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Similarity-Agnostic Contrastive Learning With
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Abstract—Self-supervised contrastive learning (CL) seeks
to learn generalizable feature representations via the self-
supervision of pairwise similarities, where existing CL approaches
usually build definite similarity labels (e.g., positive or negative)
for model training. Yet in practice, the same pair of instances
may have opposite similarity labels in different scenarios, e.g.,
two interclass images from CIFAR-100 can be a similar pair in
CIFAR-20. Learning with definite similarities can hardly obtain
an ideal representation that simultaneously characterizes the
similar and dissimilar patterns (e.g., the contexts and details)
between each two instances. Therefore, pairwise similarities used
for CL should be agnostic, and we argue that simultaneously
considering both the similarity and dissimilarity for each data
pair could learn more generalizable representations. To this end,
we propose similarity-agnostic CL (SACL), which generalizes the
instance discrimination strategy of conventional CL to a new
multiobjective programming (MOP) form. In SACL, we build
multiple projection layers with corresponding regularizers to
constrain the distance matrix to have different sparsity in different
objectives so that we can obtain alterable pairwise distances to
capture both the similarity and dissimilarity between each pair of
instances. We show that SACL can be equivalently converted to a
single learning objective, easily solved by stochastic optimization
with convergence guarantees. Theoretically, we prove a tighter
error bound than conventional CL approaches; empirically, our
method improves the downstream task performance for image,
text, and graph data.

Index Terms—Agnostic similarity, contrastive learning (CL),
model generalizability, self-supervised learning, similarity
learning.

I. INTRODUCTION

LEARNING representations without human annotations is
a long-standing problem and has great significance in a

lot of practical uses [4], [15], [26], [78]. Recently, contrastive
learning (CL) successfully promotes the unsupervised repre-
sentation learning and shows encouraging performance when
compared with fully supervised learning approaches [32], [61].
As CL directly pretrains a generic feature representation by
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autonomously building the pseudo-supervision (i.e., the self-
supervision) from the raw data, the learned representation can
be applied to various downstream tasks such as classification
[33], retrieval [38], and clustering [88].

Originally, the contrast information of CL was generated
by regarding each pair of instances as a negative pair to
conduct the instance discrimination [19], [73] so that the
representations of each pair of instances can be pushed away.
After that, some representative works such as SimCLR [11]
and MoCo [27] introduced the data augmentation to further
construct positive pairs, and empirical results also successfully
demonstrated the great effectiveness of CL, especially on
image and graph data [3], [63], [78] even compared with some
fully supervised learning methods. Currently, the similarity-
based loss functions that fully integrate negative pairs and
positive pairs have already become a commonly used setting
for a lot of self-supervised CL algorithms in different domains
[67], [69], [84].

Accordingly, the most recent advances in CL mainly focus
on two aspects: positive pair enrichment and negative pair
correction. On the one hand, several perturbation techniques
were introduced into CL, further enriching critical intraclass
information for model training. For example, the multimodal
coding [47], [49], [57] and adversarial generation [31], [43],
[64] were applied to CL to build more plentiful augmentation
results. Meanwhile, to avoid the improper positive pairs gener-
ated by excessive data augmentations, some filter mechanisms
(e.g., the distribution divergence constraint [67] and sharpen-
ing distribution strategy [87]) were proposed to better control
the generation of augmented/perturbed instances. On the other
hand, as the straightforward instance discrimination may result
in some false negatives (i.e., the semantically similar instances
yet being pushed away), recent works adopted traditional
approaches such as pseudo-labeling [85], positive-unlabeled
learning [16], and metric learning [10], [17], to effectively
reduce the impact of those false negatives. Moreover, consid-
ering that diverse negative pairs may have different influences
on the learned representation, the hard-mining and importance
weighting techniques [35], [51] were also deployed to further
adjust the occurrence frequencies of negative pairs in a mini-
batch optimization. In summary, existing CL approaches have
been greatly promoted by the utilization of positive and
negative pairs.

Although existing CL approaches have achieved very
promising results in a lot of downstream tasks, most of them
can usually consider either the similar or dissimilar pattern
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TABLE I
COMPARISON BETWEEN OUR PROPOSED METHOD AND VARIOUS EXISTING CL APPROACHES, WHERE DA AND ID STAND FOR DATA AUGMENTATION

AND INSTANCE DISCRIMINATION, RESPECTIVELY

Fig. 1. Conceptual illustration for similarity-agnostic contrast. Due to the local
context of data, the fineness degree of categorization, or any other reasons,
the similarity between the same pair of instances can be opposite in different
cases. We propose to characterize such an important property so that we can
enrich the self-supervisory information for obtaining a better representation
with stronger generalizability.

(e.g., the contexts and details) between a pair of instances,
and they ignore the remaining pairwise relationship within
such a data pair, which is also potentially useful (as shown in
Fig. 1). The traditional clustering and prototype algorithms [7],
[41], [89] were introduced into CL, successfully leveraging
the hierarchical class structures of data to consider different
pairwise similarities (i.e., multiple similarities) in different
granularity scenarios. However, the clustering results usually
depend on the reliability of the learned representations, and
these approaches inevitably become weak or ineffective when
the original data do not really have hierarchical structures.
Some recent works further employed the uncertainty-aware
[2], [65] and label-smoothing [72], [83] techniques to soften
pairwise similarities to be continuous values, which allow us
to better characterize the similarity degree for each data pair.
Nevertheless, their softened similarities are usually definite
values, and thus, each data pair still only receives the supervi-
sion signal composed of a single scalar. Therefore, the feature
representations learned by most existing CL approaches can
hardly capture the similar and dissimilar patterns simultane-
ously (which are both useful) between each pair of instances,
so the generalizability of these representations would be
limited.

To overcome the drawbacks of the existing methods men-
tioned above, in this article, we propose a novel method
called similarity-agnostic CL (SACL) to construct alterable

self-supervision, simultaneously exploring both the similarity
and dissimilarity within each single data pair. Here, “agnostic”
means that the learning algorithms and encoder models are
agnostic to the intrinsic similarities between instances, and we
call the changeable pairwise similarities captured in different
learning tasks as “alterable” similarities. Our basic motivation
is that the pairwise similarities used for CL are unknowable
and changeable, so the learning algorithm should be agnostic
to the similarity supervision, and we need a new hierarchy-free
approach to utilize the potential multiple similarities of each
data pair. This inspires us to generalize the instance discrim-
ination of conventional CL to a multiobjective programming
(MOP) form. The single learning objective of conventional
CL enlarges the distance between each pair of instances, and
the distance matrix of pairwise instances is usually nonsparse.
We extend such a real-valued loss to a vector-valued loss to
consider the changeable similarities between instances, where
the pairwise similarities are alterable within several sparse dis-
tance matrices. Specifically, we constrain a series of distance
matrices to have different sparsity in different projection layers,
so we can obtain alterable distances to supervise the learning
of both the similarity and dissimilarity for each data pair.
In this way, the generalizability of the learned representation
can be successfully improved. We prove that the proposed
SACL (i.e., the MOP problem with a vector-valued loss)
can be equivalently converted to a regular real-valued loss
minimization. We design the stochastic algorithm to optimize
the learning objective and also provide the corresponding the-
oretical analysis to guarantee the effectiveness and soundness
of our method. The experiments on image, text, and graph
benchmarks clearly demonstrate the superiority of our method
when compared with existing CL approaches.

Our method is generic and effective, and it can be eas-
ily deployed in many existing CL approaches (marked as
Model&Loss Independent in Table I), further improving the
generalization ability of the learned representations with negli-
gible additional computation burdens. Table I lists the detailed
comparison of our method with existing CL approaches, and
our main contributions are summarized as follows.

1) We provide a new viewpoint that pairwise similarities
used for CL are agnostic, which suggests that both the
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similarity and dissimilarity of each data pair are impor-
tant for learning more generalizable representations.

2) We propose a new method with theoretical guarantees to
generalize the conventional CL to a similarity-agnostic
form, simultaneously exploring the similarity and dis-
similarity between pairwise instances.

3) We conduct extensive experiments on real-world data
to validate the effectiveness of our method, and results
on multiple domain tasks consistently demonstrate the
superiority of our method to the state-of-the-art CL
approaches.

The rest of this article starts with a brief review of the
background in Section II. Then, Section III details the SACL
framework and the corresponding formulation. Section IV
provides theoretical analyses on the optimization property,
distance sparsity, and model generalizability of our method.
Section V shows experimental results on real-world bench-
mark datasets. Finally, Section VI concludes this article.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce some necessary notations.
Then, we briefly review the background of (supervised) metric
learning and (self-supervised) CL.

Notations

Throughout this article, we write matrices, vectors, and
three-order tensors as bold uppercase characters, bold low-
ercase characters, and bold calligraphic uppercase characters,
respectively. We denote the training data X = {xi ∈ R

m|i =

1, 2, . . . ,N}, where m is the data dimensionality and N is the
sample size. Here, operators ‖·‖1 and ‖·‖2 denote the `1-norm
and `2-norm, respectively. P ::k denotes the kth slice of the
tensor P .

A. Supervised Metric Learning

Pairwise similarities of training data can be directly anno-
tated by humans and generated by the class labels, e.g.,
the verification task related data [56] and the classification
task related data [74], respectively. Based on the pairwise
similarities, people can design some pair-based loss functions
to learn distance metrics and the corresponding feature rep-
resentations for several downstream recognition tasks. Such
a fully supervised problem setting is usually called metric
learning or similarity learning [6], [79], [80], [82].

In metric learning, the central problem is how to learn a dis-
tance metric or a feature representation that faithfully reflects
the pairwise similarity between each pair of instances from a
dataset. In the past decades, both linear and nonlinear metric
learning approaches have been proposed to learn a generic
feature representation ϕ : Rm → Rh (where h is the feature
dimensionality), and the corresponding learnable distance can
be written as dϕ(x, bx) = ‖ϕ(x)/‖ϕ(x)‖2 − ϕ(bx)/‖ϕ(bx)‖2 ‖2,
which measures the similarity between instances x and bx
sampled from the m-dimensional space. Since human anno-
tations are available, the basic objective of metric learning is
to enlarge the distance value dϕ(x,bx) if x and bx are similar

and meanwhile reduce dϕ(x,bx) if x and bx are dissimilar
[76]. For example, suppose that we are given n + 1 data
pairs {(xi, xk), (xi, xb1 ), (xi, xb2 ), . . . , (xi, xbn )} that uniformly
sampled from the training data X , and the widely used (n+1)-
tuplet loss [55] can be written as

LTUP (ϕ) = E

24−log
e−dϕ(xi, xk)

e−dϕ(xi, xk)+
Pn

j=1e−dϕ
�

xi, xb j

�
35 (1)

where (xi, xk) is a similar pair and (xi, xb j ) is a dissimilar
pair for i, k = 1, 2, . . . ,N and j = 1, 2, . . . , n. Besides the
above well-known projected Euclidean distance dϕ(x,bx), some
new similarity metrics such as the asymmetric metric [80]
and relation alignment metric [90] were also proposed to
enrich the similarity relationship among instances. Neverthe-
less, most existing metric learning approaches assume that we
are given definite similarity annotations, so we can only con-
sider either the similarity or dissimilarity between a given pair
of instances from training data. To address this issue, recent
works proposed to use more plentiful data annotations such
as hierarchical similarity [21], [81], multihead similarity [59],
and multilabel information [22], [75] such that learning more
generalizable feature representations and the corresponding
similarity metrics.

B. Self-Supervised CL

As a popular self-supervised representation learning
approach, CL shares a very analogous training manner (i.e.,
considering the pairwise relationship) with metric learning.
Since human annotations are not available anymore, CL usu-
ally builds pseudo-supervision, namely self-supervision.

Existing CL methods usually have two critical components:
the instance discrimination for generating negative pairs [19],
[73] and the data augmentation for generating positive pairs
[11], [31]. Based on this common setting, we suppose that n+1
data pairs {(x, x+), (x, xb1 ), (x, xb2 ), . . . , (x, xbn )} are uniformly
sampled from the training data X , where (x, x+) is a positive
pair and (x, xb j ) is a negative pair for j = 1, 2, . . . , n. Here,
x+ is a random data augmentation of the instance x from the
training data. Then, we can formulate the learning objective
of CL as the following noise contrastive estimation (NCE)
loss [73]:

LNCE (ϕ) = E

24−log
e−dϕ(x, x+)/γ

e−dϕ(x, x+)/γ +
Pn

j=1 e−dϕ
�

x, xb j

�
/γ

35 (2)

which still seeks to learn a generic feature representation ϕ :
Rm → Rh in h-dimensional space, and γ > 0 is an additional
temperature parameter. In the above learning objective, it is
obvious that x and xb j ( j = 1, 2, . . . , n) might be semantically
similar, whereas they are undeservedly pushed away from each
other. Therefore, some recent works proposed to correct/reduce
the false negative pairs by various conventional techniques
such as positive-unlabeled learning [16], pseudo-labeling [85],
and regularization approaches [10], [70]. Meanwhile, the clas-
sical prototype and clustering algorithms were adopted to
consider the hierarchical class information for some cases
with multiple granularities. Nevertheless, the effectiveness
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of the clustering/prototype usually depends on the learned
representation itself, and these methods inevitably become
weak when the training data do not really have hierarchical
structures. Furthermore, the uncertainty-aware [2] and label-
smoothing [86] techniques were also introduced into CL to
characterize pairwise similarities more precisely. However, the
softened similarities are usually definite values, and thus, each
data pair still only receives the supervision signal composed
of a single scalar. It means that representations learned by
most existing CL approaches can hardly capture the similar
and dissimilar patterns concurrently (which are both useful)
between each pair of instances. Therefore, we aim to propose
a new method to simultaneously consider both the similarity
and dissimilarity of each single data pair, further boosting the
generalization ability of learned representations.

III. METHODOLOGY

In this section, we first discuss the necessity of considering
agnostic similarities in self-supervised CL. After that, we pro-
pose a novel framework dubbed SACL by introducing multiple
projection layers with the corresponding sparse regularization.
The learning objective and the corresponding optimization
algorithm are finally designed with convergence guarantees.

A. Motivation

In both supervised metric learning and self-supervised con-
trastive learning, the pairwise similarity plays a critical role in
the model design. Most settings for both learning tasks assume
that the real pairwise similarity between each two instances is
clearly defined. That is to say, once two instances are given,
their similarity will usually be specified. Nevertheless, in many
real-world scenarios, the same pair of instances may have
diverse similarities in different cases due to the local context,
the target of the learning task, or any other reasons.

To be specific, here we take the recognition tasks on the
CIFAR [39] and In-shop [44] datasets as examples. We adopt
the (n+1)-tuplet loss as we discussed in (1) to train ResNet50-
based [29] encoders and learn the similarity metrics supervised
by different annotations. In Fig. 2(a), we record the distance
values between intraclass instances in CIFAR-100, as well as
the corresponding distance distribution of those same instances
in CIFAR-20. For the In-shop dataset, we directly train two
models based on the clothes annotation and pose annotation
and visualize the distance values for some representative data
pairs, which is denoted as “ClothesA-PoseU and ClothesB-
PoseV” in Fig. 2(b). Note that in this figure, we only list a
fraction of instance pairs from the training data for clarity,
and the global average distances of all data pairs are plotted
with colored dashed lines. In the above empirical results, the
similarity between the same pair of instances significantly
changes in different learning scenarios, where the values of red
bars are opposite to the values of blue bars, and the distance
ranks in different annotation cases are completely different
from each other. This is actually a common issue in a lot of
real-world recognition tasks, and thus, the pairwise similarity
has to be agnostic if we want to learn a generalizable similarity
metric and feature representation.

Fig. 2. Distributions of pairwise distances learned with different annotations
(i.e., the same images divided into 20 and 100 classes in CIFAR-20 and
CIFAR-100, respectively) and different learning targets (i.e., the clothes
classification and pose classification for In-shop dataset). Here, the colored
numbers on the bars indicate the distance ranks, and the dashed lines are
the global average distances of all data pairs (including those distances not
plotted in the figure). (a) Distance distribution of learned pairwise similarity
on CIFAR dataset. (b) Distance distribution of learned pairwise similarity on
In-shop dataset.

1) Similarity-Agnosticity Is a Trouble in Supervised Learn-
ing: In the supervised case, pairwise similarities are directly
annotated by humans. Most learning algorithms aim to fit
human annotations as much as possible based on some induc-
tive biases. Yet, the human annotation for a single data pair
might be changeable in different cases. As we illustrated
in Fig. 2, if there are two images from “bus” and “train”
in CIFAR-100, they should be regarded as a negative pair
(dissimilar) because they come from two different classes.
However, such two images are treated as a positive pair
(similar) in CIFAR-20, which shares the completely same
training instances with CIFAR-100, because the two images
will belong to the same super-class “vehicles-1.” There exist
agnostic similarities in supervised learning, but this may lead
to some troubles. It means that we need more complex
annotations such as multiview, multilabel, and hierarchical
information [22], [77], [81] to consider each possibility of
the agnostic similarity. This would significantly increase the
human cost, even if we could provide the accurate supervision.

2) Similarity-Agnosticity is a Blessing in Self-Supervised
Learning: Interestingly, the above issue caused by agnostic
similarities in supervised learning (i.e., metric learning) can
be naturally solved in the self-supervised scenario (i.e., CL).
Existing CL approaches construct the pseudo-supervision by
combining each pair of instances as a negative pair. Such
pseudo-supervision can be regarded as a manner of capturing
low-level (e.g., fine-grained) similarity, and at this point, there
will be no false negatives anymore. This further inspires us
to naturally generalize the current instance discrimination to
an MOP form, and each objective has its own independent
distance supervision to learn a shared feature representation.
As the distance between the same pair of instances may
change with different objectives, such alterable supervision
can adaptively capture both similarity and dissimilarity within
each data pair. In this case, the agnostic similarity has actually
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Fig. 3. Framework comparison between (a) conventional CL and (b) our
proposed SACL, where we take three projection layers for illustration. Our
SACL is a natural generalization of the conventional method. We regard the
instance discrimination (which is the basic component of existing CL) as
capturing low-level similarity, and we extend it to a multiobjective form to
build alterable distances for more plentiful supervision.

become a good thing because it allows us to further consider
the remaining (similar or dissimilar) pattern among instances,
which is useful but ignored in conventional CL methods.

B. Formulation

Now, we discuss the technical details of our method. CL
seeks to learn a generic network mapping ϕ0 : Rm → Rh [i.e.,
ϕ in (2)], which can be decomposed to ϕ0 = P0 · Φ, where
Φ : Rm → RH is the feature encoder and P0 : RH → Rh is
a projection head as shown in Fig. 3(a). In previous works,
Φ(·) is usually employed as the final features for downstream
tasks, and the projection head P0 is used to perform the
instance discrimination, pushing instances away from each
other.

1) Distance Tensor: As the instance discrimination can be
regarded as capturing the low-level similarity (i.e., the simi-
larity calculated with the fine-grained features), we consider
introducing multiple projection layers to enumerate the other
potential similarities so that we can further enrich the self-
supervisory information for model training. First, here we
suppose that there are C projection layers with the correspond-
ing parameters P ::1,P ::2, . . . ,P ::C ∈ R

h×h, where P ::k is the
kth slice of the tensor P for k = 1, 2, . . . ,C. As shown in
Fig. 3(b), the kth projection layer is the multiplicative result
ϕk = P ::k · ϕ0. Then, for such C projection layers, we define
that the distance tensor D({ϕk}

C
k=1) = [Di jk]∈RN×N×C , where

Di jk denotes the distance between xi and x j in the kth layer,
i.e.,

Di jk = dϕk

�
xi, x j

�
=






 ϕk (xi)
‖ϕk (xi) ‖2

−
ϕk

�
x j
�

‖ϕk

�
x j
�
‖2







2

(3)

for i, j = 1, 2, . . . ,N and k = 1, 2, . . . ,C. After that, we would
like to further investigate the value distribution of the distance
tensor D({ϕk}

C
k=1) in different projection layers.

2) Bottom-Up Sparsity: As the original projection ϕ0
mainly focuses on the instance-wise divergence, all data points
should be pushed away from each other (i.e., the original
instance discrimination). We use bottom projection layers to
maintain such an objective to capture the variability between
instances, and thus, most elements in matrix D::k ∈ R

N×N

should be large values for a small k, which implies that D::k is
nonsparse in the bottom layers. Meanwhile, the top projection
layers focus on high-level divergences (calculated with the
coarse-grained features), and thus, most pairwise distances
should have small values to capture the commonality between
instances. Therefore, the matrix D::k is sparse for a large k
(e.g., k = C). In general, all slice matrices in the distance
tensor D({ϕk}

C
k=1) satisfy that ‖D::1‖1> ‖D::2‖1> · · ·> ‖D::C‖1,

although there is no strict hierarchy in SACL. Here, we further
introduce a tolerance parameter τ>0 to allow the small bias,
and then, we have that for any 1 ≤ u < v ≤ C

‖max (D::u − τ, 0)‖1 > ‖max (D::v − τ, 0)‖1 . (4)

It is worth pointing out that the abovementioned small values
are successfully considered as zero values by the operation
max(D::k − τ, 0) (which ignores any elements that are smaller
than τ) so that the calculated matrix in ‖·‖1 can be really sparse,
with lots of zero elements. Accordingly, when the traditional
empirical risk LNCE(ϕk) in (2) is introduced, the basic learning
objective of the kth layer is formulated as

min
ϕk

LNCE
�
ϕk

�
s.t. ‖max (D::k − τ, 0) ‖1 ≤ rk (5)

where k = 1, 2, . . . ,C and r1 > r2 > · · · > rC > 0 are expected
sparsity degrees for the C projection layers. However, the
above constrained optimization is hard to solve in practical
implementations, so we consider to convert it to a regularized
form to remove the constraint. Specifically, to obtain different
sparsity degrees, we constrain ‖max(D::1−τ, 0)‖1, ‖max(D::2−

τ, 0)‖1, . . . , ‖max(D::C − τ, 0)‖1 with different weights, and
thus, we build the following weighted regularization term to
constrain each projection layer:

Rk
�
ϕk

�
= λk ‖max (D::k − τ, 0)‖1 (6)

where k = 1, 2, . . . ,C and the regularization parameters λC >
λC−1 > · · · > λ1 > 0 are tuned by users. Here, the largest
parameter λC controls the upper bound of sparsity. In the limit
case, λC → ∞ will lead to a trivial solution P ::k = 0 and will
regard all instances as similar ones. Such regularization terms
actually play a role of self-supervision in a bottom-up manner.
In this way, we roughly enumerate potential similarities for
different scenarios in advance so that we can further enrich the
self-supervisory information even though pairwise similarities
are unknown to us.
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3) Vector-Valued Learning Objective: When we integrate
the above regularizers R1(ϕ1),R2(ϕ2), . . . ,RC(ϕC) into the
conventional CL, we obtain C learning objectives, and the kth
objective is LNCE(ϕk)+αRk(ϕk) where α > 0. Actually, this is
a direct extension of the Karush-Kuhn–Tucker condition in the
augmented Lagrangian optimization [5], and there always exits
α > 0 such that minimizing LNCE(ϕk)+αRk(ϕk) is equivalent
to (5). Now, we want to simultaneously minimize these C
objectives to obtain a shared feature representation (i.e., ϕ0
and its corresponding Φ), and thus, we construct the following
SACL:

min
P ,ϕ0

F
�
P ,ϕ0

�
=
�

f1
�
P ::1,ϕ0

�
, . . . , fC

�
P ::C ,ϕ0

��>
s.t. fk

�
P ::k,ϕ0

�
= LNCE

�
ϕk

�
+αRk

�
ϕk

�
(7)

where the kth projection layer is ϕk = P ::k · ϕ0 for k =

1, 2, . . . ,C, and α > 0 is tuned by users to balance the
importance of regularization and empirical risk. Note that all
ϕ0,ϕ1, . . . ,ϕC depend on the encoder Φ, so any constraints on
projection layers will finally affect the training of encoder Φ
(i.e., the feature representation). At this point, (7) actually aims
to learn a generalizable feature representation Φ that is able
to classify data when facing diverse annotations in different
scenarios, e.g., different fineness degrees of categorization
and different learning targets. It is worth pointing out that
(7) is a typical MOP problem, where the absolute optimal
solution1 that concurrently minimizes each objective fk does
not necessarily exist, but its Pareto optimal solution 2 can
always exist [46], [54]. In Section III-C, we will equivalently
convert the above vector-valued function to a real-valued
function and also provide a stochastic algorithm to solve the
converted problem.

C. Optimization

Now, we provide the detailed optimization algorithm to
solve our proposed SACL in (7). As both LNCE(ϕk) andRk(ϕk)
are nonnegative for any k = 1, 2, . . . ,C, we consider converting
the vector-valued function F (P ,ϕ0) to a summation of all
elements. Specifically, we let

J
�
P ,ϕ0

�
=

1
C

CX
k=1

LNCE
�
ϕk

�
+ α

1
C

CX
k=1

Rk
�
ϕk

�
= L

�˚
P ::k ·ϕ0

	C
k=1

�
+ αR

�˚
P ::k ·ϕ0

	C
k=1

�
(8)

which can also be regarded as optimizing the average of all
learning objectives in (7). To be more rigorous, we provide
the following theorem to guarantee the equivalence between
the optimal solutions of (8) and (7).

Theorem 1: Assume that (P∗,ϕ∗0) ∈ arg minP ,ϕ0
J (P ,ϕ0),

and then, we have that (P∗,ϕ∗0) is always a Pareto opti-
mal solution to F (P ,ϕ0). Furthermore, if F (P ,ϕ0) has
absolute optimal solutions, then we have that (P∗::k,ϕ∗0) ∈
arg minP ::k ,ϕ0

fk(P ::k,ϕ0) for any k = 1, 2, . . ., C.

1Here, (eP ,eϕ0) is an absolute optimal solution to F if and only if
fk(eP ::k ,eϕ0) ≤ fk(P ::k ,ϕ0) (k = 1, 2, . . . ,C) for any given (P ,ϕ0).

2Here, (P∗,ϕ∗0) is a Pareto optimal solution to F if and only if there does
not exist (P ,ϕ0) such that fk(P ::k ,ϕ0) < fk(P∗::k ,ϕ∗0) for all k = 1, 2, . . . ,C.

Algorithm 1 Solving (8) via SGD
Input: training data X = {xi}

N
i=1; step size η > 0; regulariza-

tion parameter α > 0; batch size n ∈ N+.
Initialize: iteration number t = 0; sparsity parameters λC >
λC−1 > · · · > λ1; random P (0) and ϕ(0)

0 .
For t from 1 to T:

1). Uniformly pick (n+1) instances {xb j }
n+1
j=1 from X ;

2). Compute the gradients of L(P ,ϕ0; {xb j }
n+1
j=1 ) and

R(P ,ϕ0; {xb j }
n+1
j=1 ) (denoted as {∇PLB,∇ϕ0

LB} and
{∇PRB,∇ϕ0

RB}, respectively) via Eq. (9);
3). Update the learning parameters:(

P (t) = P (t−1)
− η (∇PLB + α∇PRB) ,

ϕ(t)
0 = ϕ(t−1)

0 − η
�
∇ϕ0
LB + α∇ϕ0

RB
�
,

(10)

End.
Output: the converged P (T ) and ϕ(T )

0 .

The proof is given in the Supplementary Material. The
above result clearly reveals that (7) and (8) actually share the
same optimal solution ϕ∗0, which means that we can directly
optimize (8) to obtain a final encoder for the downstream tasks.
Now, we provide a stochastic algorithm to solve it.

Stochastic Loss: Minimizing the objective function
J (P ,ϕ0) in (8) is a typical batch optimization problem [91],
where both the empirical risk L = 1/C

PC
k=1 LNCE(ϕk) and

the regularizer R = 1/C
PC

k=1Rk(ϕk) involve all training
data. Therefore, we adopt the stochastic gradient descent
(SGD) method [34] to solve it, and here, we demonstrate
the stochastic gradient for the objective function J (P ,ϕ0).
Specifically, for n + 1 (i.e., the batch size) randomly selected
data points {xb j |xb j ∈ X }n+1

j=1 (b is the index vector of the
mini-batch), the NCE loss defined by (2) already has a
stochastic form,3 so here we only need to demonstrate the
stochastic regularizer for b, namely

CR
�˚

P ::k ·ϕ0
	C

k=1 ;
˚

xb j

	n+1
j=1

�
=

CX
k=1

λk




max
�
D::k

�
P ::k ·ϕ0;

˚
xb j

	n+1
j=1

�
−τ, 0

�



1

=

CX
k=1

n+1X
i, j=1

λk max
�
dP ::k·ϕ0

�
xbi , xb j

�
−τ, 0

�
(9)

which merely depends on the mini-batch data {xb j }
n+1
j=1 . It

means that our method can be easily implemented in most
existing CL methods by only introducing very little computa-
tional overhead. Based on the above stochastic loss, we further
provide the SGD iteration steps in Algorithm 1 to optimize (8).

Here, we further investigate the convergence behavior
of iteration points {P (1),ϕ(1)

0 }, {P
(2),ϕ(2)

0 }, . . . , {P (T ),ϕ(T )
0 }

obtained by Algorithm 1. We prove that the gradients of
iteration points of our final learning objective J (P ,ϕ0) will

3For a mini-batch, the stochastic loss LNCE

(ϕ0; {xb j }
n+1
j=1 ) = −log

h
exp(−dϕ0 (xbn+1 , x

+
bn+1

))/
�

exp(−dϕ0 (xbn+1 , x
+
bn+1

))+Pn
j=1exp(−dϕ(xb j , xbn+1 ))

�i
. The mini-batch index vector

b = (b1, b2, . . . , bn+1)>, where bi,= 1, 2, . . . ,N, bi,b j, i, j = 1, 2, . . . , n + 1.
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gradually converge to 0 even though it has two independent
variables P and ϕ0.

Theorem 2: We assume that function J (P ,ϕ0) has a
δ-bounded gradient (‖∇J (P ,ϕ0)‖2 < δ) and let η =

(2(J (P (0),ϕ(0)
0 )−J (P∗,ϕ∗0))/(S δ2T ))1/2. Then, for iteration

points in Algorithm 1, we have min0≤t≤TE[ ‖∇J (P (t),ϕ(t)
0 )‖2]≤

√
2S∆J /Tδ, where ∆J = J (P (0),ϕ(0)

0 )−J (P∗,ϕ∗0) and S > 0
is a Lipschitz constant such that ‖∇J (P ,ϕ0)−∇J (P ′,ϕ′0)‖2≤
S ‖[P ,ϕ0]−[P ′,ϕ′0]‖2.

The stationary point of the learning objective can be found
during the training phase by setting a sentry to save the
minimum gradient and the corresponding iteration results.
However, in practice, we usually do not need to set such a sen-
try but just simply use the finally iterated point. Note that in the
above theorem, variables S , ∆J , and δ are all independent of
T. It means that the iteration points {P (1),ϕ(1)

0 }, . . . , {P
(T ),ϕ(T )

0 }

will converge to a stationary point of the learning objective J
with a convergence rate O(1/

√
T ), where T is the number of

iterations.

IV. THEORETICAL ANALYSES

In this section, we further provide in-depth theoretical analy-
ses. We investigate the bottom-up sparsity of learned distances
and the generalization ability of our learning algorithm to
demonstrate its soundness and effectiveness. All proofs are
given in the Supplementary Material.

A. Bottom-Up Sparsity of the Pairwise Distance

In Section III-B, we have built a weighted regularization
term [i.e., (6)] to provide the critical self-supervision for
pairwise distances. We expect that pairwise distances will
gradually become sparse from the bottom projection layers
to the top projection layers. Now, we would like to investigate
whether the learning objective can really result in such bottom-
up sparsity.

We suppose that {P∗,ϕ∗0} is an optimal solution to J (P ,ϕ0)
and we have the following theorem to reveal the sparsity of
the distance matrix in each projection layer.

Theorem 3: For any given constants α, τ > 0, and
λC > λC−1 > · · · > λ1 > 0, we assume that {P∗,ϕ∗0} ∈
arg minP ,ϕ0

J (P ,ϕ0) and the corresponding distance tensor
D({ϕ∗k}

C
k=1) = [D∗i jk] ∈ RN×N×C . Then, we have that

max

�
D∗::k − τ, 0

�


1 >



max
�
D∗::(k+1) − τ, 0

�


1 (11)

where ϕ∗k = P∗::k · ϕ∗0 for k = 1, 2, . . . ,C − 1.
The above theorem clearly reveals that the optimal solution

to the learning objective of SACL will necessarily lead to an
effect of bottom-up sparsity with the increase of k from 1 to C.
It means that different projection layers can effectively provide
different supervisions for pairwise similarities. In the bottom
projection layers, pairwise distances are nonsparse, and this
makes each data point tend to form itself as a cluster to learn
the difference between instances. In the top projection layers,
pairwise distances are sparse, and the potential commonality
between instances will be learned. As different layers can
successfully capture different types of similarities, the gen-
eralization ability of learned embedding ϕ0 can be improved.

B. Generalization Error Bound

Compared with the conventional CL approach with a single
encoder Φ and projection head P0, our SACL introduces more
learning parameters. However, here we would like to prove
that our learning algorithm actually tightens the generalization
error bound (GEB) of the conventional CL approach.

As we know, the GEB [10] usually has a convergence rate
of O(1/

√
N) for an empirical risk minimization model, where

N is the sample size. Here, we are not going to investigate
the convergence rate with respect to the sample size but show
a tightened GEB result benefited from the regularization term
R for validating the effectiveness of our method. Specifically,
for the underlying data distribution D , we denote the expected
risk eL({P ::k·ϕ0}

C
k=1; D) = E{zi |zi∼D}Ni=1

[L({P ::k·ϕ0}
C
k=1; {zi}

N
i=1)] and

discuss how far it is from the empirical risk L({P ::k·ϕ0}
C
k=1; X )

on the training data. The error bound is described as follows.
Theorem 4: For any (P ,ϕ0) learned from the objective

J (P ,ϕ0) and any given constant δ ∈ (0, 1), we have that with
probability at least 1 − δˇ̌̌
L
�˚

P ::k ·ϕ0
	C

k=1 ; X
�
− eL �˚P ::k ·ϕ0

	C
k=1 ; D

�ˇ̌̌
≤ ξ (α)ω (n) max

�
D
�˚

P ::k ·ϕ0
	C

k=1

�� r ln (2/δ)
2N

(12)

where ξ(α) = (C+2/C)/α is monotone decreasing with respect
to α and ω(n) = log

�
e2/n + 1

�
is monotone decreasing with

respect to n.
From the above result in (12), it is easy to observe that the

error bound is dominated by two main aspects. First, the error
bound gradually decreases with the increase of the sampling
number N as well as the batch size n. This is consistent with
the traditional GEB and empirical observations in existing CL
[53]. More importantly, we can find that such an error bound
becomes tighter with the increase of α, and thus, the regu-
larization term R can assist the expected risk in converging
to the empirical risk. Therefore, Theorem 4 demonstrates that
our method effectively improves the generalization ability of
conventional CL algorithms.

C. Equivalence to the Stacked Form

Here, we further consider a stacked form of our method,
where the kth projection layer is a multiplicative result of
the first k projection matrices, i.e., ϕk =

�
Πk

l=1P ::l
�
· ϕ0, and

the corresponding learning objective becomes to bJ (P ,ϕ0) =

L
�˚�

Πk
l=1P ::l

�
· ϕ0

	C
k=1

�
+αR

�˚�
Πk

l=1P ::l
�
· ϕ0

	C
k=1

�
, which can

also be regarded as another straightforward implementation of
our method. Now, we would like to prove that this stacked
form is actually equivalent to our original parallel form in (8).

To be more specific, we would like to investigate whether
the optimal solution to J (P ,ϕ0) can also minimize the stacked
form loss bJ (P ,ϕ0).

Theorem 5: Assume that {P∗,ϕ∗0} is an optimal solu-
tion to the learning objective J (P ,ϕ0) in (8). Then, we
have that there exists a mapping Θ : Rh×h → Rh×h

such that J (P∗,ϕ∗0) = bJ (Θ(P∗),ϕ∗0) and {Θ(P∗),ϕ∗0} ∈
arg minP ,ϕ0

bJ (P ,ϕ0), where the mapping Θ is independent
of P∗.
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From the above theorem, we can clearly find that both two
learning objectives J (P ,ϕ0) and bJ (P ,ϕ0) actually have the
same optimal representation ϕ∗0, and thus, the formulation in
(8) can also provide a stacked mechanism to consider the
hierarchical information within data. It also means that the
effectiveness of our method is independent of the architectural
style of those C projection layers, which makes our method
very easy to implement in practical uses.

V. EXPERIMENTAL RESULTS

In this section, we show experimental results on real-
world datasets to validate the effectiveness of our proposed
method. In detail, we first conduct ablation studies to reveal the
usefulness of our newly introduced block/regularizer. Then, we
compare our proposed learning algorithm with existing state-
of-the-art models on vision, language, and graph-related tasks.
The pretraining process is implemented on Pytorch [48] with
NVIDIA TeslaV100 GPUs. We adopt the encoder result Φ(·)
for feature extraction, where the regularization parameter α is
fixed to 0.5 and we use five projection layers for capturing
similarities. Parameters λ1–λ5 are fixed to 2, 4, 8, 16, and
32, respectively. The dimensionality of projection space (i.e.,
h) and the temperature parameter [i.e., γ in (2)] are set to
512 and 0.2, respectively. The hyperparameters of compared
methods are set to the recommended values according to their
original papers. More detailed settings are discussed in each
subsection.

A. Ablation Studies and Visualization Results

In this section, we conduct ablation studies on the effec-
tiveness of the introduced components in our method. We use
the STL-10 and CIFAR-10 datasets to train two representative
baseline methods (including SimCLR [11], the negative-free
method BYOL [24], and the adversarial method CaCo [30],
[66]) and different implementations of SACL with different
numbers of projection layers. We train all models with 400
epochs with the same batch size and learning rate, and we
record the test accuracy by fine-tuning a linear softmax [23].
The loss functions of the two types of SACL (w/ neg and adv
neg) are InfoNCE loss, and the loss function of SACL (w/o
neg) is mean-squared loss, as recommended by the baseline
methods. It is noteworthy that most negative-free methods
focus on how to construct informative and reliable positive
pairs (e.g., BYOL aligns the outputs of two independent
networks input with the same example). In contrast, our SACL
focuses on how to explore useful information from the negative
pairs by introducing the similarity agnosticity (merely for
negative pairs). Meanwhile, most adversarial learning-based
methods aim to generate critical positive pairs or unearth hard
negative pairs, so they actually enrich the training data for
learning their encoders. In contrast, our SACL aims to explore
the potential self-supervisory information by only using the
existing training data.

We record the test accuracy (mean ± std, five random
trials) of compared methods at the 400th epoch in Table II.
First, we can observe that our method can collaborate very
well with two representative baseline methods. Our SACL

TABLE II
CLASSIFICATION ACCURACY RATES (MEAN ± STD) OF BASELINE METH-

ODS AND OUR METHOD ON STL-10 AND CIFAR-10 DATASETS WITH
400 EPOCHS AND BATCH SIZE (NEGATIVE SAMPLE

SIZE) = 256 AND 512

TABLE III
INVESTIGATION OF OUR METHOD INFLUENCED BY DIFFERENT REGULAR-

IZATION WEIGHTS λ1–λ5 ON STL-10 AND CIFAR-10 DATASETS WITH
400 EPOCHS AND BATCH SIZE (NEGATIVE SAMPLE

SIZE) = 256 AND 512

obtains relatively stable performance in various cases with
different batch sizes and numbers of projection layers. Then,
we can clearly find that introducing the regularization term R
consistently improves both baseline methods on two datasets.
Meanwhile, another interesting phenomenon is that, with the
increase in layer number (from C = 1 to C = 5), the
classification accuracy also correspondingly increases. This
successfully validates that it is indeed useful to introduce
alternative supervision via multiple projection layers. Fur-
thermore, we also perform the t-test at a significance level
0.05 in the last column, and “X” indicates that our method
is significantly better than the best baseline result. Since
SimCLR is a negative sample-based method, while BYOL
is a negative-free method, the consistently improved results
demonstrate that our SACL is applicable to different types of
CL approaches. SACL remains competitive with negative-free
methods such as BYOL by enriching the supervision signal
beyond what traditional instance discrimination provides. One
key reason is that SACL leverages a multiobjective framework
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Fig. 4. T-SNE visualizations of our SACL on CIFAR-10 and STL-10 datasets.
We can observe that SACL (layer number >1) can successfully obtain the
better separability than the baseline result (layer number = 1), and this
clearly demonstrates the effectiveness of the alterable supervision component
in our method. (a) Visualizations of SACL on CIFAR-10 (layer number = 1).
(b) Visualizations of SACL on CIFAR-10 (layer number = 3). (c) Visualiza-
tions of SACL on CIFAR-10 (layer number = 5). (d) Visualizations of SACL
on STL-10 (layer number = 1). (e) Visualizations of SACL on STL-10 (layer
number = 3). (f) Visualizations of SACL on STL-10 (layer number = 5).

that deploys multiple projection layers with distinct regular-
ization strengths. This design allows the model to capture
a richer spectrum of pairwise relationships; while negative-
free methods like BYOL focus on pulling together augmented
views of the same instance and rely on implicit mechanisms
to avoid collapse, SACL explicitly enforces both similarity
and dissimilarity constraints across different projection layers.
Moreover, we provide Table III by changing the regularization
parameters λ1–λ5 to different values, where we set the five
parameters to the same values or the increasing values in the
corresponding rows. Then, we find that the implementations
with increasing regularization parameters achieve the stably
better results than the other settings. This is because such
increasing parameters can successfully obtain the bottom-up
sparsity for pairwise distance matrices, and this also clearly
shows the effectiveness of our vector-valued learning objective
in (7), which constrains the sparsity degrees of different
projection results with different weights.

Visualization Results: We further conduct more detailed
investigations on the effectiveness of our method on different
baseline frameworks with diverse training epochs and batch
sizes (i.e., Fig. 4 and 5). Specifically, in Fig. 5, we visualize
the classification accuracy rates of all compared methods on
CIFAR-10, CIFAR-100, and STL-10 datasets, where we can
observe that our method consistently improves the correspond-
ing baseline results in all scenarios. To be more intuitive,
we also conduct the t-SNE embedding [62] to obtain the
2-D data points to better understand the usefulness of our
introduced new component. In Fig. 4, SACL (layer number
> 1) can successfully obtain the better separability than the

Fig. 5. Accuracy rates of compared methods on STL-10, CIFAR-10, and
CIFAR-100 datasets, where the negative sample size is from 32 to 512.
(a) STL-10 with 100 epochs. (b) STL-10 with 400 epochs. (c) CIFAR-10
with 100 epochs. (d) CIFAR-10 with 400 epochs. (e) CIFAR-100 with 100
epochs. (f) CIFAR-100 with 400 epochs.

baseline result (layer number = 1), where the results of five
layers achieve very satisfactory separability. Therefore, it is
critically important to maintain the alterable supervision via
such multiple projection layers in CL. In Fig. 6, we also
visualize the distance matrices of different projection layers
learned on STL-10, where the distance matrix of the high-
level layer indeed has more zero (or infinitesimal) elements.
This new visualization result is also well consistent with our
theoretical finding in Theorem 3, and this empirical evidence
can further guarantee the soundness of our method.

B. Experiments on Image Data

Here, we first evaluate the effectiveness and superiority of
SACL on the image classification task. We implement our
method on both the ResNet [29] and vision transformer (ViT)
[25] backbones to validate the generalizability of our method.
After that, we further investigate the performance of SACL
on two transfer learning tasks including object detection and
instance segmentation, where both two tasks focus on how to
locate and discriminate visual objects in an image.

1) Image Classification: Specifically, for the image clas-
sification task, we first employ ResNet-50 as our backbone
network and implement our method based on the loss func-
tions of SimCLR (negative-used) and BYOL (negative-free),
respectively. We train our method on ImageNet-100 and
ImageNet-1K datasets [52] and compare it with existing rep-
resentative approaches including contrastive multiview coding
(CMC) [60], SwAV [7], CMC [60], prototypical CL (PCL)
[41], hard negative based CL (HCL) [51], meta augmentation
(MetAug) [40], low rank promoting CL (LORAC) [69], and
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Fig. 6. Distance matrices (32 examples are randomly selected for visualizations) calculated with different layers of our SACL learned on STL-10, where
we can clearly observe that the high-level layers exhibit a higher sparsity. (a). Distance matrix of the first layer. (b) Distance matrix of the second layer.
(c) Distance matrix of the third layer. (d) Distance matrix of the fourth layer. (e) Distance matrix of the fifth layer.

TABLE IV

CLASSIFICATION ACCURACY (%) OF ALL METHODS ON IMAGENET-100 AND IMAGENET-1K DATASETS. THE BATCH SIZES ARE SET TO 1024 AND 512
FOR RESNET-50 AND VIT-B/16 BACKBONES, RESPECTIVELY. THE OPTIMIZATION RELATED PARAMETERS OF COMPARED METHODS ARE SET

ACCORDING TO THEIR RECOMMENDED VALUES. HERE, THE BEST AND SECOND-BEST RESULTS ARE BOLDED AND
UNDERLINED, RESPECTIVELY

iternorm with trace loss (INTL) [71]. Then, we also implement
our method on the popular ViT-B/16 backbone and compare
it with two more methods, including Mugs [89] and DINO
[8]. We conduct comprehensive evaluations by recording the
classification accuracy rates of all methods obtained with three
popular protocols, including the fine-tuning linear softmax
(i.e., the Top-1 score and Top-5 score of linear probing)
and the k-NN classification (here k = 8). From Table IV,
we can clearly observe that our method SACL successfully
improves the SimCLR and BYOL (with ResNet-50 backbone)
by at least 4% in different cases of batch size on the two
datasets. Our method also consistently outperforms the best
baseline methods MetAug, LORAC, and INTL on most scores,
which demonstrates the effectiveness of our method. Similarly,
based on the powerful ViT-B/16 feature encoder, our method
consistently improves the baseline methods and outperforms
the state-of-the-art methods in most cases. Since SACL is
implemented on different baselines and different backbones,
our method has good compatibility with existing CL algo-
rithms on the image classification task.

2) Detection and Segmentation: Now, we would like to
further investigate the transferability of our method on the
objective detection and instance segmentation tasks. We first
pretrain the model (with ResNet-50 backbone) on ImageNet-
1K and then fine-tune the pretrained backbone on the new
dataset. Specifically, we select COCO [42] as our target dataset

TABLE V

PERFORMANCE OF ALL METHODS FOR TWO TRANSFER LEARNING TASKS:
OBJECT DETECTION AND INSTANCE SEGMENTATION ON

COCO DATASET

and follow the common setting (as discussed in MoCo-v3
[14]) to fine-tune all layers of the pretrained model over
the train2017 set while evaluating the performance on the
val2017 set. We employ Faster R-CNN [50] and Mask R-
CNN [28] as our backbone for detection and segmentation,
respectively. As listed in Table V, our SACL shows consid-
erable improvement over MoCo-v3 and DINO on both two
recognition tasks. This indicates that our method not only
works well on classification-oriented tasks but also on more
natural image-related recognition tasks.
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Fig. 7. Accuracy rates (%) of all methods on the BookCorpus dataset,
including six text classification tasks.

In summary, our method has shown stable performance on
the above three popular visual tasks. It is notable that although
our method introduces new projection layers in the overall
framework, the quantity of additional parameters (i.e., the
tensor P) can be actually ignored (as the final parameter listed
in Table IV), and thus, our method is computation-friendly in
practical uses.

C. Experiments on Text Data

In this section, we evaluate the performance of our method
on the popular text classification task. Our experimental data
include the BookCorpus benchmark dataset [36] and the
semantic text similarity (STS) benchmark dataset (from STS12
to STS16) [1].

Sentence Embedding: For the BookCorpus dataset, which
includes six subtasks movie review (MR) sentiment, prod-
uct reviews (CR), subjectivity classification (SUBJ), opinion
polarity (MPQA), question type classification (TREC), and
paraphrase identification (MSRP), we follow the experimental
settings in the baseline method quick-thought (QT) [45] to
choose the neighboring sentences as positive pairs. Then,
we further compare our SACL with DCL, HCL, consistent
contrast (CO2) [70], and uncertainty and representativeness
mixing (UnReMix) [58], and the corresponding average clas-
sification accuracy rates are shown in Fig. 7. For the STS
dataset, we follow the common practice in SimCSE [20] to
use the pretrained checkpoints of BERT [18], and we train
all methods on randomly sampled sentences from English
Wikipedia. Then, we use the Spearman correlation to measure
the correlation between the ranks of predicted scores and
the ground truth. We also further compare our method with
three more existing methods, including information minimiza-
tion CL (InforMin-CL) [9], misCSE [37], and smoothed CL
(SCL) [72].

For the six classification tasks in Fig. 7, our method
improves the classification accuracy of baseline method QT
for at least two percentage points on most classification

TABLE VI

ACCURACY RATES (%) OF ALL METHODS ON STS DATASET, INCLUDING
FIVE TASKS AND THE CORRESPONDING AVERAGE SCORES

benchmarks. With the default settings, our method can con-
sistently obtain the better performance on all six tasks.
Furthermore, as we can observe from Table VI, SACL obtains
considerable improvements on the baseline method SimCSE.
Meanwhile, our method can outperform the other three repre-
sentative methods misCSE, InforMin-CL, and SCL in most
cases. Our SACL also achieves the best average score in
all compared methods. This clearly demonstrates that the
similarity-agnostic property not only exists in the image data
but also in the text data, and our method is a good solution to
utilize such a property to enrich the self-supervisory informa-
tion for model training.

VI. CONCLUSION AND FUTURE WORK

In this article, we first investigated the issue of agnostic
similarity existing in traditional CL approaches. After that,
we proposed a novel framework SACL, which generalizes the
instance discrimination strategy of conventional CL to a new
vector-valued loss form. We built different projection layers
to capture diverse potential similarities based on a gradually
sparse regularization so that we can successfully consider
both the similar and dissimilar patterns between pairwise
instances. To the best of our knowledge, this is the first work
in CL that proposes agnostic similarity and simultaneously
considers both the similarity and dissimilarity between each
pair of instances. We conducted intensive theoretical analyses
to guarantee the effectiveness of our method. Comparison
experiments on real-world datasets across multiple domains
indicated that our learning algorithm acquires more reliable
feature representations than state-of-the-art methods.

However, there are also several limitations in the proposed
work. A potential risk is that the dynamic self-supervisory
information, which depends on alterable pairwise distances,
might degrade when the quality of negative samples is poor,
thereby diminishing the richness of the self-supervision. More-
over, although experimental results on standard benchmark
datasets across images, text, and graphs are promising, the
approach has not been thoroughly evaluated in more difficult
or domain-specific tasks, such as cross-domain adaptation and
low-resource language scenarios, leaving open questions about
its generalizability and robustness in more complex real-world
settings. As we used hyperparameters to control the sparsity of
each projection layer, exploring the automatic determination of
the sparsity parameters would be interesting for future work.
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