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Abstract—Estimating the Ratio of Edge-Users (REU) is an
important issue in mobile networks, as it helps the subsequent ad-
justment of loads in different cells. However, existing approaches
usually determine the REU manually, which are experience-
dependent and labor-intensive, and thus the estimated REU might
be imprecise. Considering the inherited graph structure of mobile
networks, in this paper, we utilize a graph-based deep learning
method for automatic REU estimation, where the practical cells
are deemed as nodes and the load switchings among them
constitute edges. Concretely, Graph Attention Network (GAT)
is employed as the backbone of our method due to its impressive
generalizability in dealing with networked data. Nevertheless,
conventional GAT cannot make full use of the information in
mobile networks, since it only incorporates node features to infer
the pairwise importance and conduct graph convolutions, while
the edge features that are actually critical in our problem are
disregarded. To accommodate this issue, we propose an Edge-
Aware Graph Attention Network (EAGAT), which is able to
fuse the node features and edge features for REU estimation.
Extensive experimental results on two real-world mobile network
datasets demonstrate the superiority of our EAGAT approach to
several state-of-the-art methods.

I. INTRODUCTION

In mobile networks, estimating the Ratio of Edge-Users
(REU) [1] according to the properties of different cells (e.g.,
residential areas and working areas, etc) and edges is a very
important issue as it offers a crucial cue for balancing the load
of different cells. Here “REU” means the proportion of users
with less than 5 Million bits per second (Mbps) network speed
in all users within a cell, which is actually a measurement of
the ratio of low-throughput users. Usually, The users sharing
the network resources in a cell may have different throughput.
The users with high-throughput are generally satisfied with
the network speed. While for low-throughput users, a poor
network speed may bring troubles to their regular work and
life. For example, in the working daytime from Monday to
Friday, the REU in working area will be high, and thus more
bandwidth or other network resources should be provided to
the working areas to satisfy the requirements of the inside
users. On the contrary, for the periods in holidays such as
Saturday and Sunday, the REU in residential area will be high
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as most people will stay at home, so the connection speed for
these users is expected to be accelerated.

In current practical implementations, engineers simply de-
termine the REU manually based on their previous expe-
riences, so it is experience-dependent and labor-intensive,
and thus the estimated REU might be inaccurate [2], [3].
Therefore, in this paper, we aim to use a machine learn-
ing technique to adaptively estimate or predict the REU in
a future time according to the past numerical records of
network structures and REUs, so that the network load can
be better adjusted in advance. Note that the mobile network
naturally contains a graph structure where different cells are
nodes and the load switching among them constitutes edges,
therefore by regarding historical REU as the target value of
each node, the training of an REU estimation model can be
directly formulated as a node regression problem. Currently,
there mainly exist two classical solutions to cope with node
regression, namely, matrix factorization [4], [5] and random
walk [6], [7]. However, since our task requires a generalizable
inductive model [8] that can predict the REU of nodes in an
unseen graph, so these two methods are not applicable here.
This is because the above two methods belong to transductive
learning without the ability to do node inference in previously
unseen cases. Consequently, in this paper, we propose to
employ the Graph Convolutional Network (GCN) with good
generalizability to serve as the backbone of our regression
model.

Recently, GCN-based methods [9] have received intensive
attention and achieved satisfactory results in several appli-
cations, such as image classification [10], [11], [12], [13],
text classification [14], [15], [16], biological networks [17],
[18], [19], transportation networks [20], [21], [22], and citation
networks [9], [23], [24]. It is notable that GCN learns a func-
tion for aggregating information from neighborhoods of every
node in a graph, and thus representative embeddings of nodes
can be acquired which further leads to satisfactory learning
results. Moreover, some of the GCN models, e.g. [23], can be
naturally applied to unseen graphs and are demonstrated to be
effective in both inductive learning and transductive learning.
Lastly, intensive experiments have demonstrated that the GCN-



based models often outperform the matrix decomposition and
random walk-based methods on various tasks [23], [25].

Nevertheless, as mentioned above, the graph edges and
their features also play a critical role in determining the
REU in mobile networks. For example, Cell Individual Offset
(CIO) [26] evaluates the load switching tendency between two
cells and is practically verified to be strongly related to the
output REU. Unfortunately, this information regarding edge
features cannot be directly utilized by conventional GCN.
Therefore, based on Graph Attention Network (GAT) [15],
this paper proposes an Edge-Aware Graph Attention Network
(EAGAT) which fuses the node features and edge features in
a principled way. Specifically, the proposed EAGAT employs
attention-based architecture to perform node regression. In
the training stage, as the value of the CIO is related to the
connection between cells, our methodology takes both the
node features and the edge features into consideration to
compute the attention coefficients between graph nodes, where
self-attention strategy is employed at the same time. Since
the edge information is additionally incorporated, the learned
attention coefficients can be more accurate than those of
conventional GAT. After that, feature aggregation is performed
according to the refined attention coefficients. Finally, the
deviation between the REU output by our network and the
expected value is reduced by minimizing their Mean Squared
Error (MSE) [27]. In the test stage, we directly apply the well-
trained EAGAT model to a new graph and obtain the predicted
REU on the nodes of this graph.

In fact, currently, there are some preliminary researches
on learning with a graph with edge features. For example,
Decagon [18] attempts to learn different sets of parameters for
various edge types (e.g., Gastrointestinal bleed and Bradycar-
dia side effect), and uses the learned embeddings to predict
the side effect of drug combinations. Edge2vec [19] aims
to identify biological entities such as genes, proteins, drugs,
diseases problem and learns a transition probability matrix
among the edge types with EM algorithm [28]. However, these
two methods can only be utilized to process graphs with the
edge types representing different relationships between nodes.
The work [29] proposes a method named as EGNN, which
takes both the node features and edge features as inputs to
produce pairwise attention coefficients for neighbor aggrega-
tion. However, the edge features here are merely utilized as
a binary indication of whether there is a connection between
the two nodes. Therefore, existing works cannot adequately
deploy the edge features in our case and thus is not suitable
for the investigated REU estimation problem.

In summary, this paper has made the following technical
contributions:

• In view of the inherited graph structure of mobile net-
works, we employ a GCN-based framework to fit the
mobile network data and estimate REU parameters.

• Inspired by GAT, the node features and the edge features
are encouraged to work collaboratively for learning the
refined pairwise importance among graph nodes.

• Extensive experimental results on two real-world mobile
network datasets demonstrate the effectiveness of our
EAGAT method.

II. RELATED WORK

In recent years, there has been increasing interest in ex-
tending convolution to graph structures. Here, we review some
representative works on GCN in this section. As introduced
in [30] and [31], the advanced works in this area can be cate-
gorized as spectral-based methods and spatial-based methods,
respectively.

A. Spectral-Based Graph Convolution

The first notable spectral-based GCN was developed by
Bruna et al. [32], where the convolution operation is defined in
the Fourier domain by computing the eigen-decomposition of
the graph Laplacian [33], [34], [35]. This operation can also be
expressed as a signal x filtered by gθ = diag(θ) parameterized
by θ in the Fourier domain, namely

gθ ? x = UgθU
>x, (1)

where U is the matrix composed of the eigenvectors of the nor-
malized graph Laplacian L = I−D−1/2AD−1/2 = UΛU>.
Here D is the degree matrix, I denotes the identity matrix, A
denotes the adjacency matrix of the graph, and Λ is a diagonal
matrix of which the diagonal elements are the eigenvalues
of L. Henaff et al. [36] employ a parameterization with
smooth coefficients which aims to make the spectral filters
spatially localized. Then, Defferrard et al. [37] propose to
utilize Chebyshev polynomials and its approximate evaluation
scheme to reduce the computational cost, which leads to
the localized filtering. Recently, Kipf et al. [9] simplify the
previous methods by showing the first-order approximation
to the Chebyshev polynomials as the graph filter spectrum,
which greatly restrains the number of parameters and alleviates
the over-fitting problem. Although the spectral-based methods
are capable of conducting convolution operation on graphs,
the learned filters depend on the graph structure. As a result,
the model trained under a specific structure usually cannot be
directly applied to other unseen graphs [31].

B. Spatial-Based Graph Convolution

Considering the poor generalization ability of spectral-based
models to new graphs, spatial-based models perform graph
convolution directly on spatially close nodes. For instance,
Duvenaud et al. [38] utilize different weight matrices for nodes
with different degrees. Nevertheless, it cannot be applied to
large-scale graphs with large node degrees, because many
weight matrices need to be learned at each layer, which may
lead to the overfitting problem. Atwood et al. [14] propose
a diffusion-based graph convolutional network which uses
transition matrices to define the neighborhoods for nodes when
learning weights for each input channel and neighborhood de-
gree. Niepert et al. [39] extract and normalize neighborhoods
which contains a fixed number of nodes to address the issue.
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ŷN

( )l
H

1h

2h

Nh

( )
2
l

h

( )l
Nh

y

2ŷ
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Fig. 1. The training pipeline of our algorithm. (a) presents the input of the network, including the adjacency matrix A and node features H =[
h>
1 ;h>

2 ; . . . ;h>
N

]
, where N is the number of nodes. After that, the weight matrix of a shared linear transformation W is applied to each node; (b)

indicates the lth multi-head attention layer which adopts the hidden representations H(l) =

[
h
(l)
1

>
;h

(l)
2

>
; . . . ;h

(l)
N

>
]

via using a concatenation operation

“||”, where K represents the number of heads. Here, α12, α13, and α14 represent the learned attention coefficients between node h1 and h2, h3, h4,
respectively. In addition, the red arrow represents the feature aggregation operation; (c) is the output layer to get prediction ŷ = [ŷ1; ŷ2; . . . ; ŷN ] by using
an average operation “Avg”. Finally, the MSE is used to penalize the average squared differences between the output ŷ and the ground truth value y.

Monti et al. [40] propose a spatial-domain model on the non-
Euclidean domain which designs a universe patch operator to
integrate the signals within node neighborhoods. Hamilton et
al. [23] propose an aggregation-based inductive representation
learning model, named GraphSAGE. GraphSAGE generates
embeddings by sampling and aggregating features from the
local neighborhood of nodes and operates by sampling a fixed-
size set of neighbors rather than the full set of neighbors. In
addition, Velickovic et al. [15] inject attention mechanism into
graph learning, and propose a GAT, which aggregates node
information by using an attention mechanism on graph neigh-
borhoods. Although spatial-based methods have addressed the
problem of unseen graph, edge features cannot be adequately
incorporated by them for representation learning.

III. THE PROPOSED METHOD

This section details our proposed EAGAT model (see
Fig. 1). First, we briefly introduce the methodology of GAT
consisting of the attention mechanism and the node aggrega-
tion process. Next, we detail the proposed EAGAT. Finally,
we exhibit the whole procedure of our proposed algorithm.

A. Graph Attention Network

The attention mechanism has been successfully used in
many tasks such as machine translation [41], machine read-
ing [42], and so on. Recently, GAT, which performs graph
representation learning via using the attention mechanism has
also been proposed and obtained satisfactory performance.
Considering the merits of attention mechanism in character-
izing pairwise importance among graph nodes, we employ
GAT as the backbone of our method. In order to measure

the importance of various neighbors, the attention coefficients
for a node pair (i, j) can be acquired as

αij =
exp(LeakyRelu(a>[Whi||Whj ]))∑

k∈Ni
exp(LeakyRelu(a>[Whi||Whk]))

, (2)

where αij is the attention coefficient between node i and node
j,Ni represents the neighbors of node i in the graph, and ‘||’ is
the concatenation operation. The set of input node features is
H =

[
h>1 ;h

>
2 ; . . . ;h

>
N

]
stacked by h>1 ,h

>
2 , . . . ,h

>
N in row,

where hi ∈ RF , i = 1, 2, . . . , N , N denotes the number
of nodes and F denotes the number of features of each
node. Here, W ∈ RF

′
×F indicates the weight matrix of a

shared linear transformation which is applied to every node,
a ∈ R2F

′

is the weight vector of a single-layer feed forward
neural network, where F

′
represents the dimensionality of the

updated features. In Eq. (2), α is normalized by a softmax
function before the LeakyReLU [43] non-linearity operation.

Once obtained, the attention coefficients αij can be used to
update the feature representations. Then new features H

′
=[

h
′

1

>
;h

′

2

>
; . . . ;h

′

N

>]
can be obtained by

h
′

i = σ(
∑
j∈Ni

αijWhj) (3)

with a non-linearity σ (namely Exponential Linear Unit
(ELU) [44]). Similar to the practice in [41], the multi-head
attention is utilized here to incorporate different types of
information and stabilize the learning process. To be specific,
K independent attention mechanisms are applied to compute
the hidden states before a concatenation operation, which
results in the following output representations:

h
′

i =
K

||
k=1

σ(
∑
j∈Ni

αkijW
khj). (4)
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Fig. 2. The process of getting αij . The weight matrix W is used for feature
transformation, by which h

′
i and h

′
j can be obtained. After incorporating

the transformed features with the shared attention mechanism a, which is
parameterized by a before applying the non-linearity function, the edge
features Eij is additionally utilized to generate the attention coefficients eij .
Finally, we apply the softmax function to obtain the normalized attention
coefficients αij .

However, concatenation is no longer sensible when we per-
form multi-head attention on the node features. To deal with
this issue, we employ an averaging strategy to obtain the final
prediction:

h
′

i = σ(
1

K

K∑
k=1

∑
j∈Ni

αkijW
khj), (5)

where αkij is normalized attention coefficient computed by the
kth attention mechanism.

The attention architecture has several interesting advantages:
(1) The operation is efficient since computation can be con-
ducted in a parallelizable way across node-neighbor pairs;
(2) By assigning arbitrary weights to neighbors, the attention
architecture can be applied to graph nodes of different degrees;
(3) The attention architecture can be easily applied to predict
previously unseen data.

B. The Proposed EAGAT

Traditional GAT is able to exploit the graph information,
including node connectivity and features, to infer the pairwise
relationships among graph nodes. However, in some cases
where edge features, such as the CIO in the mobile networks,
can be accessible, therefore the original form of GAT can-
not make full use of the given information. Specifically, in
traditional GAT, the attention coefficients are calculated only
based on the node features, and thereby disregarding the edge
information. To address this deficiency, the proposed EAGAT
focuses on incorporating both the edge features and the node
features to further improve the representation learning process
(see Fig. 2).

Actually, according to the practical experience of engineers,
CIO is capable to characterize the relationship between cells.
Therefore, based on the conventional GAT, which is able to
learn the attention coefficients between cells via exploiting

their features, we regard CIO as the edge feature that can be
employed to generate attention coefficients more precisely. To
be specific, we denote CIO as E ∈ RN×N where each element
Eij indicates the strength of connection between cell i and
cell j. If there is a connection between cell i and cell j, then
Eij is equal to the value of CIO otherwise zero. After that,
analogous to GAT, a weight matrix W is applied to embed
the node features into a suitable subspace. We then perform
self-attention mechanism to compute the attention coefficient
between node i and node j as follows:

eij = a(Whi,Whj)×Eij , (6)

where a : RF
′

×RF
′

→ R is a shared attentional mechanism
and j ∈ Ni. Eq. (6) indicates the importance between node
i and node j, which is determined by both their features
and edge features. To make coefficients comparable across
different nodes, softmax function is used to normalize them
across all choices of j:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

. (7)

Then the coefficients can be acquired as

αij =
exp(LeakyRelu(a>[Whi||Whj ])×Eij)∑

k∈Ni
exp(LeakyRelu(a>[Whi||Whk])×Eik)

.

(8)
After that, we construct the adjacency matrix A ∈ RN×N as

Aij =

{
αij if j ∈ Ni
0 otherwise

. (9)

By stacking the improved graph attention layer, a multi-layer
EAGAT can be achieved. The output of the lth attention layer
can then be obtained by

H(l) = σ(A(l)H(l−1)W(l)), (10)

where A(l), H(l), and W(l) denote adjacency matrix, the
output matrix, and the trainable weight matrix of the lth layer.
Note that H(0) is the input features H, A(0) indicates the
adjacency matrix formed by the initial adjacency relationship.
By applying multi-head attention, the output representations
can be expressed as

H(l) =
K

||
k=1

σ(
[
A(l)

]k
H(l−1)

[
W(l)

]k
), (11)

where
[
A(l)

]k
,
[
W(l)

]k
denote the adjacency matrix and the

trainable weight matrix in the lth layer of the kth attention
mechanism. Therefore, final prediction can be formulated as

ŷ = σ(
1

K

K∑
k=1

[
A(L)

]k
H(L−1)

[
W(L)

]k
), (12)

where L denotes the number of layers, and ŷ =
[ŷ1, ŷ2, . . . , ŷN ] indicates the output vector of EAGAT. The
convolution process of EAGAT is summarized in Algorithm 1.
In our model, the MSE is adopted to penalize the differences



Algorithm 1 Edge-Aware Graph Convolution Process of EA-
GAT
Input: Input node features H; Input edge features E; Neigh-
borhood N ;

1: // Calculate the attention coefficients
2: for i = 1, 2, . . . , N do
3: for j = 1, 2, . . . , N do
4: Obtain αij according to Eq. (8);
5: Obtain Aij according to Eq. (9);
6: end for
7: end for
8: // Perform graph convolution
9: for l = 1, 2, . . . , L− 1 do

10: Obtain H(l) according to Eq. (11);
11: end for
12: Calculate the network output according to Eq. (12);
Output: Network output ŷ.

Algorithm 2 Proposed EAGAT for REU Estimating
Input: Input Graph with H and E; Neighborhood N ;
number of iterations T ; learning rate η; number of
graph convolutional layers L; number of attention heads
K;

1: // Train the model
2: for i = 1, 2, . . . , T do
3: Conduct EAGAT by Algorithm 1;
4: Calculate the error term according to Eq. (13), and up-

date the weight matrices Wk
(l)(1 ≤ l ≥ L, 1 ≤ k ≥ K)

using full-batch gradient descent;
5: end for
6: Conduct prediction by Algorithm 1;

Output: REU prediction for each node in the graph.

between the network outputs and the ground truth values
y = [y1, y2, . . . , yN ], which constitues the loss function:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2, (13)

where yi represents the ground truth value of the ith node.
Similar to [9], the network parameters here are learned by
using full-batch gradient descent, where all nodes are utilized
to perform gradient descent in each iteration. After the training
process is completed, a new graph can be adopted for predic-
tion based on the well-trained EAGAT model. Specifically,
a corresponding adjacency matrix A will be first computed
based on the attention coefficients, and then successive graph
convolutions can be conducted to obtain the network output ŷ.
The implementation details of our proposed method are shown
in Algorithm 2.

IV. EXPERIMENTS

In this section, we conduct exhaustive experiments to eval-
uate the proposed EAGAT method, and also provide the
corresponding algorithm analyses. To be specific, we compare

TABLE I
CHARACTERISTICS OF TWO MOBILE NETWORK DATASETS.

Datasets Mobile Spring Mobile Summer

# Graphs 62 65

# Nodes 1266 1266

# Average Edges 16677 16245

EAGAT with other approaches on two real-world mobile
network datasets. By following [1], R-squared (R2) score [45]
is adopted to evaluate the effectiveness of the regression
model. Moreover, we demonstrate that the participation of the
edge features in our EAGAT is beneficial to obtain improved
performance.

A. Datasets

In our experiment, we use two datasets which are named
Mobile Spring and Mobile Summer. Both datasets are
collected from the base stations of the metropolitan mobile
network in different time periods (i.e. spring and summer)
in a city of China. We regard each cell as a graph node
and determine the adjacency relationship according to whether
a switching occurs between the cells. Meanwhile, REU is
regarded as the target value of each cell. In addition to
these common information, edge features (e.g., CIO, etc) are
provided among the cells. Note that each dataset contains a
different number of graphs, where the graphs contain the same
number of nodes. The characteristics of these two datasets are
summarized in Table I.

B. Experimental Setup

In our experiment, our algorithms are implemented in
Python on the TensorFlow platform [46] with Adam opti-
mizer [47]. We apply a four-layer EAGAT model with the
number of attention heads being six. Here, the optimal number
of attention heads is selected from the set {2, 4, 6, 8}. During
the training phase, we apply an L2 regularization in order
to alleviate the over-fitting problem. Analogous to the GAT
model, the ELU [44] is employed as the non-linearity across
all layers.

To evaluate the performance of our proposed method,
several regression models are used for comparison. Specifi-
cally, we employ two classic regression models, i.e., Multi-
Layer Perceptron (MLP) [48] and Random Forest (RF) [49],
together with two GCN-based methods, i.e., GAT [15] and
GraphSAGE [23]. Meanwhile, we also compare the proposed
EAGAT with the GCN model that can handle edge features,
namely EGNN [29]. The baseline methods are implemented
with the parameter setup suggested in their respective liter-
ature. Concretely, We use MLP with a single hidden layer
containing 64 nodes, where the number of hidden layers is
selected from the set {1, 2, 3, 4}. In RF, we set the number
of trees in the forest to 100, which is selected from the
set {10, 50, 100, 200}, and the maximum depth of the tree



is selected from the set {10, 20, 30, 40}. In GraphSAGE, the
mean aggregator is used for generating the representation
of each node. In EGNN, we employ attention-based EGNN
layer. Furthermore, We perform five-fold cross-validation to
record the mean R2 score and standard deviations for all the
compared algorithms. Some other explanations for baseline
methods are given as follows:
• In MLP and RF, only node features are used as the input

while ignoring the graph structure.
• In GAT and GraphSAGE, the structures of the graph are

utilized without any edge information.
• In EGNN, we use both the graph structure and the edge

features.

C. Evaluation of Regression Models

For each dataset, the data is split into the training set and
the test set respectively. We use the training data to learn
the regression model and then test it on the test set. The
effectiveness of regression model is measured by the R2 score.
As introduced in [45], R2 score is a reliable statistical measure
to show how close the data points are to the fitted regression
curve, and it has been used to evaluate various regression mod-
els such as [50], [51]. Specifically, for a graph g, assume that
the ground truth values of the nodes are y = [y1, y2, . . . , yn],
and the predictions are ŷ = [ŷ1, ŷ2, . . . , ŷn], where n is the
number of nodes in the graph. The R2 score for graph g can
be express as

R2
g = 1−

n∑
i=1

(yi − ŷi)
2

(yi − y)
2 , (14)

where y = 1
n

∑
i yi. If R2

g = 1, the model can fit the data
perfectly; if R2

g = 0, the model becomes just a naive predictor
which always predicts by random; if the score is negative,
the model is even worse than the naive predictor. We use the
average R2 score as a measure of the effectiveness of the
regression models, i.e., R

2
= 1

M

∑
g∈GR

2
g , where G is the

graph set, and M denotes the number of graphs.

D. Regression Results

To show the effectiveness of our proposed EAGAT, here
we quantitatively and qualitatively evaluate the regression
performance by comparing EAGAT with the aforementioned
baseline methods.

The quantitative results obtained by different methods on
the two mobile network datasets are summarized in Table II,
where the highest value in each dataset is highlighted in bold.
We observe that the classic methods including MLP and RF
achieve relatively low accuracy, which is due to the reason
that they can only utilize the features of nodes, so the graph
structure cannot be captured. By contrast, GCN-based methods
such as GAT and GraphSAGE are capable of integrating
the information of graph structure, so they can yield better
performance than MLP and RF. The EGNN algorithm, which
combines graph structure and edge information, ranks in sec-
ond place. This implies that the edge features are quite useful

TABLE II
R2 SCORE (MEAN ± STD) OF EVERY COMPARED APPROACH ON THE

ADOPTED DATASETS.

Model Mobile Spring Mobile Summer

MLP [48] 0.602 ± 0.007 0.614 ± 0.006

RF [49] 0.610 ± 0.008 0.618 ± 0.007

GraphSAGE [23] 0.702 ± 0.010 0.712 ± 0.011

GAT [15] 0.721 ± 0.007 0.734 ± 0.013

EGNN [29] 0.733 ± 0.008 0.745 ± 0.009

EAGAT 0.880± 0.010 0.891± 0.008
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Fig. 3. The convergence curves of the model on two mobile network datasets
during the training process.

to enhance regression performance. Furthermore, we observe
that the proposed EAGAT achieves the top-level performance
among all the methods, and the standard deviations are also
very small, which reflects that the proposed EAGAT is more
effective and stable than the compared methods in our REU
estimation problem.

The convergence curves of our model on two mobile net-
work datasets during the training process are shown in Fig. 3,
and one can observe that the proposed EAGAT actually can
converge after about 100 iterations, which demonstrates the
efficiency of our model. We also compare distributions of the
REU outputs of our model with the ground truth values on the
two mobile network datasets. The results are given in Fig. 4,
which demonstrates that the distribution of our outputs is close
to that of the ground truth values, thus again reflecting the
effectiveness of our model.

E. Ablation Study

The superiority of the proposed EAGAT approach has been
verified by the experimental results presented above. In this
section, we conduct an ablation study to further demonstrate
the effectiveness of EAGAT. Different from conventional GAT
which only incorporates node features to implement the self-



0 5 10 15

0

0.5

1

1.5

0

0.5

1

1.5

0 5 10 15

0

0.5

1

1.5

0 5 10 1510 15

0

0.5

1

1.5

0 5

(a)

(b)

REU value

10
4

10
4

N
u

m
b

e
r 

o
f 

 C
el

ls

N
u

m
b

e
r 

o
f 

 C
el

ls

REU value

REU value
REU value

N
u

m
b

e
r 

o
f 

 C
el

ls

N
u

m
b

e
r 

o
f 

 C
el

ls
10

4
10

4

Fig. 4. Distributions of the ground truth values and the outputs. (a) Left:
the distribution of the ground truth values on the Mobile Spring dataset;
Right: the distribution of the outputs on the Mobile Spring dataset. (b) Left:
the distribution of the ground truth values on the Mobile Summer dataset;
Right: the distribution of the outputs on the Mobile Summer dataset.

attention mechanism, our methodology is to attend over both
node features and edge features to obtain the attention co-
efficients. Therefore, we compare the results achieved by the
GAT model with the EAGAT model on the Mobile Summer
dataset to reveal the contribution of the edge features. Note
that our EAGAT degenerates to GAT if the edge features
are not considered. From Table II, we can observe that there
is a noticeable gap between GAT and the proposed EAGAT
methods regarding R2 score when conducting regression tasks.
Fig. 5 shows the variation of R2 score between EAGAT
and GAT during the training process, from which we can
observe the gap between these two methods intuitively. To
be specific, the R2 score will decrease when the edge features
are removed, and thus the effectiveness and indispensability
of the use of edge features are verified.

V. CONCLUSION

Estimating the Ratio of Edge-Users (REU) according to the
properties of different cells and the load switching among
them is an important issue in mobile networks, as it helps
balance the load of different cells. In this paper, the recently
proposed GAT is deployed to formulate REU estimation as
a node regression problem. Based on the GAT backbone, we
exhaustively exploit the inherited graph structure of mobile
networks, where the node features (namely, the properties of
different cells) and edge features (namely, the load switching
actions) are fused in a principled way, in order to acquire
improved predictions. To the best of our knowledge, it is
the first time to automatically predict the REU by deploying
the graph-based machine learning technique. The experimental
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Fig. 5. R2 score of GAT model and the proposed EAGAT model. The purple
curve indicates the R2 score of GAT. The green curve denotes the R2 score
of the proposed method EAGAT.

results on two real-world mobile network datasets demonstrate
the superiority of our EAGAT approach to several state-of-the-
art methods.
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