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Abstract
In real-world scenarios, many large-scale datasets often contain in-
accurate labels, i.e., noisy labels, which may confuse model train-
ing and lead to performance degradation. To overcome this issue,
Label Noise Learning (LNL) has recently attracted much atten-
tion, and various methods have been proposed to design an unbi-
ased risk estimator to the noise-free dataset to combat such label
noise. Among them, a trend of works based on Loss Decomposi-
tion and Centroid Estimation (LDCE) has shown very promising
performance. However, existing LNL methods based on LDCE are
only designed for binary classification, and they are not directly ex-
tendable to multi-class situations. In this paper, we propose a novel
multi-class robust learning method for LDCE, which is termed
“MC-LDCE”. Specifically, we decompose the commonly adopted
loss (e.g., mean squared loss) function into a label-dependent part
and a label-independent part, in which only the former is influenced
by label noise. Further, by defining a new form of data centroid, we
transform the recovery problem of a label-dependent part to a cen-
troid estimation problem. Finally, by critically examining the math-
ematical expectation of clean data centroid given the observed noisy
set, the centroid can be estimated which helps to build an unbiased
risk estimator for multi-class learning. The proposed MC-LDCE
method is general and applicable to different types (i.e., linear and
nonlinear) of classification models. The experimental results on five
public datasets demonstrate the superiority of the proposed MC-
LDCE against other representative LNL methods in tackling multi-
class label noise problem.
Keywords: Multi-class Classification; Label Noise; Loss Decom-
position; Centroid Estimation.
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1 Introduction
With the availability of large quantities of well-annotated
datasets, recent learning methods such as deep learning have
been proven successful in various practical tasks. However, it
is very expensive to collect large-scale well-annotated data in
some fields, such as medical image analysis, speech transla-
tion, natural language processing, and so on. Currently, sev-
eral strategies with low cost have been developed to collect
labeled data for many tasks, such as automatic web crawlers
and crowdsourcing. However, these strategies inevitably in-
troduce many incorrect labels, due to the limitation of tech-
nologies and human expertise, leading to dramatic perfor-
mance degradation of learning models [19, 39]. Therefore,
developing effective Label Noise Learning (LNL) algorithms
is highly demanded in various real-world applications.

Up to now, different LNL methods have been proposed
to deal with the label noise problem [1] over the last few
years, and they can be roughly divided into three categories.
The first category is sample selection [2, 3, 4] which relies
on the memorization effect of neural networks to select
probable correctly-labeled examples. To be specific, neural
networks tend to overfit the small-loss examples which are
considered as clean data in the early learning stage, then
gradually overfit the large-loss examples which are likely to
be contaminated by label noise. Therefore, many methods
based on choosing small-loss examples are proposed to
improve LNL performance. The second category is label
correction [5, 6, 7] which attempts to identify and correct
the potentially incorrect labels through joint optimization of
label purification and network weights. The third category is
loss correction [8, 9, 10] which modifies the loss functions,
which are further minimized, to make them robust to noisy
labels.

Among the above three categories of methods, loss cor-
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rection has shown very promising performance due to a
solid mathematical foundation, and a popular way to con-
vert the conventional losses to the robust ones is based on
loss decomposition and centroid estimation (LDCE), such as
Labeled Instance Centroid Smoothing (LICS) [11], µSGD
[12], and Centroid Estimation with Guaranteed Efficiency
(CEGE) [13]. These methods aim to estimate the real data
centroid under a clean set using the observed noisy data
so that a noise-robust loss function can be obtained. How-
ever, the above works can only deal with binary classification
tasks and can hardly be applied to multi-class cases. The rea-
sons are two-fold. First, they only focus on decomposing the
binary classification loss such as hinge loss and perceptron
loss. As a result, it is difficult to apply these models to multi-
class classification tasks. Second, they need to use the facts
that y2 = 1 for the label y = +1 or−1 and the positive label
+1 and negative label −1 only differ in the sign. Unfortu-
nately, these facts do not hold under multi-class cases any-
more. In this condition, developing LNL methods based on
LDCE that are suitable for multi-class classification is highly
demanded.

To this end, in this paper we propose a new Multi-
Class LNL method via loss decomposition and Centroid
Estimation (termed MC-LDCE) to deal with LNL prob-
lems. Specifically, we propose to decompose the multi-class
classification loss (e.g., mean squared loss) into a label-
independent part and a label-dependent part, so that the
multi-class label noise only affects the second part. Then
by defining a new form of data centroid, we observe that
the label-dependent part is strongly related to such centroid
which critically governs the model robustness. Further, by
investigating the mathematical expectation of centroid un-
der the noisy dataset as well as introducing an elementary
row transformation matrix, such data centroid can be esti-
mated which leads to an unbiased risk estimator to the noise-
free case for multi-class learning. Besides, our MC-LDCE is
quite general and independent of the classification models,
which does not need auxiliary clean data unlike some exist-
ing methods such as [14] and [15]. The experimental results
on typical benchmarks and real-world noisy datasets show
that MC-LDCE outperforms the representative LNL meth-
ods under different types of multi-class label noise.

2 Related Work
LNL is an important branch of weakly-supervised learning
[20, 30, 31, 40] which has attracted intensive research over
the past decades. We review three major types of existing
LNL methods, including sample selection, label correction,
and loss correction.

Sample selection. The methods of this type try to select
the correctly-labeled examples according to different crite-
ria. For example, Jiang et al. [16] proposed MentorNet to
teach another student network to select the examples with

probably correct labels during training. However, such a se-
lection method cannot overcome the inferiority of accumu-
lated error caused by sample-selection bias. To overcome
such drawbacks, Han et al. [4] proposed Co-teaching to train
two networks simultaneously and update itself with the data
selected by its peer network. As for Co-teaching+ [17], it
improves Co-teaching by only selecting the small-loss in-
stances with different predictions from two networks. To fur-
ther explore the information inherited by data, Wei et al. [18]
proposed to use a joint loss to select small-loss examples, so
that more data with the consensus of two networks can be
selected.

Label correction. Label correction is a quite intuitive
solution that identifies the possible incorrectly-labeled data
and then corrects their labels for reliable training [5]. How-
ever, such clean data identification and correction can be
imprecise. Therefore, Samel et al. [21] presented a new ac-
tive deep denoising approach that first builds a deep neural
network noise model and then applies an active learning al-
gorithm to identify the optimal denoising function. Besides,
Sheng et al. [22] effectively correct the labels when the data
are collected from the crowdsourcing platform. The works
of [6, 23] proposed a self-training scheme that alternatively
conducts label correction and trains a deep neural network
on noisily-labeled data. However, these methods use original
noisy labels for learning properly, so the performance is still
likely to be degraded by the noisy data. Therefore, [7] takes
a similar way to [6], but it completely replaces all labels with
pseudo-labels for model training. Similarly, Song et al. [24]
proposed a method of which the key idea is to selectively
refurbish and exploit unclean samples that can be corrected
with high precision, which results in an augmentation of ex-
amples available for training.

Loss correction. This type of LNL methods aim to
correct the traditional loss functions to make them robust to
label noise. Natarajan et al. [8] provided the general form
of a noise corrected loss l̂, making the minimization of l̂
is equivalent to the minimization of the noise-free loss l on
clean data given the noise rate. To a further step, if the noise
rate is not available, Ghosh et al. [9] provided a condition to
be satisfied when l is robust to label noise. Van et al. [10]
provided several examples of such robust non-convex losses,
while Masnadi et al. [25] showed that the linear or unhinged
loss itself is noise-corrected loss. Besides, Jindal et al. [26]
augmented the standard network by adding a softmax layer
for estimating the confusion matrix. Jin et al. [27] proposed
a maximum likelihood estimation based objective function
for robust classification.

3 Preliminaries
In this section, we first introduce some notations which will
be used in this paper. In traditional supervised learning,
we define the X ∈ Rd and Y = {0, 1}c as the input
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feature space and the output label space, where d denotes the
dimension of features and c denotes the number of classes.
For a matrix M, we define M† as its pseudo-inverse matrix
and M> as its transpose. The superscript “ ˜ ” stands for the
variable being noisy or estimated and the “ ˆ ” indicates that
the variable is an empirical quantity.

Let D be the underlying noise-free joint distribution of
a pair of random variables (X,Y ) ∈ X × Y . The clean
training set S = {(xi,yi)}ni=1 of (X,Y ) containing n
i.i.d. data points can be drawn identically and independently
from D, where {xi}ni=1 are the feature representations of
n examples and {yi}ni=1 are one-hot label vectors which
are correct. However, for the supervised learning with noisy
labels, we only have access to the noisy distribution D̃ of
random variables (X, Ỹ ) ∈ X × Y , and the noisy training
set S̃ = {(xi, ỹi)}ni=1 containing n i.i.d. data points which is
drawn from a noisy distribution D̃. In our learning problem
under noisy labels, the target is to find a suitable multi-class
decision function h ∈ H : X → Y with parameter matrix
W ∈ Rd×c training on S̃, whereH represents the hypothesis
space, such that h can precisely predict the label y of any test
example x ∈ X .

To further understand the corruption process under label
noise, we introduce the noise transition matrix T ∈ [0, 1]

c×c,
of which the main purpose is to model the transition from
latent clean label Y to the observed noisy label Ỹ . In this
case, the element Tij = p(Ỹ = ej |Y = ei) stands for the
probability of clean label ei wrongly annotated as ej where
ei denotes the one-hot vector with the i-th element being 1
and the others being 0.

4 Proposed Method
In this section, we will detail our proposed MC-LDCE
algorithm.

4.1 Multi-class Loss Decomposition
We define l : R × Y → R as the loss function that
penalizes the difference between the model output h(x)
and the ground-truth label y under traditional supervised
learning. Thus, the empirical risk on a clean set S can be
formulated as

(4.1) R̂(h, S) = 1

n

n∑
i=1

`(h(xi),yi),

where h is the shorthand for h(x) in this paper if no con-
fusion is incurred. Similar to Eq. (4.1), we can define the
empirical risk on corrupted data set S̃ as Eq. (4.2).

(4.2) R̃(h, S̃) = 1

n

n∑
i=1

`(h(xi), ỹi).

Because of the unavailability of the ground-truth
{yi}ni=1, the R̃(h, S̃) can be deviated from the real R̂(h, S).

It is expected to find an unbiased estimator ˜̂R(h, S̃) for
R̂(h, S) on the noisy set S̃, so that the negative impact
caused by the noisy label can be eliminated.

As mentioned earlier, our method is based on LDCE to
deal with multi-class LNL, while previous works [12, 13]
based on LDCE are designed to solve the binary LNL.
By decomposing the mean squared loss and expressing the
decision function as h(x;W) = 〈W,x〉. Eq. (4.1) can be
reformulated as:

R̂(h, S)

(4.3)

=
1

n

n∑
i=1

‖yi −W>xi‖22

=
1

n

n∑
i=1

(
y>i yi − 2y>i W

>xi + x>i WW>xi

)
=

1

n

n∑
i=1

(
y>i yi + x>i WW>xi

)
− 2

n

n∑
i=1

y>i W
>xi.

It should be noted that when the label vector yi follows
the form of one-hot encoding, y>i yi = 1 always holds.
Besides, from the knowledge of linear algebra, the following
equation holds, which is
(4.4)

y>i W
>xi = trace(y>i W

>xi) = trace(W>xiy
>
i ).

Therefore, according to Eq. (4.4), Eq. (4.3) can be
derived as

R̂(h, S)

(4.5)

=
1

n

n∑
i=1

(
1 + x>i WW>xi

)
− 2

n

n∑
i=1

trace(W>xiy
>
i )

= (1 +
1

n

n∑
i=1

x>i WW>xi)−
2

n
trace(W>

n∑
i=1

xiy
>
i )

= (1 +
1

n

n∑
i=1

x>i WW>xi)− 2trace(W>µ̂(S)),

where the empirical centroid µ̂(S) of the clean data set S is
defined as

(4.6) µ̂(S) =
1

n

n∑
i=1

xiy
>
i .

Note that the dataset centroid µ̂(S) defined here is
different from of that defined in previous works [12, 13]
which target binary classification, and this is essential for our
method to handling multi-class classification. Corresponding
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to Eq (4.6), the mathematical expectation of the centroid on
the entire distribution D is defined as

(4.7) µ(D) = E(X,Y )∼D[XY
>],

where E[·] calculates the mathematical expectation. From
Eq. (4.5), we see that only the second term is related to the
label value yi. Therefore, if we want to find an unbiased˜̂R(h, S̃) to R̂(h, S) to deal with noisy labels, we need
to accurately estimate the dataset centroid µ̂(S) based on
S̃, and the obtained estimator for µ̂(S) is dubbed ˜̂µ(S).
Finally, the proposed MC-LDCE model can be built by
combining the empirical risk Eq. (4.5) with some techniques
for preventing overfittings, such as the linear model with `2
regularizer, and the neural network with a dropout operation.

From Eq. (4.5), we see the key to recover the empirical
risk on clean set is to accurately estimate the centroid (i.e.,
Eq. (4.6)), and this will be detailed in the following section.

4.2 Centroid Estimation
We estimate µ̂(S) of the clean set S via the centroid µ̂(S̃) of
the noisy set S̃. To this end, we investigate the mathematical
expectation of the centroid on the noisy set, which can be
formulated by

EỸ [XỸ
>|(X,Y )] =

c∑
i=1

πiEỸ [XỸ
>|(X,Y = ei)],

(4.8)

where ei represents a one-hot vector of which only the i-th
element is 1, so Y = ei denotes that the example belongs
to the i-th class. Besides, πi = P (Y = ei) stands for the
prior probability of the i-th class. To compute the value of
Eq. (4.8), we need the following definition:

DEFINITION 4.1. Suppose there are two one-hot label vec-
tors, where yi has the i-th element being 1, and yj has the
j-th element being 1 where i 6= j. Then the two vectors can
be converted using an imputation matrix Ki→j , which is

(4.9) yj = Ki→jyi,

where Ki→j can be obtained by swapping the i-th row and
the j-th row of an identity matrix I.

Therefore, for the j-th class, we introduce the imputa-
tion matrix Ki→j defined in Definition 4.1, and then have

EỸ [XỸ
>|(X,Y = ei)] =

c∑
j=1

TijXY
>K>i→j ,(4.10)

where T is the noise transition matrix defined in Section 3.
The estimation for this matrix can be completed by employ-
ing some off-the-shelf tools such as the method in [28, 29].

Algorithm 1 The overall algorithm of MC-LDCE.

1: Input: Noisy training dataset S̃ = {(xi, ỹi)}ni=1;
2: Estimate the transition matrix T via VolMinNet [32];
3: Compute all class priors π1, · · · , πc via Eq. (4.14);
4: Compute M via Eq. (4.11);
5: Compute the estimated centroid of S via Eq. (4.12);

6: Compute the unbiased risk estimator ˜̂R(h, S̃) via
Eq. (4.13);

7: Use any off-the-shelf solver to optimize the model (e.g.,

linear model or CNN) by employing the ˜̂R(h, S̃) as the
loss function;

8: Output: Optimal parameters W.

In this work, we use the state-of-art method VolMinNet [32]
to estimate T.

Based on Eq. (4.10), Eq. (4.8) can be further derived as

EỸ [XỸ
>|(X,Y )] =

c∑
i=1

πi

c∑
j=1

TijXY
>K>i→j

(4.11)

= XY >

 c∑
i=1

πi

c∑
j=1

TijK
>
i→j


︸ ︷︷ ︸

M

.

Here we denote M =
∑c

i=1 πi
∑c

j=1 TijK
>
i→j . Thus,

the unbiased estimator ˜̂µ(S) can be formulated as

˜̂µ(S) = µ̂(S̃)M†,(4.12)

where the M† stands for the pseudo inverse matrix of M.

Finally, the unbiased risk estimator ˜̂R(h, S̃) to R̂(h, S)
under noisy set S̃ can be obtained by substituting Eq. (4.12)
to Eq. (4.5), which can be represented as
(4.13)˜̂R(h, S̃) = 1 +

1

n

n∑
i=1

x>i WW>xi − 2trace(Wµ̂(S̃)M†).

4.3 Class Prior Estimation
Note that in Eq. (4.11), it needs to obtain the class prior
π1, · · · , πc, thus we present how to estimate them based on
the noise transition matrix T in this subsection, and we will
describe the corruption process from clean labels to noisy
labels. The element Tij = P (Ỹ = ej |Y = ei) in the
matrix represents the label flip rate from the i-th class to the
j-th class as defined before. Obviously,

∑c
j=1 Tij = 1. The

class priors are defined as π1 = P (Y = e1), π2 = P (Y =
e2), · · · , πc = P (Y = ec) which can be easily obtained by
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Table 1: The characteristic of CIFAR-10, MNIST, FASHION-
MNIST, SVHN and Animal-10N.

Dataset # train # test size
MNIST 60,000 10,000 28×28

FASHION-MNIST 60,000 10,000 28×28
CIFAR-10 50,000 10,000 32×32×3

SVHN 73,257 26,032 32×32×3
Animal-10N 50,000 5,000 64×64×3

solving the following equation

(4.14)



P (Ỹ = e1) = T11π1 +T21π2 + · · ·+Tc1πc

...

P (Ỹ = ei) = T1iπ1 +T2iπ2 + · · ·+Tciπc ,

...

P (Ỹ = ec) = T1cπ1 +T2cπ2 + · · ·+Tccπc

where the left-hand side of every equation can be directly
estimated based on the noisy S̃.

4.4 Summary of the Proposed Method
From Subsection 4.1 to Subsection 4.3, we see that the
proposed MC-LDCE approach decomposes the multi-class
classification loss (e.g., mean squared loss) into a label-
independent part and a label-dependent part, and then di-
rectly estimates the label-dependent part via centroid estima-
tion, which makes it can solve the multi-class LNL problem.
It is worth noting that MC-LDCE is a simple yet effective
LNL algorithm, which is flexible and compatible with differ-
ent types of classification models h(x) (e.g., deep nonlinear
models and linear models). The detailed steps of our method
are summarized in Algorithm 1.

5 Experiments
In this section, we first provide the experimental settings,
including the characteristics of datasets, selected backbone,
and some implementation details. Then, we present the
experimental results on both simulated and real-world noisy
datasets with deep classification models. Further, we validate
the robustness of our MC-LDCE when a linear classification
model is deployed.

5.1 Experiments with Deep Classification Models
In this part, we equip our MC-LDCE with deep classification
models and compare it with several representative deep
robust methods.

5.1.1 Basic Setup
Simulated Noisy Datasets. We verify the effective-

ness of our approach on four manually corrupted datasets
(i.e., CIFAR-10, MNIST, FASHION-MNIST, and SVHN).
The statistics of the used datasets are summarized in Ta-

Table 2: Network architectures of the adopted 6-layer CNN and 2-
layer MLP.

6-layers CNN 2-layers MLP
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
2×2 max-pool, stride 2 dense 784→ 256

dropout, p = 0.25
3×3 conv, 512 LReLU 256 LReLU
3×3 conv, 256 LReLU
3×3 conv, 128 LReLU

avg-pool
1-1 dense 128→ #classes dense 256→ #classes

ble 1. Specifically, FASHION-MNIST and MNIST consist of
60, 000 images for training and 10, 000 images for testing,
with the number of classes and the scale of each image being
10 and 28×28, respectively. While CIFAR-10 and SVHN are
also considered 10-class datasets, with the the scale of each
image being 32 × 32 × 3. CIFAR-10 contains 50, 000 train-
ing images and 10, 000 test images. SVHN contains 73, 257
training images and 26, 032 test images. Note that all the
original datasets are clean. Following the common setting
in [4, 17, 18], we corrupted the training sets manually by us-
ing Sym-flipping and Pair-flipping noise transition matrices
[1], with the noise rate being {20%, 60%} and {20%, 40%},
respectively. To be specific, the Sym-flipping structure mod-
els the scenario where the class of clean label can uniformly
flip into other classes, and the Pair-flipping structure models
the situation where the class of a clean label can flip into its
adjunct class instead of a far-away class.

Real-world Noisy Dataset. Animal-10N is introduced
by [24] recently, which contains five pairs of confusing
animals. The images are crawled from several online search
engines including Bing and Google using the predefined
labels as the search keyword. All label noise on Animal-10N
is introduced by human mistakes, and the overall noise rate
on the training dataset is around 8% while the test dataset
is clean. This dataset contains 50, 000 RGB images used
for training and 5, 000 RGB images for testing, and the
resolution of each image is 64× 64.

Compared Baselines. We compare our MC-LDCE
with several popular robust learning methods, including:

• Co-teaching+ [17] trains two deep neural networks
simultaneously and lets them teach each other given
every mini-batch.

• JoCoR [18] trains two networks and utilizes co-
regularization to reduce the diversity of the two net-
works and combat the noisy labels.

• SIGUA [33] adopts gradient descent on “good” data
while using a learning-rate-reduced gradient ascent on
“bad” data.

• Generalized Cross-Entropy (GCE) [34] changes the
loss function to make the trained neural network more

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Table 3: Average test accuracy and the corresponding standard deviation on CIFAR-10, MNIST, FASHION-MNIST, and SVHN over the
last ten epochs. The best results are marked in bold.

Dataset Noise Type and Rate GCE [34] Co-teaching+[17] JoCoR [18] SIGUA [33] MC-LDCE

CIFAR-10
Symmetry-20% 80.73±0.04 78.75±0.04 84.85±0.03 81.49±0.01 85.18±0.18
Symmetry-60% 57.40±0.08 48.78±0.37 69.07±0.07 67.38±0.02 70.34±0.08

Pairflip-20% 79.03±0.03 74.99±0.08 83.63±0.06 80.59±0.01 85.46±0.18
Pairflip-40% 60.01±0.05 51.73±0.07 62.95±0.09 71.37±0.04 78.22±0.28

MNIST
Symmetry-20% 95.88±0.01 96.79±0.03 96.32±0.03 93.64±0.01 97.40±0.05
Symmetry-60% 93.95±0.01 93.83±0.07 94.10±0.06 84.39±0.05 94.84±0.02

Pairflip-20% 95.93±0.01 97.08±0.04 95.27±0.02 86.87±0.31 97.28±0.02
Pairflip-40% 95.16±0.01 91.57±0.09 95.52±0.07 73.72±0.25 93.06±0.19

FASHION-MNIST
Symmetry-20% 86.22±0.01 87.48±0.05 87.42±0.04 82.63±0.88 87.70±0.04
Symmetry-60% 84.27±0.01 76.64±0.03 83.92±0.08 75.12±0.22 84.70±0.04

Pairflip-20% 86.38±0.02 86.89±0.09 87.62±0.03 77.94±0.51 87.83±0.18
Pairflip-40% 85.18±0.02 69.10±0.06 82.90±0.06 70.55±6.17 85.38±0.36

SVHN
Symmetry-20% 81.29±0.01 93.02±0.05 78.40±0.02 92.19±0.01 94.44±0.04
Symmetry-60% 56.24±0.01 72.13±0.27 36.49±0.05 82.85±0.01 77.76±0.15

Pairflip-20% 92.96±0.01 92.55±0.03 77.15±0.02 90.81±0.01 93.35±0.04
Pairflip-40% 83.95±0.01 72.49±0.09 54.96±0.03 88.97±0.01 77.74±0.18
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Figure 1: Test accuracy curves on CIFAR-10 with different noise rates for all the compared methods. Colored curves show the mean
accuracy of five trials, and shaded bars denote the standard deviations of the accuracies over five trials.
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(c) Pairflip-20%.

Figure 2: Test accuracy curves on MNIST with different noise rates for all the compared methods. Colored curves show the mean accuracy
of five trials, and shaded bars denote the standard deviations of the accuracies over five trials.

robust in noisy label situations.

It is worth noting that we do not compare with other
unbiased loss correction methods, such as [8, 11, 12], since
they are not applicable to multi-class cases.

Network Architectures. We adopt a 6-layer Convolu-
tional Neural Network (CNN) as the backbone for CIFAR-
10, SVHN and Animal-10N, and 2-layer Fully Connected
Neural Network (MLP) for FASHION-MNIST and MNIST,
which are both widely used in the related literature [4, 18,

33, 35]. The detailed network architectures are summarized
in Table 2.

Implementation Details. For a fair comparison, all
experiments are conducted on an RTX2080-Ti GPU. The
backbone network architectures are the same for all the
methods, and we implement the compared baselines using
their default parameters suggested by the original papers. For
our MC-LDCE, the model is trained over 200 epochs, and
we adopt the Adam algorithm to optimize our model with a
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(c) Pairflip-20%.

Figure 3: Test accuracy curves on FASHION-MNIST with different noise rates for all the compared methods. Colored curves show the
mean accuracy of five trials, and shaded bars denote the standard deviations of the accuracies over five trials.
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Figure 4: Test accuracy curves on SVHN with different noise rates for all the compared methods. Colored curves show the mean accuracy
of five trials, and shaded bars denote the standard deviations of the accuracies over five trials.

momentum of 0.9. The initial learning rate is set to 0.001,
and will be linearly decreased after 80 epochs. The batchsize
is set to 128.

5.1.2 Experimental Results
Results on CIFAR-10. Figure 1 plots the test accu-

racy vs. number of epochs on CIFAR-10. In the easiest
Symmetry-20% case, the test accuracy of all compared meth-
ods increases steadily over the increase of epochs, which
demonstrates their robustness. However, when meeting with
a harder case, i.e., 60% symmetric noise, Co-teaching+ and
GCE first reach a very high level and then decrease grad-
ually, which is because of the memorization effect of neu-
ral networks. To be specific, when the training proceeds, the
neural network will tend to overfit the noisy examples which
will lead to a decline in test accuracy. While the accuracy of
our method increases steadily and finally exceeds all the oth-
ers, verifying the robustness of our MC-LDCE for extremely
corrupted datasets (more than 50% data are corrupted). As
for pairflip noise, we can see that our MC-LDCE outper-
forms the competitors with a large margin. For example,
MC-LDCE exceeds the second best method with 1.83% and
6.85% in Pairflip-20% case and Pairflip-40% case, respec-
tively. Thus, the proposed MC-LDCE is effective in dealing
with both symmetric and pairflip label noise.

Results on MNIST. For MNIST, we evaluate the pro-
posed method with synthetic label noise, i.e., symmetric la-
bel noise with the noise rate in {20%, 60%} and pairflip label
noise with the noise rate in {20%, 40%}. We run five indi-
vidual trials for all the compared methods under each noise
level. Figure 2 (a) and (b) plot the test accuracy curves on
MNIST with 20% and 60% noise rates under symmetric la-
bel noise. Figure 2 (c) shows the test accuracy curves with
the noise rate of 20% under the pairflip label noise. Table 3
provides us the test accuracies and the corresponding stan-
dard deviations of all compared methods. From the results,
we can see that the accuracy of our MC-LDCE increases
steadily over the increase of epochs, and our method outper-
forms other compared baselines finally, which indicates the
effectiveness of our MC-LDCE in dealing with noisy labels.

Results on FASHION-MNIST. Figure 1 shows the test
accuracy vs. number of epochs on FASHION-MNIST. Sim-
ilarly, the accuracy of our MC-LDCE grows steadily over
the increase of epochs and outperforms the other com-
pared baseline gradually. As shown in Table 3, our method
on FASHION-MNIST consistently outperforms all the com-
pared methods on all label noise cases, which demonstrate
the superiority of the proposed method.

Results on SVHN. The comparison results on SVHN
with different types of noise and different noise rates are
shown in Figure 4 and Table 3. From the comparison results,
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Table 4: Average test accuracy on Animal-10N. The best results are
marked in bold.

Method Accuracy (%)
GCE [34] 68.7 ± 0.04

Co-teaching+ [17] 69.7 ± 0.11
JoCoR [18] 75.7 ± 0.12
SIGUA [33] 74.0 ± 0.21
MC-LDCE 76.6 ± 0.23

it can be seen that our MC-LDCE grows stably with the
epoch increasing and gradually outperforms the compared
methods with a large margin, especially for JoCoR, GCE,
and Co-teaching+. In addition, as shown in Table 3, our MC-
LDCE can consistently achieve the best or the second best
performance among all the compared methods. It is noted
that the additional experimental results on four simulated
noisy datasets can be found in the supplementary material.

Results on Animal-10N. Similar to the experimental
settings on CIFAR-101, we run five individual trials for
all compared methods on Animal-10N. Note that we do
not apply any data augmentation or pre-processing proce-
dures. Table 4 shows the average test accuracies and cor-
responding standard deviations of all compared methods on
Animal-10N, where we can see that our MC-LDCE achieves
the highest classification accuracy among all comparators.
Therefore, the proposed MC-LDCE is effective in handling
real-world label noise.

5.2 Experimental Results with Linear Model

In this part, we equip our MC-LDCE with a linear
classification model and compare it with several statisti-
cal learning-based robust methods. The compared methods
include: 1) Unbiased Logistic Estimator (ULE) [8], 2) µ
Stochastic Gradient Descent (µSGD) [12], 3) Spectral Clus-
ter Discovery (SCD) [36], 4) Rank Pruning (RP) [37], and
5) Label Noise handling via Side Information (LNSI) [38].
Note that the first two approaches are originally designed for
binary classification tasks, so we use the one-vs-all strategy
to apply them to multi-class cases. Details of all the com-
pared methods can be found in the supplementary materi-
als. In the experiments, we evaluate the proposed method on
corrupted CIFAR-10. To be specific, we randomly pick up
30, 000 images from CIFAR-10 across different classes and
corrupt them with different levels of symmetric noise. The
classification accuracies of all the compared approaches un-
der different noise levels are shown in Table 5. It is worth
noting that the proposed MC-LDCE consistently outper-
forms all the competitors under various noise levels, which

1The only difference lies in the input dimension of the last fully
connected layer of the network architecture, where 1024 is used for Animal-
10N, while 512 is for CIFAR-10, as the sizes of their images are different.

Table 5: Average test accuracy on CIFAR-10 using a linear classifi-
cation model. The best results are marked in bold.

Method 20% 40% 60%
ULE [8] 74.8±0.050 61.7±0.075 41.5±0.068

µSGD [12] 74.1±0.009 72.6±0.012 71.6±0.001
RP [37] 77.9±0.015 64.6±0.009 47.4±0.006

LNSI [38] 84.7±0.006 83.8±0.006 77.4±0.006
SCD [36] 86.5±0.007 84.5±0.006 77.6±0.020

MC-LDCE 87.1±0.359 85.1±0.441 79.7±0.884

again demonstrates the superiority of MC-LDCE in dealing
with label noise.

6 Conclusion
In this paper, we propose a novel multi-class LNL method
termed MC-LDCE to deal with the label noise problem.
In the proposed MC-LDCE, we decompose the multi-
class classification loss (e.g., mean squared loss) into label-
independent and label-dependent parts, and directly estimate
the label-dependent part via centroid estimation. Our MC-
LDCE is the first method based on LDCE to deal with multi-
class LNL problems. Furthermore, as our MC-LDCE is inde-
pendent of the classification model, we conduct intensive ex-
periments by using deep and linear models on both simulated
and real-world noisy datasets. Experimental results demon-
strate that our MC-LDCE outperforms other representative
LNL methods.
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Multi-class Label Noise Learning via
Loss Decomposition and Centroid Estimation

(Supplementary Material)

In this supplementary material, we first provide some
details of all the compared statistical learning-based robust
methods. Then, we present more experimental results on
synthetic noisy datasets.

1 Details of Compared Linear Model Baselines
In this section, we provide more details of all the compared
statistical learning-based robust methods in the linear model
part.

• Unbiased Logistic Estimator (ULE) [1]: It provides
two approaches to suitably modify any given surrogate
loss function when learning with noisy labels.

• µ Stochastic Gradient Descent (µSGD) [2]: It proves
that the empirical risk of most well-known loss func-
tions factors into a linear term aggregating all labels
with a term that is label-free and can further be ex-
pressed by sums of the same loss.

• Spectral Cluster Discovery (SCD) [3]: It simultane-
ously learns a robust classifier (Learning stage) by dis-
covering the low-rank approximation to the ground-
truth label matrix and learning an ideal affinity graph
(Clustering stage).

• Rank Pruning (RP) [4]: It aims at solving the problem
of estimating the noise rates, i.e. the fraction of wrong
positive and negative labels.

• Label Noise handling via Side Information (LNSI)
[5]: It treats the example features as side information
and formulates the noisy label removal problem as a
matrix recovery problem.

For a fair comparison, the prior knowledge such as noise
rate is provided for all methods, and LNSI is implemented on
a 10-NN graph with Guassian kernel width σk=0.5.

2 More Experimental Results
In this section, we provide more experiments on four datasets
with label noise rate 40% under pairflip label noise. Fig-
ure 1 and Figure 2 plot the he test accuracy vs. number of

epochs on CIFAR-10, MNIST, FASHION-MNIST, and SVHN,
respectively. We can see that our MC-LDCE achieves the
best performance on FASHION-MNIST and CIFAR-10, the
second best performance on SVHN, and comparable perfor-
mance on MNIST, which clearly demonstrate the effective-
ness of our MC-LDCE in dealing with pairflip label noise.
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(a) FASHION-MNIST.
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Figure 1: Test accuracy curves on FASHION-MNIST and MNIST
with noise rate 0.4 under pairflip label noise. The colored curves
show the mean accuracy of 5 trials, and the shaded bars denote
standard deviation.
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Figure 2: Test accuracy curves on SVHN and CIFAR-10 with noise
rate 0.4 under pairflip label noise. The colored curves show the
mean accuracy of 5 trials, and the shaded bars denote standard
deviation.
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