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Abstract — Novel View Synthesis (NVS) for thermal scenes aims to generate thermal images from unseen viewpoints, which shows great potential
in various applications, such as nighttime autonomous driving, industrial inspection, and agricultural monitoring. Recently, Neural Radiance Fields
(NeRF) have emerged as a powerful approach for NVS in thermal scenes, which typically require paired RGB and thermal images to produce realistic
thermal images from new views. However, practical limitations, such as insufficient lighting, the prohibitive cost of RGB image acquisition, or the lack of
RGB cameras, make it challenging or even impossible to obtain high-quality RGB images, which prevents the existing NeRF methods from generating
realistic thermal images. To address this problem, we devise a simple yet effective NeRF framework based on Thermal Radiation Prediction, which
is termed ‘NeRF-TRP’, for NVS in thermal scenes. Unlike the existing NeRF techniques that rely on paired RGB and thermal images, NeRF-TRP
exclusively utilizes thermal images as input. By leveraging the principle of thermal imaging, NeRF-TRP predicts the thermal radiation emitted by
objects to render thermal images from novel views. Meanwhile, motivated by the thermal equilibrium observed in thermal scenes, we design a patch-
based regularization to enhance the realism of the generated thermal images. Extensive experiments on thermal images demonstrate that NeRF-TRP
not only produces more accurate thermal image synthesis, but also reveals superior efficiency in both training and rendering when compared with
various representative baseline approaches.
Keywords — Novel view synthesis, Neural radiance fields, Thermal imaging.

I. Introduction
Novel View Synthesis (NVS) is a fundamental task in

computer vision and graphics, which involves generating
novel perspectives of an object or scene from a limited set
of reference images. It plays a crucial role in enhancing the
spatial awareness and interaction abilities of intelligent sens-
ing systems. Recently, NVS of thermal images has attracted
increasing research attention due to the unique all-weather
imaging capabilities of thermal images, which remains un-
affected by optical illumination and imperfect weather con-
straints. This makes thermal NVS particularly suitable for
synthesizing novel views in challenging environments with
strong environmental interference, highlighting its potential
for a wide range of practical applications, such as nighttime
autonomous driving, industrial inspection, and agricultural
monitoring [1].

To date, various methods have been developed to tackle
NVS tasks, including view interpolation [2–4], multi-view
geometry [5, 6], and depth-based rendering [7, 8]. Among
these, Neural Radiance Fields (NeRF) [9] have shown re-

markable capability in generating highly realistic and detailed
renderings from previously unseen viewpoints. NeRF em-
ploys a Multi-Layer Perceptron (MLP) to encode a 3D scene
as a radiance field. Specifically, the MLP maps a series of
discrete 5D coordinates, including the three-dimensional po-
sition (x, y, z), the viewing direction defined by the azimuth
angle θ, and the pitch angle ϕ, to continuous representations
of volume density and color for the given scene. These contin-
uous representations naturally capture intricate variations in
light and shadow, enabling accurate rendering for new views.
To produce satisfactory thermal images from new views, most
existing NeRF models [10, 11] utilize paired RGB and ther-
mal images to learn scene geometry, with RGB images pro-
viding rich texture information. Nevertheless, real-world lim-
itations, such as imperfect weather conditions or insufficient
lighting, make it difficult to capture high-quality RGB im-
ages. Moreover, in the scenarios where the cost of captur-
ing RGB images is prohibitive or RGB cameras are unavail-
able, obtaining RGB images may become impossible. Conse-
quently, it is imperative to develop a new NeRF approach for
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Figure 1 The diagram of thermal imaging. Here, the thermal image is gen-
erated from the emitted thermal radiation of objects, which reveals
temperature differences in the scene based on variations in thermal
energy.

NVS in thermal scenes that operates independently of RGB
data.

To address the challenges of NVS in thermal scenes, we
propose a simple yet effective NeRF framework based on
Thermal Radiation Prediction termed ‘NeRF-TRP’, which
requires only thermal images as input. Our design is inspired
by the principle of thermal imaging, as illustrated in Figure 1.
The formation of thermal images is intrinsically governed by
thermal radiation emitted by objects, which is quantified by
the product of radiant energy density and volume density as
described in radiometry [12]. Building on this principle, our
NeRF-TRP framework aims to predict radiant energy density
and volume density for each given 3D spatial point. Ther-
mal radiation values traced along the viewing trajectory are
then aggregated through a volume rendering process to gen-
erate the final thermal images. This thermal-specific design
enables NeRF-TRP to produce realistic thermal images with
fine details. Furthermore, motivated by the thermal equilib-
rium achieved via continuous heat transfer among objects,
we propose a patch-based regularization technique to enhance
the quality of the generated thermal images. In summary, our
contributions are as follows:

• We propose a new NeRF framework by leveraging the
mechanism of thermal imaging, which enables the gen-
eration of realistic thermal images from unseen view-
points using only a sparse set of thermal observations.

• The thermal volume rendering technique and the patch-
based regularization are developed to accurately en-
code the thermal radiation distributions for objects,
which enables our method to produce detailed and
smooth thermal images.

• Experiments demonstrate that our approach achieves
state-of-the-art performance in thermal image quality,
training time, and rendering efficiency.

II. Related Work
This section provides an overview of key works relevant

to our approach, including traditional NVS methods and the
progress in NeRF.

1. Traditional Novel View Synthesis Methods
NVS is a fundamental problem in computer vision and

graphics, aiming to generate new viewpoints of a scene from
a limited set of input images. In general, the traditional NVS
methods primarily rely on geometric and photometric princi-
ples, which can be divided into view interpolation, multi-view
geometry, and depth-based rendering.

View interpolation methods produce new views directly
from input images without constructing detailed 3D models.
To achieve this, view morphing [2] interpolates between input
views using epipolar geometry to ensure smooth transitions
between views. Similarly, light field rendering [3, 4] captures
dense angular examples of a scene and uses ray interpolation
to synthesize new viewpoints. However, these methods usu-
ally require dense image sampling and tend to underperform
in practical scenarios with a small number of images.

Multi-view geometry solutions focus on recovering ex-
plicit 3D structure and camera parameters. For example,
Structure from Motion (SfM) [5, 13] and Multi-View Stereo
(MVS) [6, 14–16] are widely used for reconstructing meshes
and 3D point clouds [17, 18] from a collection of images.
Once the geometry is recovered, traditional rendering tech-
niques, such as texture mapping, are employed to generate
novel views. While these methods can effectively generate
images for new views, they depend heavily on accurate fea-
ture matching, camera calibration, and dense viewpoints.

Depth-based rendering approaches [7, 8, 19–21] lever-
age depth maps or layered depth images to synthesize novel
views. By warping pixels from the input images to the tar-
get view using depth information, these methods enable ef-
ficient view synthesis. However, the synthetic images from
novel views often suffer from low quality due to issues such
as occlusion handling, depth discontinuities, and artifacts in
poorly textured regions.

2. Neural Radiance Fields
Recently, NeRF [9] has shown highly realistic render-

ing capability and revolutionized the field of NVS. By en-
coding input points in 3D space as continuous volume den-
sity and color information, NeRF can produce photo-realistic
images from new perspectives. Its success has garnered con-
siderable attention, inspiring several follow-up works. Mip-
NeRF [22] and Mip-NeRF 360 [23] introduce a cone-based
positional encoding to address aliasing issues in neural ren-
dering. Plenoxels [24] directly store the density and color
value of each point in a voxel grid, accelerating the synthesis
process. TensorRF [25] employs a tensor-based representa-
tion to improve memory efficiency. Instant NGP [26] lever-
ages multi-resolution hash encoding to efficiently represent
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3D scenes, enabling real-time neural rendering with high-
quality details.

The above NeRF methods can effectively generate high-
quality new perspective images in RGB scenes. However,
many practical applications, such as pharmacy [27], agri-
culture [28, 29], and advanced driver assistance system
(ADAS) [30, 31], require the ability to synthesize realistic
thermal images from new views. Existing NeRF methods of-
ten fail in these scenarios due to the fundamental differences
between RGB and thermal imaging. Several recent studies
have attempted to synthesize thermal images. For instance,
X-NeRF [32] and ThermalNeRF [33] create a multi-spectral
scene representation by combining infrared and visible light
images to generate new views. ThermoNeRF [10] and Ther-
malMix [11] propose to utilize paired RGB and thermal im-
ages to learn scene geometry information for rendering ther-
mal images. In general, these methods can generate realistic
thermal images with the assistance of RGB images, but their
effectiveness is limited in real-world scenarios where captur-
ing RGB data could be challenging due to poor lighting or
imperfect weather conditions. Moreover, RGB data may be
unavailable owing to the limitations in capturing equipment
or environment. In this work, we propose NeRF-TRP, a novel
approach specifically designed for thermal view synthesis.
Unlike prior methods, NeRF-TRP operates solely on thermal
images, leveraging the unique characteristics of thermal data
to effectively synthesize thermal images from unseen view-
points without relying on RGB data.

III. Preliminaries

Given a specific scene, the vanilla NeRF can synthesize
photo-realistic images from arbitrary unseen viewing direc-
tions. To achieve this, NeRF employs a MLP to parametrize
the radiance field of the target scene with a sparse set of
images captured from various viewpoints. During training,
NeRF casts rays from camera centers through each pixel of
the images. Each ray r is associated with a viewing direc-
tion d ∈ R3 and N points

{
xi | i = 1, ..., N,xi ∈ R3

}
sam-

pled progressively along the path of the ray, where xi corre-
sponds to the three-dimensional spatial coordinate of a sam-
pled point. Subsequently, the MLP maps the spatial coordi-
nate of each point and the viewing direction to the corre-
sponding color c ∈ R3 and volume density σ ∈ R. In the
vanilla NeRF, the density value is predicted solely based on
the 3D location, while the color value is influenced by both
the 3D location and the viewing direction. This design makes
the color prediction view-dependent, allowing it to account
for non-Lambertian surface effects.

Specifically, given a camera ray r (t) = o+ td, originat-
ing from the camera center o ∈ R3 and propagating a dis-
tance t ∈ R along the direction d. The expected color C(r)
rendered from the ray within the range of near bound tn and

far bound tf is calculated according to [34]:

C (r) =

∫ tf

tn

T (t)σ(r(t)) c(r(t),d) dt, (1)

where σ(r(t)) and c(r(t),d) represent the volume den-
sity and color value of a point in 3D space. The expres-
sion T (t) = exp(−

∫ t

tn
σ(r(s)) ds) denotes the accumulated

transmittance along the ray, indicating the probability that the
ray travels from tn to t without hitting any other particle.
To compute this integral, a series of points are progressively
sampled along the ray’s path. The value of the integral is then
approximated using numerical quadrature, with the discrete
form as follows:

Ĉ (r) =

N∑
i=1

Ti (1− exp (−σiδi)) ci, (2)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
, and δi represents the dis-

tance between adjacent sampled points. The symbols σi and
ci denote the volume density and color value of the sampled
point xi, respectively.

During training, the NeRF model is optimized by min-
imizing a photometric loss, i.e., the squared error between
the predicted pixel color Ĉ(r) and the corresponding ground
truth color C(r):

L =
∑
r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥2 , (3)

where R represents the set of rays in each batch.

IV. The Proposed Method
In this section, we propose a novel framework named

NeRF-TRP for synthesizing thermal images from unobserved
views using only a sparse set of thermal images. An overview
of NeRF-TRP is shown in Figure 2. In Section 4.1, we intro-
duce the thermal volume rendering method specifically de-
signed for rendering thermal images. In Section 4.2, we elu-
cidate the application of multi-resolution hash encoding to
accelerate both the training and rendering processes. In Sec-
tion 4.3, we present a patch-based regularization to improve
the quality of the generated thermal images.

1. Thermal Volume Rendering
Unlike the original NeRF designed for RGB scenes, we

aim to develop a thermal scene representation for synthesiz-
ing thermal views. Based on the principles of thermal imag-
ing and radiometry [12], thermal cameras detect the heat en-
ergy emitted by objects as the thermal image. The thermal
radiation, which represents the heat radiated by an object,
is quantified as the product of radiant energy density (the
amount of radiant energy emitted per unit volume) and vol-
ume density. According to Stefan-Boltzmann’s law [35], the
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Figure 2 An overview of our method. Given a set of thermal images, we first adopt a random patch sampling approach to extract small patches and
construct rays emitted from these patches. Subsequently, based on the coordinate x sampled along these rays, we retrieve feature vectors from the
multi-resolution hash table and produce the feature f . Finally, we employ a lightweight MLP to predict the volume density σ and radiant energy
density we, which are used to render the image pixel.

intensity of thermal radiation emitted by a material is deter-
mined solely by its temperature and is independent of the
viewing angle, therefore excluding non-Lambertian effects
commonly observed in RGB images. As depicted in Fig-
ure 3(a), the RGB images display view-dependent light re-
flections, whereas thermal images, depicted in Figure 3(b), do
not exhibit such effects. Therefore, as illustrated in Figure 2,
we leverage spatial positioning to predict the radiant energy
density we ∈ R and volume density σ ∈ R of each point in
3D space. This position-based approach ensures that NeRF-
TRP accurately represents thermal properties while simpli-
fying the model by excluding viewing direction as input,
thereby reducing network complexity and accelerating both
training and rendering. Similar to Equation (2), the expected
color Ĉ(r) of a pixel can be approximated as:

Ĉ (r) =

N∑
i=1

Ti (1− exp (−σiδi)) wei , (4)

where wei represents the radiant energy density of the sam-
pled point xi.

2. Multi-Resolution Hash Encoding
In Section 4.1, we shed light on the importance of pre-

dicting the volume density and radiant energy density of each
3D point to enable high-quality thermal NVS. Here, we de-
scribe the method employed to efficiently predict these val-
ues. The original NeRF utilizes a large MLP to predict the
properties (e.g., color and volume density) of each sampled
point in order to generate high-fidelity renderings, resulting
in a time-intensive optimization process that requires mil-
lions of MLP queries per iteration. To accelerate the opti-

(a) RGB images (b) Thermal images

Reflections No reflections

Figure 3 Illustration of the differences between RGB and thermal im-
ages. (a) RGB images exhibit non-Lambertian effects, i.e., view-
dependent light reflections, while (b) thermal images are unaf-
fected by such effects.

mization process, we follow [26] and map the sampled point
features into a multi-resolution hash-grid table. This multi-
resolution hash-grid serves as an efficient data structure that
divides space into small cubes at multiple resolutions. Instead
of explicitly storing features for each vertex in a dense grid, it
utilizes a fixed-size hash table to store the feature representa-
tions, which significantly reduces the number of parameters.
By adopting this structure, the features of sampled points can
be obtained via fast feature interpolation, which greatly ac-
celerates the optimization process.

Specifically, the process of multi-resolution hash encod-
ing is depicted in Figure 2, where the voxel grids in blue and
red have different resolutions (for simplicity, two resolutions
are used in the illustration). Given a three-dimensional spa-
tial coordinate x, we initially search the neighboring voxel
vertices V =

{
pi | i = 1, ..., 8,pi ∈ R3

}
within each grid

of the multi-resolution structure, where pi denotes the three-
dimensional spatial coordinate of a voxel vertex. Using the
hash function h , we then fetch the features of the voxel ver-
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tices from the hash table and perform linear interpolation
based on the relative position of x within each resolution
grid. Finally, the resulting features from all levels along with
the original input coordinate x are concatenated to produce
the multi-resolution hash features f . By leveraging multi-
resolution hash encoding, the initial input coordinate x is
transformed into the feature representation f that integrates
information across various scales of the scene, capturing both
fine-grained details and global structure. On this basis, the ac-
curacy of point property prediction can be improved, which
ultimately enhances the quality of the synthesized thermal
images. For a vertex coordinate p = (px, py, pz), we employ
the following spatial hash function to extract features:

h(p) =

 ⊕
i=x,y,z

piπi

 mod T, (5)

where
⊕

i=x,y,z denotes the bit-wise XOR operation per-
formed over the dimensions x, y, and z, and πi denotes the
large prime number used to minimize the number of hash
collisions. The number of parameters in the multi-resolution
hash grid is bounded by L · T · F , where L represents the
number of resolution levels, T and F denote the hash table
size and feature dimension of each resolution, respectively.
The resolution at each level is determined between the coars-
est and finest resolutions following a geometric progression.

By adopting the multi-resolution hash grid feature f as
input, a lightweight MLP can be utilized to predict the prop-
erties of the point in the scene, including volume density σ
and radiant energy density we. The prediction process is then
defined as follows:

[σ, we] = MLPθ(ϕH(x)), (6)

where ϕH(· ) denotes the multi-resolution hash encoding,
x represents the three-dimensional spatial coordinate of the
point, and θ corresponds to the trainable parameters of the
MLP.

3. Patch-Based Regularization
In the thermal scene, objects naturally reach a state of

thermal equilibrium through continuous heat transfer. Ther-
mal cameras capture this heat distribution, and the result-
ing images tend to appear relatively smooth. This is different
from RGB images, which often display significant fluctua-
tions due to variations in light and surface properties. Moti-
vated by this, to enhance the realism of the generated thermal
images, we introduce Total Variation (TV) loss as a regular-
ization technique, which is defined as follows:

LTV =

Spatch−1∑
i=1

Spatch−1∑
j=1

(
(ci+1,j − ci,j)

2
+(ci,j+1 − ci,j)

2
)
,

(7)

(a) Random sample (b) Patch sample

Figure 4 Comparison of different ray sampling methods during the training
process, with red dots denoting the sampled pixels used to con-
struct rays. (a) Randomly selected pixels, where rays are indepen-
dent. (b) Randomly sampled patches, where rays are adjacent.

where Spatch is the size of the sampled patch and ci,j repre-
sents the rendered pixel at position (i, j). As shown in Fig-
ure 4(a), previous works utilize stochastic ray sampling dur-
ing training. However, since TV loss is computed by evalu-
ating the differences in pixel values between each pixel and
its adjacent ones, a more structured approach is necessary. To
address this, as shown in Figure 4(b), we adopt a patch-based
sampling strategy that randomly extracts small patches from
the input images.

In addition to the photometric loss Lrecon and the TV loss
LTV , we incorporate the proposal loss Lprop and the distor-
tion loss Ldist, following the approach in [23], to optimize
the proposal sampler and reduce distortions. Finally, the total
loss function of our method is calculated as follows:

Ltotal = Lrecon + LTV + Ldist + Lprop. (8)

V. Experiments
This section evaluates the effectiveness of the pro-

posed NeRF-TRP in addressing thermal NVS. We provide
a comprehensive comparison with existing state-of-the-art
NeRF methods and examine the model performance from
both quantitative and qualitative perspectives. First, we in-
troduce the experimental setups in Section 5.1. Afterwards,
we present the experimental results in Section 5.2 and ana-
lyze the efficiency of the proposed NeRF-TRP in Section 5.3.
Finally, we conduct ablation study to shed light on the contri-
butions of designed components in Section 5.4.

1. Experimental Setups
1) Dataset

We conduct intensive experiments on a wide range of
thermal scenes sourced from the ThermoScenes dataset [10].
Specifically, the ThermoScenes dataset comprises four out-
door and six indoor scenes, all captured using a FLIR One
Pro LT thermal camera. Here, the camera poses are estimated
using the COLMAP structure-from-motion package [5]. Fol-
lowing the standard dataset division outlined in [9], 1/8 of the
data was allocated to the test set, with the remaining data used
for training. All images are captured at a resolution of 480 ×
640 pixels.
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Table 1 Quantitative results on the ThermoScenes dataset, with bold indicating the best results. Here, metric marked with ↑ (↓) represents that the higher
(lower) the metric, the better the quality of the generated images.

Metric Method
Heated

Water Cup
Heated

Water Kettle
Freezing
Ice Cup

Melting
Ice Cup

Building
(Spring)

Building
(Winter)

Double
Robot Raspberrypi

Exhibition
Building Trees Avg

PSNR↑

NeRF [9] 17.32 19.65 25.92 19.07 22.18 26.55 25.53 27.46 30.86 25.04 23.96
TensoRF [25] 22.32 33.45 27.72 19.61 21.47 27.29 20.16 24.26 32.51 21.93 25.07

Instant NGP [26] 16.54 29.89 15.24 34.70 27.29 27.35 28.22 36.15 32.27 31.49 27.91
Nerfacto [36] 31.95 17.93 18.91 18.30 14.82 19.46 16.12 15.34 26.06 23.41 20.23

ThermoNeRF [10] 32.38 33.68 33.12 34.32 25.97 29.90 31.28 33.63 35.05 30.44 31.98
NeRF-TRP (ours) 34.72 33.95 33.46 38.07 27.38 30.37 31.50 36.17 36.49 36.17 33.83

SSIM↑

NeRF [9] 0.155 0.042 0.979 0.947 0.918 0.872 0.909 0.950 0.948 0.912 0.763
TensoRF [25] 0.807 0.958 0.981 0.935 0.904 0.865 0.842 0.914 0.959 0.898 0.906

Instant NGP [26] 0.743 0.941 0.901 0.983 0.933 0.875 0.925 0.968 0.957 0.957 0.918
Nerfacto [36] 0.888 0.618 0.956 0.981 0.852 0.900 0.682 0.630 0.961 0.966 0.843

ThermoNeRF [10] 0.925 0.926 0.984 0.985 0.919 0.901 0.951 0.960 0.966 0.942 0.946
NeRF-TRP (ours) 0.930 0.961 0.987 0.991 0.936 0.923 0.953 0.968 0.974 0.974 0.960

LPIPS↓

NeRF [9] 0.122 0.172 0.038 0.120 0.194 0.302 0.194 0.125 0.142 0.180 0.159
TensoRF [25] 0.157 0.096 0.037 0.160 0.213 0.278 0.271 0.145 0.088 0.199 0.164

Instant NGP [26] 0.265 0.096 0.153 0.034 0.175 0.332 0.147 0.068 0.120 0.084 0.148
Nerfacto [36] 0.101 0.404 0.074 0.049 0.369 0.235 0.252 0.362 0.054 0.068 0.197

ThermoNeRF [10] 0.066 0.074 0.042 0.034 0.177 0.223 0.125 0.054 0.067 0.154 0.102
NeRF-TRP (ours) 0.024 0.039 0.024 0.008 0.148 0.190 0.111 0.043 0.047 0.048 0.068

2) Baseline Methods
We compare our proposed NeRF-TRP against several

popular baseline approaches: (1) Methods for RGB NVS, in-
cluding vanilla NeRF [9] and approaches that enhance both
rendering efficiency and quality, such as TensoRF [25], In-
stantNGP [26], and Nerfacto [36]; (2) A method for thermal
NVS, namely ThermoNeRF [10], which uses paired RGB and
thermal images to render thermal images.
3) Evaluation Metrics

We employ the Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index Measure (SSIM) to assess the
fidelity of the generated images against the ground truth, with
higher PSNR and SSIM values indicating better performance.
Furthermore, we utilize the Learned Perceptual Image Patch
Similarity (LPIPS) [37] score to evaluate the perceptual qual-
ity of the rendered images, where lower LPIPS scores reflect
better visual quality.
4) Implementation Details

For the multi-resolution hash grid, we follow the config-
uration of Instant NGP [26] and set πx=1, πy=2,654,435,761,
πz=805,459,861, the number of resolution levels L to 16,
the hash table size T to 219, and the feature vector dimen-
sion F to 2 at each level, which results in a total parameter
count of 224. The lowest and highest resolutions are set to 16
and 2048, respectively (see Section 4.2). This configuration
strikes a balance between model capacity and computational
efficiency. Since we only use the positional information of
sampled points to predict values, we employ a lightweight
MLP consisting of two hidden layers, each containing 64
channels. The model is trained for 20,000 iterations with a
batch size of 4,096 rays, each containing 48 sampled points,
on a single NVIDIA RTX 4090 GPU. We use the Adam opti-
mizer, starting with a learning rate of 10−2 that decays expo-
nentially to 10−3. Under this configuration, the training typ-
ically converges within 10 to 15 minutes. Moreover, we set

the sampled patch size (Spatch) to 4 × 4 based on the thermal
image resolution. For a fair comparison, all baseline methods
are trained using their default configurations.

2. Experimental Results
1) Quantitative Results

Table 1 reports the quantitative comparisons between our
proposed NeRF-TRP and various baseline methods. We ob-
serve that methods designed for rendering RGB images fail
to yield satisfactory results for thermal scenes. Differently,
our method is specifically tailored for thermal imaging and
thus generally achieves better performance than the compared
baseline methods, which demonstrates its ability to effec-
tively capture the unique characteristics of thermal scenes.
In addition, it is notable that our method achieves a 1.85 dB
improvement in PSNR compared with ThermoNeRF. This is
due to that ThermoNeRF relies on RGB content and visible
light imaging mechanism to capture scene geometry, which
might be unsuitable for thermal view synthesis, whereas our
approach is specifically designed based on the principle of
thermal imaging. These experimental results highlight the ef-
fectiveness of our NeRF-TRP in generating high-quality ther-
mal images from unseen views, particularly in real-world sce-
narios where RGB data is unavailable.
2) Qualitative Results

We also conduct qualitative experiments to further verify
the effectiveness of our proposed NeRF-TRP. As visualized
in Figure 5, our method performs well in recovering intri-
cate details in both visual aesthetics and geometry, such as the
clarity of building windows and tree branches. In contrast, the
baseline methods designed for rendering RGB images yield
poor results due to the inherited differences between RGB
and thermal imaging mechanisms. This often results in inac-
curate geometric structures and noticeable artifact blurring.
Among these methods, Nerfacto exhibits relatively better ge-
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Figure 5 Qualitative results on the ThermoScenes dataset.

ometry recovery than the others but suffers from suboptimal
color representation in the rendered images. On the other
hand, ThermoNeRF, which utilizes paired RGB and thermal
images, produces improved results but relies heavily on the
availability of RGB data. This reliance poses challenges in
real-world scenarios with extreme weather or poor lighting,
where capturing high-quality RGB images is difficult. More-
over, obtaining RGB images may be entirely impossible due
to the high cost of image acquisition or the lack of suitable

cameras. Notably, our proposed method is capable of gener-
ating high-quality thermal images using only thermal data,
making it a robust solution for scenarios where RGB data is
difficult to obtain or even unavailable.

To further evaluate the quality of synthesized images gen-
erated by different methods, we present the difference images
between the synthesized images and ground-truth image in
Figure 6. Here, the MAE (Mean Absolute Error) values are
displayed in the bottom-right corner of each image for quan-
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Figure 6 Difference images corresponding to the qualitative results in Figure 5. The MAE values are displayed in the bottom-right corner of each image.
Here, the image with the lowest MAE value in each row is highlighted by a red box.

titative evaluation. These results demonstrate that the pro-
posed NeRF-TRP achieves the best synthesis quality among

all compared approaches.
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3. Efficiency Analysis
We compare the efficiency of the proposed NeRF-TRP

with multiple baseline methods, focusing on two critical met-
rics, namely training time (measured as total training time in
hours) and rendering efficiency (evaluated in Frames Per Sec-
ond (FPS)). The results depicted in Figure 7 demonstrate that
NeRF-TRP attains the highest image quality (i.e., PSNR), the
shortest training time, and the fastest rendering FPS among
all the compared methods. The high efficiency of our method
stems from the employment of multi-resolution hash encod-
ing, which replaces computationally expensive MLP opera-
tions with efficient feature interpolation for point feature ex-
traction. Additionally, unlike the baseline methods that incor-
porate the view direction as an additional input, ThermoN-
eRF relies solely on the positional information of sampled
points for property prediction. This allows ThermoNeRF to
employ a more lightweight MLP when compared with other
methods, which further accelerates both training and ren-
dering processes. These improvements make our proposed
method well-suited for the applications which require both
high-quality output and fast processing.

(a) PSNR vs. training time (b) PSNR vs. rending FPS

Figure 7 Training time, rendering efficiency, and image quality of differ-
ent methods. (a) PSNR vs. training time (measured in 4090 GPU
hours). (b) PSNR vs. rendering efficiency (evaluated in FPS).

4. Ablation Study
To validate the contributions of the devised Thermal

Volume Rendering (TVR) and Patch-based Regularization
(PR), we conduct ablation experiments on the ThermoScenes
dataset. In these studies, we use multi-resolution hash en-
coding to obtain the sampled point features. The quantita-
tive results of these experiments are presented in Table 2, and
the corresponding visual comparison is shown in Figure 8.
We observe that the model excluding both the TVR and PR
components produces the worst performance when compared
with the other models. By incorporating PR, the performance
can be improved, with noise and artifacts in the generated
images significantly reduced. However, geometric represen-
tation remains suboptimal (e.g., the lip of the cup). Mean-
while, the utilization of TVR further enhances the results. Fi-
nally, our proposed method combining TVR and PR achieves

the best overall performance among all the compared mod-
els, thereby highlighting the effectiveness of these designed
components in thermal image synthesis.

Table 2 Ablation study results averaged over ten thermal scenes from the
ThermoScenes dataset, with ↑ (↓) indicating higher (lower) values
are better.

Model Variant PSNR↑ SSIM↑ LPIPS↓
NeRF-TRP w/o TVR and PR 20.65 0.839 0.204
NeRF-TRP w/o TVR 28.10 0.909 0.073
NeRF-TRP w/o PR 33.31 0.954 0.078
NeRF-TRP 33.83 0.960 0.068

(a) Ground-truth

(e) NeRF-TRP

(c) NeRF-TRP w/o TVR(b) NeRF-TRP w/o TVR and PR

(d) NeRF-TRP  w/o PR

Figure 8 Ablation visual comparison on the Heated Water Cup scene.

VI. Conclusions
In this paper, we propose NeRF-TRP, a neural radiance

field model for synthesizing thermal images from unseen
viewpoints. Unlike previous NeRF approaches that rely on
paired RGB and thermal images to produce realistic thermal
images, NeRF-TRP achieves this solely with thermal images
as input, making it a robust solution for scenarios where RGB
data is difficult or impossible to obtain. Specifically, based
on the principle of thermal camera imaging, NeRF-TRP pre-
dicts thermal radiation to render images, enabling accurate
representations of thermal scenes. Meanwhile, we propose
a patch-based regularization inspired by the thermal equilib-
rium phenomenon to ensure the smooth synthesis of thermal
images. Experimental results demonstrate that NeRF-TRP
outperforms the compared methods, achieving state-of-the-
art performance in thermal image quality, training time, and
rendering efficiency.
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Although NeRF-TRP demonstrates strong capability in
addressing thermal NVS, it still has several potential lim-
itations. Similar to most NeRF-based methods, NeRF-TRP
suffers from performance degradation when the input views
are sparse. Additionally, NeRF-TRP requires accurate cam-
era poses of images for training. However, unlike RGB im-
ages, thermal images often have sparse features and limited
textures, making it challenging to estimate accurate camera
poses. Addressing these limitations will be a focus of our fu-
ture work.
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