, where

s = 1 means it is labeled, and 0 otherwise.

c = P (s = 1|y = +1) Label frequency of positive data

P (x|y = +1) Class conditional distribution

α = P (y = +1) Class prior of positive data

2. A Brief Review on PU Learning

Instance-dependent PU learning is a particular setting of PU learning. There-

fore, before formally introducing instance-dependent PU learning, we shall briefly65

review the setting of traditional PU learning by discussing the generation pro-

cess of PU training data and the existing methods for exploiting unlabeled data.

2.1. Training Set Generation

Most of the methods developed for PU learning follow two well-known sce-

narios to generate positive data and unlabeled data, namely, case-control sce-70

nario [18] and censoring scenario [17]. The algorithms developed under these

two scenarios are displayed in Table 2.

Case-control scenario: This scenario is based on a two-sample configu-

ration. In this scenario, the positive instances in the positive set SP and the

unlabeled instances in the unlabeled set SU are independently drawn from the75
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Table 2: Summary of algorithms under different scenarios.

case-control scenario [1], [18], [19], [20], [21], [2], [22], [23], [24], [25]

censoring scenario [17], [26], [27], [28], [29], [30], [31], [11], [32]

class conditional distribution P (x|y = +1) and the marginal distribution P (x),

respectively, namely [22, 29, 11],





SP = {xi}ki=1
i.i.d.∼ P (x|y = +1),

SU = {xi}ni=k+1
i.i.d.∼ P (x),

(1)

where k is the size of set SP and the size of set SU is n− k.

Censoring scenario: This scenario is based on a one-sample configuration,

so it is also known as single-training-set scenario. In this scenario, the positive80

instances and unlabeled instances are drawn from the same set S = {xi}ni=1,

where n represents the size of S. A fraction α from the positive instances

(instances with actual hidden label +1) are selected to construct the positive

set, while the other fraction 1 − α as well as all negative instances (instances

with actual hidden label −1) are used to construct the unlabeled set. In other85

words, if the actual hidden label of instance x is +1, it will be labeled with the

probability of α. If the actual hidden label of instance x is −1, such instance

will never disclose its label, and these instances will belong to the set SU with

probability 1.

From the descriptions above, we see that both case-control and censoring90

scenarios can generate a set of labeled positive examples and unlabeled exam-

ples. However, the underlying distributions for generating positive examples are

different. Specifically, case-control scenario adopts a two-sample setting and the

positive data are generated from the conditional probability P (x|y = +1). In

contrast, censoring scenario follows a one-sample setting and assumes that both95

positive and unlabeled data are generated from the marginal distribution P (x),

where positive data are disclosed with a probability of α [11, 29].
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2.2. Methods of Exploiting Unlabeled Data in Traditional PU Learning

The commencing study on PU learning reveals the truth that even without

the access to explicitly labeled negative data, the unlabeled data has a huge100

impact on the accurate training of a binary classifier [33]. There are three

well-known strategies for exploiting the unlabeled data in PU learning meth-

ods, namely, two-step strategy, cost-sensitive strategy, and one-sided label noise

conversion strategy.

Just as the name implies, the two-step strategy consists of two steps. The105

first step is the identification of reliable negative instances from the unlabeled set

[34]. The reliable negatives can be defined as the instances that are completely

different from the labeled positive ones [35, 36]. Regarding these instances, we

are pretty sure that they are not positive instances. In the second step, suitable

classifier is applied to the dataset with positive instances and the detected re-110

liable negative instances to perform traditional supervised learning [1, 32, 37].

Some representative works of two-step technique are [38, 39, 40]. The prime goal

of this technique is to correctly identify reliable negative instances. The draw-

back is also obvious, namely, incorrect recognition of reliable negative instances

would lead to a substantial decrease of the algorithm performance.115

In cost-sensitive PU learning technique, the training instances are prop-

erly reweighted. As a result, the observed biased data distribution carried by

the PU training set can be calibrated by reweighting the training instances,

so that the actual data distribution can be estimated. Here class prior (e.g.,

α = P (y = +1)) plays an important role. Unfortunately, the prior is usually un-120

known in advance and should be pre-estimated [19, 41, 42]. The representative

approaches include Weighted Logistic Regression [32, 43], Cost-sensitive posi-

tive and unlabeled learning [23] and Weighted Support Vector Machine [17, 44]

which adjust the weights of data by applying different pre-defined rules. How-

ever, the adjustment of weighting parameters is tricky, which may lead to poor125

performance of the model [30]. The most recent works focus on designing un-

biased risk estimator [19, 20, 21]. Such methods are able to avoid the defects

associated with adjustment of the weighting parameters and also achieve the
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improved performance.

The third category treats unlabeled instances as negative instances and then130

transform the PU learning problem into a label noise learning problem [45, 46,

47]. That is to say, all the labeled positive instances are positive and are truly

labeled. However, all unlabeled instances are considered as negative, so the

positive instances in the unlabeled set are mistakenly labeled as negative. The

noise lies in only observed negative class. Therefore, we say that the noise is135

one-sided [48]. For example, Up to now, various techniques are developed to

eliminate one-sided label noise. For example, [30] and [29] treat all unlabeled

instances as noisy negatives and then find an unbiased risk estimator via loss

decomposition and centroid estimation.

3. Labeling Assumptions of Instance-Dependent PU learning140

Instance-dependent PU learning is a particular setting of PU learning which

can be enabled by making certain compulsory assumptions of training set gener-

ation process and adopting some specific labeling techniques. In this section, we

will review in detail the assumptions about the labeling mechanism for instance-

dependent PU learning.145

3.1. Selected Completely at Random

Selected Completely at Random (SCAR) labeling mechanism considers a

set of labeled instances as a consistent subset of the positive set [17], which

means that the instances are selected randomly from the positive distribution,

regardless of their attributes. The probability of choosing a positive instance150

e(x) is a constant which is equivalent to the label frequency c, as shown below:

e(x) = P (s = 1|x, y = +1) = P (s = 1|y = +1) = c. (2)

According to SCAR mechanism, the probability of an instance to be labeled

is directly proportional to the probability that the instance is positive, namely,

P (s = 1|x) = cP (y = +1|x). (3)
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Above relationship permits the employment of non-traditional classifiers [49]

in instance-dependent PU learning. Non-traditional classifiers can be learned155

by treating all unlabeled instances as negative with label noise. These classifiers

can predict the probability of an instance to be labeled (e.g., P (s = 1|x)). Non-

traditional classifiers have the following worth-mentioning features:

• Non-traditional classifiers preserve the property of ranking order among

the instances [17], namely,160

P (y = +1|x1) > P (y = +1|x2)⇔ P (s = 1|x1) > P (s = 1|x2).

• If the label frequency c is known, the probabilistic non-traditional classifier

can be converted to the traditional classifier by dividing it with label

frequency c, namely P (y = +1|x) = P (s=1|x)
c .

SCAR mechanism is introduced as an analogy with the Missing Completely165

at Random (MCAR) hypothesis, which is a common method used when dealing

with missing data [50, 51]. In spite of several similarities between both assump-

tions, there is a significant difference between them. In MCAR hypothesis, the

missing variable is not dependent on the value of the variable. Differently, in

SCAR mechanism, the missing variable depends on the value of the missing170

variables, because all the negative instances are missing in the case of instance-

dependent PU learning [15]. Kato et al. [24] implemented SCAR assumption in

instance-dependent PU learning by developing an average technique for incor-

porating a distribution over class prior instead of calculating the exact value of

the class prior.175

3.2. Selected At Random

Selected at Random (SAR) is a well-known labeling mechanism which as-

sumes that the positive instances are selected randomly from positive distri-

bution and the probability of picking an instance depends on the value of its

attributes [52]. SAR labeling mechanism is based on the reality that several180

real-world applications are affected by the bias. For example, whether a patient

having a certain disease visits a doctor depends on his/her financial status and
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Table 3: Taxonomy of existing instance-dependent PU learning methods.

Scoring Function Algorithms [24], [53], [11], [25]

Bayesian Optimal Relabeling [27]

on the severity of his/her disease symptoms. The bias is fully dependent upon

the characteristics of the instances [24]. In SAR mechanism, a notion called

“propensity score” e(x) is usually employed, which is mathematically defined as185

e(x) = P (s = 1|x, y = +1).

4. Algorithms for Instance-Dependent PU Learning

Up to now, there are mainly two well-known types of the algorithms which

aim to handle instance-dependent PU learning, namely Scoring Function Al-

gorithms and Bayesian Optimal Relabeling. Some major algorithms belonging190

to these two types are summarized in Table 3 and they will be detailed in the

following.

4.1. Scoring Function Algorithms

Scoring function is a common tool used in instance-dependent PU learning.

Traditional PU learning case can be converted to instance-dependent PU learn-195

ing by inserting a scoring function. The following are well-known algorithms for

instance-dependent PU learning using scoring functions as standard tools.

PU learning with a Selection Bias (PUSB): It is quite difficult to learn

the Bayesian optimal classifier in the presence of selection bias from the tradi-

tional PU learning methods. To tackle this issue, Kato et al. [24] devised a200

novel algorithm, known as PUSB algorithm. PUSB algorithm learns a scoring

function that retains the order caused by the class posterior under mild assump-

tions, and can be used as a classifier by associating a suitable threshold with

it. However, it is impossible to calculate the class posterior in the presence of

selection bias, even if the class prior α is known.205
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Therefore, Kato et al. [24] introduces a new concept of partial identification

in their PUSB algorithm in instance-dependent PU learning. According to

partial identification, it is better to extract certain valuable information of class

posterior P (y = +1|x) instead of calculating the class prior to learn the classifier.

Partial identification can be represented by the following equation:210

r(x) =
P (x|y = +1, s = 1)

P (x)
, (4)

where r(x) is the density ratio.

If we can calculate r(·), we can extract the total order of the set caused by

P (y | ·), even if we are unable to estimate P (y | ·). For two instances xi 6= xj ,

the characteristic of preserving the order of the scoring function of instances is

shown as:215

P (y = +1|xi) ≤ P (y = +1|xj)⇔ r(xi) ≤ r(xj). (5)

Kato et al. [24] recommended the estimation of r and used it as a scoring

function to capture the total order caused by P (y = +1|x). After obtaining the

observed value of scoring function r̂, a threshold θ ∈ R was carefully chosen,

leading to the final classifier h(x) = sign(r(x) − θ). They also proposed a

method to select θ based on data.220

At the end, they modified the pseudo classification risk used in traditional

PU learning [19, 20] as:

Rbias
PU (f, l) = αEbias

P [l(f(x),+1)]− αEbias
P [l(f(x),−1)]− Eu[l(f(x),−1)], (6)

where Rbias
PU (f, l) is the pseudo classification risk used in instance-dependent PU

learning, α is the class prior, Ebias
p is the expectation over p(x|y = +1, s = 1),

Eu is the expectation over P (x), `(·) is a loss function, and f is a decision func-225

tion in traditional PU learning.

SAR-PU: Selected at Random Positive-Unlabeled (SAR-PU) is a common

instance-dependent PU learning algorithm designed by Bekker et al. [53]. The

propensity score is also used as a scoring function by Gong et al. [11] in their230

recent study on instance-dependent PU learning. Bekker et al. [53] used SAR
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labeling mechanism in this algorithm. According to SAR labeling mechanism,

the probability of existence of all positive instances is not the same. The prob-

ability of a positive instance being labeled depends on its attributes. To enable

instance-dependent PU learning, they used a scoring function known as propen-235

sity score, of which the concept is taken from a causal inference survey [54].

Propensity score is denoted by e(x) and can be mathematically represented as:

e(x) = P (s = 1|y = +1, x). (7)

The propensity score is limited to the positive class only, which is the biggest

difference from the causal inference. Unlike the causal inference, the nega-240

tive instances are not weighted with propensity score in instance-dependent PU

learning, because the probability of labeling of negative instances is zero in

instance-dependent PU learning. For each labeled instance with a propensity

score e(x), it is expected that there would be 1
ei

positive instances, of which

1
ei−1 are not selected for labeling. This approach adopts count to calculate the245

accurate number of instances along-with their relevant propensity score from

the observed positive instances.

Propensity scores can only be learnt from PU data by making certain as-

sumptions: for example, if the propensity score of a random instance is small,

it is impossible to know whether an instance is labeled or not. Therefore, the250

propensity score needs to rely on fewer attributes than the finally output clas-

sifier [55]. One of the simplest methods to learn propensity score is to consider

that the propensity function depends on the propensity attributes, which are

the subset of attributes, namely,





P (s = 1|y = +1, x) = P (s = 1|y = +1, xe),

e(x) = e(xe),
(8)

where xe is the propensity attribute.255

The propensity-weighted technique can be analyzed in the following two

common cases in SAR-PU algorithm, namely, the propensity score is known

and the propensity score is unknown.

11

                  



When the propensity score is known, the propensity weighted estimator is

calculated with the propensity score as:260

R(ȳ|y) =
1

n

n∑

i=1

yiδ1(ȳi) + (1− yi)δ0(ȳi), (9)

where R(ȳ|y) is a propensity weighted estimator, y and ȳ are actual label and

observed label of instances respectively, and δ0 and δ1 are the costs for predicting

an instance as negative and the positive accordingly.

It is worth mentioning that in most cases, the actual propensity score e(x)

is unknown but the propensity score on the basis of observed labels ê can be265

estimated. When the propensity score is unknown, the bias propensity-weighted

estimator can be calculated as:

bias(R̂(ȳ|ê, s)) =
1

n

n∑

i=1

yi
(
1− ei

êi

)
δ1(ȳi)− δ0(ȳi), (10)

where n is the size of training set and bias(R̂(ȳ|ê, s)) is the biased propensity-

weighted estimator.

In the presence of bias, the accuracy of the propensity score of only positive270

instances really matters. When the predicted class has extreme values (1 or 0),

the incorrect propensity scores may have a greater impact. The incorrect value

of propensity score can cause higher bias in the model.

4.2. Bayesian Optimal Relabeling

Bayesian Optimal Relabeling is the second well-known type of algorithms to275

achieve the instance-dependent PU learning. Probabilistic Gap Positive Unla-

beled (PGPU) algorithm is the algorithm of this category, which is developed

by He et al. [27]. They used SAR labeling mechanism in their proposed PGPU

algorithm in which an instance to be labeled depends on its characteristics. The

prime idea of this algorithm is that if an instance is more difficult to be labeled,280

then the probability of mislabeling of that instance will be larger. PGPU is

based on an inadequate supposition that the positive instances nearer the la-

tent optimal classifier are more difficult to be labeled. PGPU algorithm is based
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on the method for exploiting unlabeled instances of PU data introduced in Sec-

tion 2.2, in which all unlabeled instances are treated as negative [56, 57]. The285

labels of these instances are consistent with the positive and negative instances

allocated by Bayesian optimal classifier [58, 59].

The difficulty of an instance to be labeled can be estimated by the proba-

bilistic gap ∆P (x). Following are four suppositions derived from Probabilistic

Gap Positive Unlabeled (PGPU) algorithm:290





P (ȳ = −1|x, y = −1) = 1,

P (ȳ = +1|x, y = −1) = 0,

P (ȳ = −1|x, y = +1) = p1(x) > 0,

P (ȳ = +1|x, y = +1) = 1− p1(x) > 0,

(11)

where y and ȳ are respectively the actual label and the observed label of an

instance, and p1(x) is the mislabeled rate of positive instances.

Since the actual labels are not accessible directly due to the missing or noisy

data, the actual probabilistic gap cannot be calculated directly. Therefore, they

calculated the observed probabilistic gap first, and then correlate it with the295

actual probabilistic gap.

Probabilistic gap represents the distance of a positive instance from the

decision boundary. If an instance is close to the decision boundary, it will be

more difficult to be labeled. The Bayesian optimal classifier assigns a label to

each instance with the maximum posterior probability [60]. It is a significant300

feature of probabilistic gap that it can be used as a Bayesian optimal classifier

for PU datasets. The Bayesian optimal classifier can be expressed as following

in binary classification conditions:

ȳ(x) =





+1, P+ − P− > 0,

randomly selection, P+ − P− = 0,

−1, P+ − P− < 0,

(12)

where P+ = P (y = +1|x), P− = P (y = −1|x), and P+−P− = 0 is the threshold

for a classifier. According to PGPU algorithm, the mislabeled rate p(x, y) is a305

monotone decrease function regarding their respective probabilistic gaps.
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They corrected the bias by using Kernel Mean Matching (KMM) technique

[61] in their algorithm. In the end, the boundary can be estimated by following

two methods: 1) Calculating the average of n̄ smallest ∆P̄ (x), and 2) Finding

the boundary through cross-validation.310

5. Related Fields of Instance-Dependent PU learning

Instance-dependent PU learning is closely related to some other typical fields

of machine learning. In this section, we discuss the two most related areas of

instance-dependent PU learning including instance-dependent label noise learn-

ing and cost-sensitive learning.315

5.1. Instance-Dependent Label-Noise Learning

In many approaches of instance-dependent PU learning, unlabeled instances

are considered as negative with label noise. As such, instance-dependent PU

learning is transformed to an instance-dependent label noise learning problem

[62, 63, 64]. In this sense, instance-dependent PU learning is a specific scenario320

of instance-dependent label noise learning with only false negative noise. That

is to say, instance-dependent PU learning is a binary classification problem in

which label noise only exists in one class, hence it is also known as one-sided

instance-dependent label noise learning [65].

The algorithms of instance-dependent label noise learning commonly con-325

sider realistic noises in the label space [66, 63], where the probability of an

instance being mistakenly labeled depends on both classes and its features. It

is worth mentioning that such noise is quite common in real-world scenarios

[67, 68]. In real-world situations, the poor-quality instances or the uncertain

instances are more likely to be mislabeled [69, 70].330

For example, the handwritten digits for training a recognition model are of-

ten manually annotated. It is apparent that legible handwritten digits are easier

to label than the ambiguous ones. Noise is very likely to appear in ambiguous
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handwritten digits. The same assumption may also be observed in various prac-

tical applications, such as speech recognition, spam filters, pattern recognition,335

hyperspectral imaging, etc.

5.2. Cost-Sensitive Learning

Cost-sensitive learning is also closely related to instance-dependent PU Learn-

ing. Cost-sensitive PU learning is a well-known method for exploiting unlabeled

instances in traditional PU learning as already discussed in Section 2.2 . In340

cost-sensitive learning, instances are re-sampled and re-weighted according to

the costs regarding different classes [71, 72]. In cost-sensitive learning technique,

different weights are assigned to different training instances either manually or

automatically. Here, we only focus on determining the cost of misclassified data.

By reweighting the training instances, the erroneous data distribution observed345

in training set can be calibrated to a possible correct one, so that the ideal

data distribution can be estimated [73, 74, 75]. Weighted logistic regression [26]

and weighted SVM [17] are very common techniques employing cost-sensitive

learning for PU learning. These techniques regulate the data weights by ap-

plying different regularization parameters to the positive-labeled instances and350

unlabeled instances. It is worth mentioning here that adjustment of regular-

ization parameters is usually based on personal experience or heuristic rules

which may lead to unsatisfactory performance. In order to solve the problems

associated with the improper adjustment of the parameters, some recent works

have focused on designing various unbiased risk estimators that can achieve im-355

proved performance. Specifically, Du Plessis et al. [20] proposed a non-convex

ramp loss to rectify data bias due to the lack of negative instances and to over-

come the defect of non-convexity. The key idea of unbiased convex loss is to

use weighted compound convexity and weighted regular convex loss function to

exploit unlabeled data.360
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6. Experiments

To compare the performance of the existing instance-dependent PU learning

algorithms, in this section, we perform intensive experiments over the afore-

mentioned well-known instance-dependent PU learning methods as well as tra-

ditional PU learning methods. To be specific, the instance-dependent PU learn-365

ing algorithms incorporated for comparison include PUSB [24], SAR-PU [53],

and PGPU [27], which have been introduced in Section 4. Moreover, three well-

known traditional instance-independent PU learning methods are also employed

for our comparison, which are:

• WPU [17]: Weighted Positive Unlabeled (WPU) is a well-known tradi-370

tional PU learning algorithm, which argues that a classifier trained on PU

examples predicts probabilities that differ by only a constant factor from

the true conditional probabilities of being positive.

• uPU [20]: Unbiased Positive Unlabeled (uPU) is also a state-of-the-art

traditional PU learning algorithm, where an unbiased risk estimator for375

PU learning is proposed.

• nnPU [21]: Non-negative Positive Unlabeled learning is also a well-known

traditional PU learning algorithm, which improves uPU algorithm by elim-

inating the over-fitting problem induced by the negative empirical risk.

6.1. Experiment on Synthetic Dataset380

To visualize the performance of various PU methods, we adopt a synthetic

2-D dataset termed TwoGaussian appeared in [11] for our experiment. This

dataset consists of two clusters of data generated from two Gaussians, and each

Gaussian corresponds to a class (i.e., positive/negative) as shown in Fig. 1a. The

centers of two Gaussians are (1, 0) and (−1, 0), respectively, and their variances385

are set to 1. The entire dataset contains 1000 data points, which are equally

divided into two classes. After that, a set of positive examples are sampled in a

biased way by following the strategy in [11]. The proportion of selected positive
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Fig. 1: The performances of various methods on the synthetic dataset. a shows the real pos-

itive and negative data; b shows the generated positive and unlabeled data; c ∼ h display

the classification results generated by WPU, uPU, nnPU, SAR-PU, PUSB, and PGPU, re-

spectively. The classification accuracy of every method is presented above the corresponding

subfigure.

examples, i.e., c, is set to 0.4, and the selected positive data and unlabeled data

are shown in Fig. 1b, which suggests that whether a positive example is labeled390

relies on its location, and the positive example that is far from the potential

decision boundary is more likely to be labeled.

The classification results of all compared methods are shown in Fig. 1e∼h.

For the instance-independent algorithms such as WPU, uPU, and nnPU, a con-

siderable number of data points are mis-classified due to the biased sampling395

of positive examples. For example, in Fig. 1c∼e, some unlabeled examples that

are originally positive near the decision boundary are classified as negative by

WPU and uPU. By contrast, the instance-dependent methods usually achieve

relatively better performance. For SAR-PU, the labels of all positive exam-

ples are correctly predicted, even though several negative data points near the400

decision boundary are mislabeled. PGPU and PUSB achieve nearly perfect

performance, i.e., 99.7% and 100% accuracy. Generally, the instance-dependent

methods show better performance than the instance-independent ones, which
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Table 4: Characteristics of datasets from UCI machine learning repository.

Dataset n d n+ n− P (y = +1)

Adult 48842 14 23520 25322 48.2%

Breast Cancer 683 10 143 540 20.9%

Image Segmentation 2310 19 1024 1286 44.3%

Mushroom 8124 112 3916 4208 48.2%

Splice 3190 61 1478 1712 46.3%

suggests the superior ability of instance-dependent algorithms in dealing with

the labeling bias on positive data.405

6.2. Experiment on UCI Benchmark Dataset

In this section, we adopt five typical datasets from UCI machine learning

repository [76], namely Adult, Breast Cancer, Image Segmentation, Mushroom,

and Splice, to evaluate the performance of all investigated PU learning algo-

rithms. The brief description of all UCI benchmark datasets used in our ex-410

periments is given in Table 4, which indicates the number of instances n, the

feature dimensionality d, the number of positive instances n+, the number of

negative instances n−, and positive class prior P (y = +1) in each dataset.

For each dataset listed in Table 4, we make five subsets of whole dataset with

almost equal size, which facilitates the subsequent five-fold cross validation.415

In each training round, we use 80% of the original instances for training and

the remaining 20% are used for testing. In our experiments, we construct the

instance-dependent PU datasets manually from the original UCI benchmark

datasets. To be specific, we first train a Bayesian optimal classifier with the

ground-truth labels of the training set, and then we can obtain the posterior420

probability P (y = +1|x) for each training instance. As aforementioned, the pos-

itive instances that are closer to the potential decision boundary (e.g., smaller

P (y = +1|x)) are less likely to be labeled. Based on this intuition, for each

dataset, c = {20%, 30%, 40%} of the positive training instances are selected to
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form the labeled positive set, where each positive training instance will be chosen425

with the corresponding probability P (y = +1|x). The remaining positive train-

ing instances and all negative instances are considered unlabeled. Under each

c, the formation of the training set is kept identical to all compared methods to

ensure fair comparison.

The experimental results on UCI benchmark datasets are presented in Table430

5. It can be seen that on all datasets with different values of c, the instance-

dependent PU learning methods (i.e., PUSB, SAR-PU and PGPU) generally

outperform the traditional instance-independent approaches (i.e., WPU, nnPU

and uPU), which demonstrate the advantage of the investigated instance-dependent

PU learning methods over instance-independent approaches. The reason is that435

instance-dependent PU explicitly takes the labeling bias of positive data into

consideration, which is beneficial for establishing an accurate classifier. More-

over, we see that PGPU usually achieves the top-level performance in most

cases. This is because that PGPU relates the “difficulty” of labeling a positive

example to its labeling probability, and the gap between Bayesian posteriors440

P (y = +1|x) and P (y = −1|x) is employed to model such difficulty.

6.3. Experiment on Real-World Dataset

We further investigate the performance of typical PU methods including

WPU, nnPU, uPU, PUSB, SAR-PU, and PGPU in tackling real-world applica-

tions. To this end, we use CIFAR-10 dataset and extract the images of “cat”445

and “dog” for our experiment [5], and the target is to classify every test im-

age example into one of the above two classes. Similar to the experiments in

Section 6.2, we also generate the positive examples according to the posterior

P (y = +1|x) output by a Bayesian optimal classifier. To be specific, we first

train a Multi-Layer Perceptron (MLP) on training data with original real la-450

bels. Then, we pick up the positive data according to the predicted probabilities

given by MLP. Besides, five-fold cross validation is conducted on all compared

methods, and their mean test accuracies and standard deviations are recorded

to investigate the ability of the compared methods in image classification.
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Table 5: Comparison of averaged classification accuracies (%) with a standard deviation of ex-

isting instance-dependent PU learning algorithms and the traditional PU learning algorithms

on UCI benchmark datasets. The best record under each c is marked in bold.

Datasets c WPU [17] nnPU [21] uPU [20] PUSB [24] SAR-PU [53] PGPU [27]

Adult

20% 80.44 ± 2.2 80.22 ± 2.1 81.71 ± 2.2 82.57 ± 2.8 82.64 ± 2.6 82.93 ± 1.8

30% 80.13 ± 2.0 80.05 ± 2.0 82.41 ± 2.0 82.14 ± 1.9 82.93 ± 2.9 82.76 ± 1.8

40% 80.01 ± 1.9 80.74 ± 2.1 82.04 ± 2.1 82.91 ± 1.7 82.53 ± 2.8 82.79 ± 1.9

Breast Cancer

20% 84.51 ± 2.5 84.80 ± 2.6 86.06 ± 2.6 86.38 ± 2.1 86.42 ± 2.7 87.00 ± 1.7

30% 84.23 ± 2.6 84.45 ± 2.4 85.85 ± 2.7 86.94 ± 2.0 86.75 ± 2.9 87.13 ± 2.0

40% 84.10 ± 1.4 84.33 ± 1.9 86.33 ± 1.8 87.49 ± 1.9 87.12 ± 2.7 87.34 ± 2.1

Image Segmentation

20% 75.22 ± 1.8 76.05 ± 2.1 76.85 ± 2.0 78.53 ± 1.4 78.44 ± 2.3 78.77 ± 1.9

30% 71.80 ± 1.7 72.67 ± 2.0 73.51 ± 1.2 78.26 ± 2.3 78.32 ± 2.7 78.51 ± 1.6

40% 64.77 ± 1.9 66.41 ± 2.1 65.19 ± 2.2 78.49 ± 2.2 78.17 ± 1.9 78.51 ± 1.8

Mushroom

20% 78.13 ± 2.0 79.01 ± 1.2 79.67 ± 2.1 80.07 ± 1.8 80.42 ± 1.0 80.39 ± 2.5

30% 78.98 ± 2.1 78.96 ± 1.0 79.32 ± 2.3 80.17 ± 1.7 80.69 ± 1.9 81.03 ± 2.5

40% 78.13 ± 2.0 78.91 ± 1.2 79.14 ± 3.0 80.69 ± 2.5 80.76 ± 1.5 80.89 ± 2.5

Splice

20% 56.72 ± 1.8 57.12 ± 1.1 57.12 ± 2.1 58.18 ± 1.4 58.90 ± 1.9 57.32 ± 2.1

30% 56.72 ± 1.5 56.83 ± 3.0 57.71 ± 3.0 58.63 ± 1.6 58.31 ± 1.8 58.11 ± 2.0

40% 55.74 ± 1.7 56.03 ± 3.1 56.33 ± 3.0 59.09 ± 1.5 58.48 ± 2.1 58.53 ± 1.9

For all compared baseline methods, we take ResNet-18 [77] as the back-455

bone network. The parameters of every algorithm have been carefully tuned to

achieve the best performance. For uPU, we choose the regularization parameter

λ from {10−3, 10−2, · · · , 101}. In nnPU, the step discounted parameter γ and

the tolerance parameter β are respectively set to 0.001 and 0 as suggested by

[21]. In PUSB, the density ratio r(x) is estimated via minimizing the pseudo460

classification risk. In PGPU, the boundary ` is estimated by calculating the

mean of n′ smallest probabilistic gap and the value of β(x) = PD(x)
PD∗(x)

is obtained

by the kernel mean matching (KMM) technique. Note that uPU and nnPU

require the positive class prior P (y = +1), and here we simply assume it to be

known and feed the real positive class prior to these algorithms during training.465

From the experimental results reported in Table 6, we see that PUSB achieves

the best performance among all methods under all labeling cases. In general,

instance-dependent methods (i.e., PUSB, SAR-PU and PGPU) outperform the

instance-independent ones (i.e., WPU, uPU, and nnPU) in most cases, which
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Table 6: Comparison of averaged classification accuracies (%) of existing instance-dependent

PU learning algorithms and the traditional PU learning algorithms on real-world CIFAR-10

dataset. The best record under each c is marked in bold.

Dataset c WPU [17] uPU [20] nnPU [21] PUSB [24] SAR-PU [53] PGPU [27]

CIFAR-10

20% 91.00 ± 0.98 92.22 ± 0.34 91.82 ± 0.21 94.35± 0.56 92.73 ± 0.18 93.42 ± 0.53

30% 93.41 ± 0.39 94.38 ± 0.26 93.24 ± 0.18 95.42± 0.81 94.28 ± 0.15 95.21 ± 0.46

40% 93.31 ± 0.81 95.21 ± 0.45 95.32 ± 0.32 96.31± 0.72 95.62 ± 0.42 95.67 ± 0.39

again shows the necessity of instance-dependent PU learning algorithms.470

7. Conclusion

In this survey, we comprehensively review the recent research advances in

instance-dependent PU learning. Starting from the introduction of general PU

learning, we then detail some important aspects regarding instance-dependent

PU learning, which include the commonly adopted labeling assumptions (i.e.,475

“selected completely at random” and “selected at random”), two main types of

algorithms (i.e., “scoring function algorithms” and “Bayesian optimal relabel-

ing”), and the strongly related fields (i.e., instance-dependent label-noise learn-

ing and cost-sensitive learning). Finally, we provide some empirical comparisons

of representative PU learning methods on some synthetic, UCI benchmark and480

real-world datasets, which suggest that instance-dependent PU learning usually

have better performance than traditional instance-independent PU learning in

dealing with practical data.

Due to the huge practical demand, we believe that instance-dependent PU

learning will gain more attention from both academic and industrial circles. We485

believe that the following directions are worth further studying:

(1) Existing methods usually rely on some pre-defined labeling assumptions

(e.g., SCAR or SAR). However, for a real-world application, we do not

know the actual labeling process in advance. Therefore, we need to de-

sign new algorithms that are free from assumptions, or are automatically490

adaptive to different assumptions.

21

                  



(2) How to accurately and explicitly model the relationship among s, x and

y is still a challenging yet important problem. Although some formula-

tions, such as propensity score, have been defined, the exploration on their

relationship is still inadequate.495

(3) As an important branch of weakly-supervised learning [31], instance-dependent

PU learning is quite general and can be applied to various domains such as

computer vision, geoscience, financial data analysis, and medical science.

Therefore, the applications of instance-dependent PU learning to different

kinds of practical problems are also worth investigation.500
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