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Abstract
Curriculum Learning (CL) mimics the cognitive process of
humans and favors a learning algorithm to follow the logi-
cal learning sequence from simple examples to more diffi-
cult ones. Recent studies show that selecting the simplest cur-
riculum examples from different modalities for graph-based
label propagation can yield better performance than simply
leveraging single modality. However, they forcibly require
the curriculums generated by all modalities to be identical
to a common curriculum, which discard the individuality of
every modality and produce the inaccurate curriculum for the
subsequent learning. Therefore, this paper proposes a novel
multi-modal CL algorithm by comprehensively investigating
both the individuality and commonality of different modal-
ities. By considering the curriculums of multiple modalities
altogether, their common preference on selecting the simplest
examples can be explored by a row-sparse matrix, and their
distinct opinions are captured by a sparse noise matrix. As
a consequence, a “soft” fusion of multiple curriculums from
different modalities is achieved and the propagation quality
can thus be improved. Comprehensive empirical studies re-
veal that our method can generate higher accuracy than the
state-of-the-art multi-modal CL approach and label propaga-
tion algorithms on various image classification tasks.

Introduction
Curriculum Learning (CL) (Bengio et al. 2009) advocates
logically training a classifier by gradually leveraging the ex-
amples from simple to difficult. In contrast to massive ex-
isting classifiers (e.g. Support Vector Machines and Naive
Bayesian Classifier) that are trained on all examples at one
time, CL establishes a sequence of curriculums so that only
the optimal curriculum containing the simplest examples
are invoked to train the classifier in each learning round.
Such “starting small” strategy is very similar to the human’s
knowledge acquisition process from childhood to adulthood,
and also has been demonstrated to be effective in machine
learning (Kumar, Packer, and Koller 2010; Jiang et al. 2015;
Gong et al. 2016a) and computer vision (Lee and Grau-
man 2011; Supancic and Ramanan 2013; Gong et al. 2015;
Pentina, Sharmanska, and Lampert 2015).

The concept of curriculum learning was originally pro-
posed by Bengio et al. (Bengio et al. 2009). After that,
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CL was usually realized under two frameworks: Self-Paced
Learning (SPL) and Teaching-to-Learn and Learning-to-
Teach (TLLT). SPL was formally developed in (Kumar,
Packer, and Koller 2010), which employs latent SVMs as a
learner and considers an example as simple if it lies far from
the margin. Apart from selecting the simple examples for
training, Jiang et al. (Jiang et al. 2014b) also require that the
selected curriculum examples to be diverse. Furthermore,
they also favor of harnessing the dynamic example difficulty
revealed during learning in addition to the estimation of dif-
ficulty before learning (Jiang et al. 2015). Up to now, SPL
has been widely used in various learning problems such as
clustering (Xu, Tao, and Xu 2015), domain adaptation (Tang
et al. 2012a), dictionary learning (Tang et al. 2012b), and
zero-shot learning (Jiang et al. 2014a).

The TLLT framework (Gong et al. 2016a) was specifi-
cally designed for graph-based label propagation (Zhu and
Ghahramani 2002). It is composed of two stages named
teaching-to-learn and learning-to-teach. In teaching-to-
learn, the “teacher” (i.e. a teaching algorithm) chooses
the simplest examples for the “learner” (i.e. a propagation
algorithm) by assessing their reliability and discriminability.
In learning-to-teach, the learner delivers a learning feedback
to the teacher to help it decide the suitable curriculum for
the next learning round. This basic TLLT framework has
been further extended to multi-label cases (Gong et al.
2016c) and multi-modal cases (Gong et al. 2016b).

The multi-modal setting assumes that every example can
be characterized by different modalities (Xu, Tao, and Xu
2013). As the pioneering work of adapting CL to multi-
modal setting, Gong et al. (Gong et al. 2016b) demon-
strate that integrating the curriculums generated by differ-
ent modalities helps to improve the classification accuracy.
This is because the curriculums from various modalities can
complement to each other to yield an overall good curricu-
lum. However, this method directly minimizes the error be-
tween the curriculum of every modality and the central op-
timal curriculum, which is a “hard” constraint suppressing
the individuality possessed by every modality. Such imper-
fect fusion scheme degrades the curriculum quality and is
unfavorable to obtaining satisfactory classification results.
To address this defect, this paper explicitly models the com-
monality among all modalities as well as their individu-
alities to achieve a “soft” curriculum fusion, so our algo-
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Figure 1: The framework of our SMMCL algorithm. In (a), the examples in labeled set L and unlabeled set U are denoted by
red and gray balls, respectively. In (b), the v-th (v = 1, 2, 3 in this figure) teachers should choose the simplest examples (green
balls) from their own modalities based on the graphs G(v), and the selected curriculum examples are encoded in the selection
vectors s(v) whose length equals to the size of U . In (c), the selection vectors produced by all teachers are put together to form
a stacked matrix S, which can be regarded as the sum of a row-sparse matrix S∗ and a noise matrix E. The non-zero rows of
S∗ indicated by the magenta boxes correspond to the simplest examples that should be taken into the curriculum S∗. Besides,
the (i, v)-th element of S∗ indicates the weight ω(v)

i of the v-th modality on deciding the label of the i-th curriculum example.
In (d), the learners (i.e. propagation algorithms) “learn” the examples in S∗ by propagating the label information to them, and
the resultant label matrices are F(1),F(2),F(3). In (e), a unified label matrix F is obtained by adding F(1) ∼ F(3) weighted by
ω(1) ∼ ω(3). The labeled set L and unlabeled set U are also updated accordingly.

rithm is termed “Soft Multi-Modal Curriculum Learning”
(SMMCL). Specifically, we assume that the curriculums of
multiple modalities as a whole can be decomposed as a row-
sparse component plus a noise component, in which the
row-sparse component describes the commonality shared by
multiple modalities and the noise component captures the in-
dividuality carried out by each of the modalities. As a result,
the involved modalities are more easily to reach an agree-
ment on selecting the simplest examples, and the selected
curriculum examples are also more accurate than those pro-
duced by (Gong et al. 2016b).

Framework of Our Method
This section briefly introduces the framework of the pro-
posed SMMCL algorithm. Given totally n = l+u examples
X = {x1 · · · ,xl,xl+1, · · · ,xl+u} where the first l exam-
ples constitute the labeled setL and the last u examples form
the unlabeled set U (see Fig. 1(a)), the task of graph-based
label propagation is to iteratively propagate the known labels
{yi}li=1 of L to U .
For multi-modal cases, we assume that each example xi

can be characterized by V different modalities, so V graphs
G(1), · · · ,G(V ) can be built correspondingly (see Fig. 1(b)).
In these graphs, the vertices represent n examples and the
edges depict the similarities between these examples. Sim-
ilar to (Gong et al. 2016b), we also associate each modal-
ity with a teacher and a learner, and in each learning round
the V teachers should pick up the overall simplest exam-
ples (denoted by the set S∗) for the stepwise learners. To
this end, the v-th (v = 1, · · · , V ) teacher should generate an
optimal curriculum from its own viewpoint that is recorded
by a {0, 1}-binary selection vector s(v). Here s

(v)
i = 1 if

the i-th example is considered simple and is chosen by the
v-th teacher, and s

(v)
i = 0 otherwise. After that, the deci-

sions made by all V teachers are integrated into a unified
curriculum S∗ (see Fig. 1(c)), during which the commonal-
ity of the teachers and their individualities are discovered by
the row-sparse matrix S∗ and sparse noise matrix E accord-
ingly. Given S∗, the V learners will classify the examples
in S∗ by respectively propagating the labels from L to S∗
from V modalities, and the obtained results are recorded in
the label matrices F(v) ∈R

n×c (v = 1, · · · , V , and c is the
number of classes) (see Fig. 1(d)). The i-th row of F(v) is
the label vector of the example xi with its j-th element (i.e.
the (i, j)-th element of F(v)) encoding the probability of the
i-th example belonging to the j-th (j = 1, · · · , c) class. Fi-
nally, the propagation results F(1), · · · ,F(V ) are fused into
F by considering their weights ω(v) on all the curriculum
examples (see Fig. 1(e)). The labeled set and unlabeled set
are then updated by L := L∪ S∗ and U := U −S∗, respec-
tively. Such teaching and learning process iterates until the
set U=∅.
The most critical step of our SMMCL algorithm is how to

make the teachers maximally reach an agreement on deter-
mining suitable S∗ based on their individual decisions (i.e.
Fig. 1(c)). Therefore, we propose a novel multi-modal teach-
ing algorithm that will be detailed in the next section.

Model Description
According to (Gong et al. 2016b), the difficulty level of
an example xi ∈ U under single modality can be evalu-
ated by its reliability and discriminability. By taking yi as
a random variable of xi and treating the propagations on
G(v) as a Gaussian process over the random vector y =
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(y1, · · · , yn)�, the reliability is modeled by the conditional
entropy H(yi|yL), where yL is the subvector of y cor-
responding to the labeled set L. Therefore, similar to the
derivations in (Gong et al. 2016b), we have

H(yi|yL) ∝
∣∣Σi|L

∣∣ = Σi,i −Σi,LΣ−1
L,LΣL,i, (1)

where Σ is the covariance matrix of the random vector y,
and Σi,i,Σi,L,ΣL,i,ΣL,L are submatrices of Σ associated
with the corresponding subscripts. The covariance matrixΣ
is defined byΣ = (L+I/κ2)−1 where L is graph Laplacian
(Zhu, Ghahramani, and Lafferty 2003), I is identity matrix,
and κ2 is the parameter fixed to 100 throughout this paper.
Small H(yi|yL) means that classifying xi is reliable and it
should be incorporated by the curriculum S∗.
The discriminability of xi depicts its tendency belonging

to a certain class, which is modeled by the difference of av-
erage commute time (Qiu and Hancock 2007) from xi to its
two nearest classes C1 and C2, namely

M(xi) = T̄ (xi, C2)− T̄ (xi, C1), (2)

where T̄ (xi, Cj) computes the average commute time be-
tween xi and all the examples of class Cj (j = 1, 2). Large
M(xi) means that xi is significantly inclined to the class C1
and thus it is ideal to be a curriculum example.
By taking account of xi’s reliability and discriminability

together, the difficulty of xi in terms of the v-th modality
(i.e. R(v)

i ) is then represented by

R
(v)
i = H(yi|yL) + 1/M(xi). (3)

The example with small R(v)
i is simple and is suitable for

the current propagation conducted by the v-th learner.
However, different teachers often have different selections

on the simplest examples, as the difficulties of an example
revealed by different modalities are distinct. Therefore, we
should find the common curriculum examples that are max-
imally agreed by all V teachers. To this end, we put the bi-
nary selection vectors s(v) (v=1, · · · , V ) of the V teachers
altogether as a matrix S=

(
s(1), · · · , s(V )

)
, then its all-zero

rows will indicate the difficult examples considered by all V
teachers. Practically, the teachers can hardly draw the identi-
cal conclusion on deciding S∗, so we assume that S implic-
itly contains a row-sparse component S∗ representing the
consensus of all teachers, and a sparse noise term E captur-
ing the individuality of each modality. As a result, we have
S = S∗+E with S, S∗ and E being {0, 1}-binary matrices
(see Fig. 1(c)). Thereby, our model is formulated as

min
S,S∗,E

∑V

v=1
s(v)�R(v)s(v) + α‖S∗‖2,1 + β‖E‖1

s.t. S = S∗ +E, Sij ∈{0, 1} , S∗
ij ∈{0, 1} , Eij ∈{0, 1}

1�s(v) = Q, ∀ v = 1, 2, · · · , V
,

(4)

where R(v) is a diagonal matrix with the i-th diago-
nal element being R

(v)
i defined in Eq. (3), ‖S∗‖2,1 =∑

i

√∑
j S

∗2
ij computes S∗’s l2,1 norm (Chang and Yang

2016; Chang et al. 2015), ‖E‖1 =
∑

i,j |Eij | is the l1 norm
of matrix E, 1 is the all-one column vector with the same
length as s(v), and α, β,Q > 0 are free parameters.

In the objective function of Eq. (4), the first term governs
the example selection of every single modality. Minimizing
this term requires s(v)i to be small if the difficulty value R(v)

i
of xi large, which suggests that xi should not be a curricu-
lum example. By utilizing the l2,1 norm of S∗, the second
term exploits the common decision made by all the teachers
from different modalities. The third term models the unique
opinion of each teacher and minimizing it drives all teach-
ers to reach an agreement as possible as they can. The con-
straints 1�s(v) = Q (v = 1, · · · , V ) ensure that the simplest
examples recommended by V teachers are not skewed.

However, Eq. (4) is difficult to solve because of the binary
constraints, so we relax these constraints by modifying the
objective function, and obtain

min
S,S∗,E

∑V

v=1
s(v)�R(v)s(v) + α‖S∗‖2,1 + β‖E‖1

+
γ

2

(‖S ◦ S−S‖2F+‖S∗ ◦ S∗−S∗‖2F+‖E∗ ◦E∗−E∗‖2F
)

s.t. S = S∗ +E, 1�s(v) = Q, ∀ v = 1, 2, · · · , V

,

(5)

where “‖·‖F” denotes the Frobenius norm, “◦” represents
the Hadamard product that is (A ◦ B)ij = AijBij , and
γ is the weighting parameter. When Eq. (5) is solved, the
non-zero rows of S∗ will indicate the selected curriculum
examples that should be classified by the learners.

Compared with the model in (Gong et al. 2016b) that
rashly forces all s(v) (v = 1, · · ·, V ) to a compromised s∗

by minimizing
∥∥s(v) − s∗

∥∥2

2
, Eq. (5) developed here tries to

discover the underlying consensus among different teach-
ers as well as explicitly preserves the individuality of every
teacher, so it achieves “soft” fusion of multiple modalities
without loosing their specialities.

Optimization

The problem (5) can be solved via the Alternating Direction
Method of Multipliers (ADMM), which alternatively opti-
mizes one variable at one time with the other variables re-
maining fixed. To decouple the variables S∗ and S, we intro-
duce an auxiliary variable J and a related constraint J = S∗,
and the original optimization problem (5) is reformulated as

min
S,S∗,E,J

∑V

v=1
s(v)�R(v)s(v) + α‖J‖2,1 + β‖E‖1

+
γ

2

(‖S ◦ S−S‖2F+‖S∗ ◦ S∗−S∗‖2F+‖E∗ ◦E∗−E∗‖2F
)

s.t. S = S∗ +E, J=S∗, 1�s(v)=Q, ∀ v = 1, 2, · · · , V

.

(6)
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Therefore, the augmented Lagrangian function is∑V

v=1
s(v)�R(v)s(v) + α‖J‖2,1 + β‖E‖1

+
γ

2

( ‖S ◦ S−S‖2F+‖S∗ ◦ S∗−S∗‖2F+‖E∗ ◦E∗−E∗‖2F
)

+tr
(
Λ�

1(S−S∗−E)
)
+tr

(
Λ�

2 (J−S∗)
)
+

V∑
v=1

τv(1
�s(v)−Q)

+
μ

2

[
‖S−S∗−E‖2F + ‖J−S∗‖2F+

∑V

v=1
(1�s(v)−Q)

2
]

,

(7)

where Λ1,Λ2, τv are Lagrangian multipliers, and μ > 0
is the penalty coefficient. Based on Eq. (7), the variables
S,S∗,E,J can be sequentially updated via an iterative way.
Update J: The subproblem related to J is

min
J

α‖J‖2,1 + tr
(
Λ�

2 (J−S∗)
)
+

μ

2
‖J− S∗‖2F , (8)

which is equivalent to

min
J

α

μ
‖J‖2,1 +

1

2

∥∥∥∥J− (
S∗ − 1

μ
Λ2

)∥∥∥∥2

F

, (9)

of which the optimal solution is (Liu et al. 2012)

Ji,: =

⎧⎪⎨
⎪⎩
‖Ti,:‖2 − α/μ

‖Ti,:‖2
Ti,:, α/μ < ‖Ti,:‖2

0, otherwise
, (10)

where T = S∗ − 1
μΛ2 and Ti,: denotes the i-th row of T.

Update S∗: By denoting M1 = S∗ ◦ S∗, the subproblem
regarding S∗ is

min
S∗

γ

2
‖S∗−M1‖2F+tr

(
Λ�

1 (S−S∗−E)
)
+tr

(
Λ�

2 (J−S∗)
)

+
μ

2

[
‖S− S∗ −E‖2F + ‖J− S∗‖2F

] .

(11)

By calculating the derivative of above objective to S∗, and
then setting the result to 0, the closed-form solution for S∗
is obtained by

S∗ =
1

γ + 2μ
[Λ1 +Λ2 − μ(E− S− J) + γM1] . (12)

Update E: By denoting M2 = E ◦ E, the subproblem for
optimizing E is

min
E

β‖E‖1 +
γ

2
‖E−M2‖2F

+ tr
(
Λ�

1 (S− S∗ −E)
)
+

μ

2
‖S− S∗ −E‖2F

. (13)

After ignoring the constant variables and re-arranging
Eq. (13), the E-subproblem is formed as

min
E

β‖E‖1 +
γ + μ

2

∥∥∥∥E− 1

γ + μ
B

∥∥∥∥2

F

, (14)

Algorithm 1 The ADMM process for solving Eq. (5)
1: Input: R(v), α, β, γ, Q, μ = 1, μmax = 108, ρ = 1.2, ε =

10−4,MaxIter = 50, initial S, E, S∗.
2: iter=0;
3: repeat
4: M1 = S∗ ◦ S∗,M2 = E ◦E,M3 = S ◦ S;
5: Update J via Eq. (10);
6: Update S∗ via Eq. (12);
7: Update E via Eq. (15);
8: for v = 1 to V do
9: Update s(v) via Eq. (17);
10: end for
11: Λ1 := Λ1 + μ(S − S∗ − E), Λ2 := Λ2 + μ(J − S∗),

τv := τv + μ(1�s(v) −Q), ∀ v = 1, · · · , V ;
12: μ = min(ρμ, μmax);
13: iter := iter + 1;

14: until
∥
∥
∥S∗(iter) − S∗(iter−1)

∥
∥
∥
2

F
≤ ε or iter = MaxIter

15: Output: The optimal S,S∗,E.

where B = 1
γ+μ [γM2 +Λ1 − μ(S∗ − S)]. By employing

the soft-thresholding operator (Lin, Chen, and Ma 2010), the
solution of Eq. (14) is expressed as

Eij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bij − β

γ + μ
, Bij >

β

γ + μ

Bij +
β

γ + μ
, Bij <

−β
γ + μ

0, otherwise

. (15)

Update s(v): Note that the columns of S (i.e. s(v)) are in-
dependent to each other in our problem (6), so they can be
updated separately. SupposeM3 = S◦S, then the objective
function regarding s(v) is

min
s(v)

s(v)�R(v)s(v) +
γ

2

∥∥∥s(v) −Mv
3

∥∥∥2

2
+τv(1

�s(v)−Q)

+Λv�
1 s(v) +

μ

2

[∥∥∥s(v)−S∗v−Ev
∥∥∥2

2
+(1�s(v)−Q)

2
] ,

(16)
whereMv

3,Λ
v
1,S

∗v,Ev with superscript “v” denote the v-th
column of the corresponding matrix, and R(v) is a diagonal
matrix that has appeared in Eq. (4). The solution of Eq. (16)
can be easily obtained by setting the derivative of Eq. (16)
to s(v) to 0, which leads to

s(v) =
[
2R(v) + (γ + μ)I+ μ11�

]−1

[γMv
3 −Λv

1 + (μQ− τv)1+ μ(S∗v +Ev)] .

(17)
The entire iterative process for solving Eq. (5) is summa-

rized in Algorithm 1. Its convergence has been theoretically
proved in (Lin, Chen, and Ma 2010; Chang et al. 2014) and
will be empirically illustrated by the experiments.

Label Propagation and Label Fusion
Given totally s curriculum examples S∗ =
{x∗1,x∗2, · · · ,x∗s} decided by the teachers, the existing
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propagation algorithm Gaussian Field and Harmonic Func-
tions (GFHF) (Zhu and Ghahramani 2002) is employed as
learners that propagate the labels from L to S∗ under differ-
ent modalities. Then the V label matrices F(1), · · · ,F(V )

are combined into a consistent F as shown in Figs. 1(d)(e).
For the t-th propagation, the iterative expression for a
specific modality v is:

F
(v)[t]
i,: =

{
P

(v)
i,: F

[t−1], xi ∈ (S∗[1:t−1]) ∪ S∗[t]

F
[0]
i,: , xi ∈ L[0] ∪ (U [0] − S∗[1:t])

(18)

where F
(v)[t]
i,: denotes the i-th row of the matrix F(v)[t],

F[t−1] is the consistent label matrix produced by the previ-
ous propagation, P(v)

i,: represents the i-th row of the transi-
tion matrix P(v) calculated by P(v) = D(v)−1W(v). Here
W(v) is the adjacency matrix of graph G(v) and D(v) is
the corresponding diagonal degree matrix with the diag-
onal elements defined by D

(v)
ii =

∑n
j=1 W

(v)
ij . S∗[1:t] =

S∗[1] ∪ · · · ∪ S∗[t] and U [0] − S∗[1:t] is the complementary
set of S∗[1:t] in U [0]. The superscript “[t]” represents the t-th
propagation. Such propagation strategy is suggested by Zhu
et al. (Zhu and Ghahramani 2002) and is identical to the
propagation model in (Gong et al. 2016b). The initial state
for xi’s label vector F

[0]
i,: is

F
[0]
i,: =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1/c, · · · , 1/c)︸ ︷︷ ︸
c

, xi ∈ U [0]

⎛
⎝0, · · ·, 1

↓
j−th element

, · · ·, 0
⎞
⎠ , xi∈ Cj ∈L[0]

, (19)

where c is the total number of classes.
To fuse the label matrices F(1), · · · ,F(V ) into a unified

F, we should find the weights of these V modalities on de-
ciding the curriculum examples. Specifically, we relateω(v)

i ,
which is the weight of F(v)

i,: on xi, to the tendency of the v-
th teacher to choose xi as a curriculum example, and con-
sider that the examples strongly recommended by the v-th
teacher can be reliably “learned” by the v-th learner. This
is because the strong recommendation from the v-th teacher
indicates that these examples are quite simple for the v-th
learner, therefore the learning result F(v) is trustable and
should be emphasized. Fortunately, the i-th element of the
selection vector s(v) (i.e. the (i, v)-th element of matrix S∗)
exactly reflects the recommendation level of the v-th teacher
on the example xi. Therefore, the weight ω

(v)
i can be com-

puted by

ω
(v)
i =

S∗
iv∑V

v=1 S
∗
iv

, (20)

based on which the integrated label vector of the i-th exam-
ple is derived as

Fi,: =
∑V

v=1
ω

(v)
i F

(v)
i,: , (21)

where the superscript “[t]” has been dropped for simplicity.

Algorithm 2 SMMCL for graph-based label propagation
1: Input: l labeled examples L = {x1,· · ·,xl} with known la-

bels y1,· · ·, yl expressed in V modalities; u unlabeled exam-
ples U = {xl+1,· · ·,xl+u} with unknown labels yl+1,· · ·, yl+u;
Parameters α, β, γ, Q, θ;

2: // Pre-processing
3: Construct graphs G(v) (v = 1,· · ·, V ) via (Karasuyama and

Mamitsuka 2013a); ComputeR(v) via Eq. (3);
4: //Multi-modal curriculum generation and propagation
5: repeat
6: Establish the optimal curriculum S∗ by solving Eq. (5) (Al-

gorithm 1);
7: Compute the label matrix F(v) via Eq. (18);
8: Compute the weights ω(v)

i (v=1, · · ·, V , i=1, · · · ,s) via
Eq. (20);

9: Fuse V label matrices to F via Eq. (21);
10: L :=L ∪ S∗; U :=U−S∗;
11: until U = ∅ ;
12: Compute the steady state F̄∗(v) on each graph via Eq. (22);
13: Compute the final learned label matrix by F̄∗ =

1
V

∑V
v=1 F̄

∗(v);
14: Classify every originally unlabeled example to the j-th class

via j=argmaxj′∈{1,··· ,c} F̄
∗
ij′ ;

15: Output: Class labels yl+1, · · · , yl+u;

The above multi-modal teaching and learning process it-
erates until all the unlabeled examples are propagated, and
the resulting label matrix is denoted as F̄. Starting from F̄,
the following Eq. (22) is adopted to drive the propagation
process of every learner to the steady state, namely

F̄∗(v) = (1− θ)(I− θP(v))
−1

F̄, (22)

where the parameter θ = 0.05. Therefore, the final produced
label matrix is F̄∗= 1

V

∑V
v=1 F̄

∗(v), and xi is classified into
the j-th class that satisfies j=argmaxj′∈{1,··· ,c} F̄∗

ij′ . The
complete SMMCL algorithm for CL based label propagation
is outlined in Algorithm 2.

Experimental Results
In this section, we provide the empirical evaluations of our
SMMCL by comparing it with five state-of-the-art methods
on four typical image datasets.
Datasets. The four image classification datasets include Ar-
chitecture (Xu et al. 2016) for architecture style recogni-
tion, UIUC (Li and Li 2007) for sports event classification,
MSRC (Criminisi 2004) for natural image classification, and
Scene15 (Lazebnik, Schmid, and Ponce 2006) for scene cat-
egorization. All the images in the adopted datasets are repre-
sented by 72-dimensional Pyramid Histogram Of Gradients
(PHOG), 512-dimensional GIST, and 256-dimensional Lo-
cal Binary Patterns (LBP) features. Therefore, each example
is characterized by three different modalities. Note that these
feature descriptors are histogram-based and every element in
a feature vector falls into [0, 1], so none of them will domi-
nate the learning performance.
Baselines. Five graph-based label propagation algorithms
are taken as baselines, which include: 1) Gaussian Field
and Harmonic Functions (GFHF) (Zhu and Ghahramani
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(a)

(c)

(b)

(d)

Figure 2: The accuracies of all compared methods on four
datasets. (a) is Architecture, (b) is UIUC, (c) is MSRC, and
(d) is Scene15.

2002), which is a classical algorithm that serves as the
learners in our proposed SMMCL; 2) Dynamic Label Prop-
agation (DLP) (Wang, Tu, and Tsotsos 2013), which is
a recently proposed single-modal propagation methodol-
ogy; 3) Sparse Multiple Graph Integration (SMGI) (Kara-
suyama and Mamitsuka 2013b) that is a competitive multi-
modal graph-based method; 4) Adaptive Multi-Modal Semi-
Supervised classifier (AMMSS) (Cai et al. 2013) which is
based on multiple graphs and also automatically learns the
weight of each modality like our SMMCL; and 5) Multi-
Modal Curriculum Learning (MMCL) (Gong et al. 2016b)
which is the state-of-the-art CL based algorithm and is very
relevant to the proposed method. For the single-modal meth-
ods like GFHF and DLP, the GIST, LBP and PHOG feature
vectors are directly concatenated into a long feature vector
as the inputs.
Experimental settings. For all the datasets, we evaluate the
classification accuracies of all compared methods under dif-
ferent sizes of labeled set, and the experiment under each
size is implemented five times with different initially labeled
examples. The reported accuracies are then obtained by av-
eraging over the outputs of these five independent runs.
For fair comparison, we utilize the graph construction

technique in (Karasuyama and Mamitsuka 2013a) and build
the identical 10-NN graphs for all comparators in all exper-
iments. The trade-off parameters of our SMMCL are set to
α= 1 and β = 0.5. The parameters in SMGI are optimally
tuned to λ1 = 0.01 and λ2 = 0.1 via searching the grid
{0.01, 0.1, 1, 10}, and γ and λ in AMMSS are set to 0.5 and
10, respectively. In DLP, we adjust α and λ to 0.05 and 0.1
accordingly as recommended by the authors. Besides, we set
β=10, γ=3 and η=1.1 as they lead to the optimal results
as revealed by (Gong et al. 2016b).
Results and analyses. The classification accuracies of all
compared methods on the four adopted datasets are pre-

(a)

(c) (d)

(b)

Figure 3: The convergence curves of SMMCL on four
datasets. (a) is Architecture, (b) is UIUC, (c) is MSRC, and
(d) is Scene15.

sented in Fig. 2, which reflects that the performances of
all six methods can be improved when the size of labeled
examples increases. Besides, we also have several interest-
ing findings regarding the experimental results: firstly, the
single-modal methods such as GFHF and DLP generally
perform worse than the multi-modal methodologies such
as MMCL, SMGI and our SMMCL, which demonstrate
that properly combining multi-modal information is better
than harnessing only one modality; secondly, the methods
based on curriculum learning (i.e. MMCL and SMMCL)
outperform the other baselines without the curriculum learn-
ing scheme, which confirms that learning from simple to
difficult can boost the performances of propagation meth-
ods; thirdly, among the curriculum learning approaches like
MMCL and SMMCL, the state-of-the-art MMCL has al-
ready achieved very impressive results, however the pro-
posed SMMCL can still improve the results of MMCL,
which validates the superiority of our “soft” multi-modal
teaching model to the “hard” one in MMCL; and lastly, our
SMMCL consistently leads the incorporated “plain” learner
GFHF with a significant margin, which again demonstrates
the merits of introducing curriculum learning for simple-to-
difficult label propagation.
Illustration of convergence. To show that our SMMCL
model can be efficiently solved via ADMM within limited
iterations, we plot the objective values of Eq. (5) under dif-
ferent iterations on the above four datasets (see Fig. 3). We
see that our algorithm converges quickly and generally ter-
minates within 40 iterations, so the feasibility of employing
ADMM for solving Eq. (5) is verified.

Conclusion
This paper proposes a novel multi-modal curriculum learn-
ing algorithm for label propagation, which investigates the
difficulty of every unlabeled example from multiple modal-
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ities and then optimizes the propagation sequence so that
the simple examples are classified ahead of the difficult
examples. Our method has the following merits: firstly, it
comprehensively discovers the commonality among differ-
ent modalities and meanwhile explicitly exploits their in-
dividualities, so the opinions of various teachers are flexi-
bly fused into an unbiased simplest curriculum; secondly,
in each learning round the number of selected examples
and the weight of each learner for label fusion are adap-
tively determined based on the level of agreement among
all involved teachers; and thirdly, our optimization model
can be efficiently solved as every subproblem of Eq. (6)
has a closed-form solution. Thorough experimental results
demonstrate that our method is superior to several state-of-
the-art methodologies on image classification tasks.
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