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Importance-Aware Semantic Segmentation
for Autonomous Vehicles

Bike Chen , Chen Gong , Member, IEEE, Jian Yang, and Member, IEEE

Abstract— Semantic segmentation (SS) partitions an image into
several coherent semantically meaningful parts and classifies
each part into one of the pre-determined classes. In this paper,
we argue that the existing SS methods cannot be reliably applied
to autonomous driving system as they ignore the different
importance levels of distinct classes for safe driving. For example,
pedestrian, car, and bicyclist in the scene are much more
important than sky and building when driving a car, so their
segmentations should be as accurate as possible. To incorporate
the importance information possessed by various object classes,
this paper designs an “importance-aware loss” (IAL) that specif-
ically emphasizes the critical objects for autonomous driving.
The IAL operates under a hierarchical structure and the classes
with different importance are located in different levels so that
they are assigned distinct weights. Furthermore, we derive the
forward and backward propagation rules for IAL and apply
them to four typical deep neural networks for realizing SS in
an intelligent driving system. The experiments on CamVid and
Cityscapes data sets reveal that, by employing the proposed
loss function, the existing deep learning models, including FCN,
SegNet, ENet, and ERFNet, are able to consistently obtain the
improved segmentation results on the pre-defined important
classes for safe driving.

Index Terms— Semantic segmentation, importance-aware loss,
deep leaning, autonomous driving.

I. INTRODUCTION

SEMANTIC Segmentation (SS) separates an image into
different meaningful parts that indicate distinct objects,

which serves as a powerful and practical tool for the further
image analysis such as scene categorization, human-machine
interaction, and visual question answering. In recent years,
autonomous driving system has attracted intensive attention,
in which SS has played an important role in detecting obstacles
and understanding traffic conditions [1], [2]. Apparently, high
segmentation accuracy in autonomous driving system will
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Fig. 1. Representative segmentation results of the primitive ENet and our
ENet+IAL on important object classes of Cityscapes dataset. For the impor-
tant classes (e.g., truck, bus, and road), we see that the regions segmented by
ENet+IAL are more coherent and complete than ENet. For the class of person
shown in the last row, ENet also yields much worse results than ENet+IAL.
Best viewed in color.

make the system comprehensively understand the driving
environment, and thus greatly improve the driving safety.

However, we argue that the SS associated with autonomous
driving system [3] is quite different from the conventional SS
problems. For traditional SS, all the objects appeared in an
image are of equal importance and one should segment all
of them from the image as accurately as possible. That is to
say, all image pixels share the same weight when we establish
the corresponding SS models. In contrast, the objects in the
real traffic scenes are not equally important for autonomous
vehicles. For instance, the self-driving system should pay
more attention to the objects that are closely related to safe-
driving than those that are not often used for vehicle control.
In other words, the SS algorithm in autonomous vehicles
should segment the major obstacles and potential driving
risks (e.g., pedestrians, cyclists, other vehicles, and traffic
signs) with a high precision, while reducing the attention on
processing less important objects such as sky, vegetation, and
the buildings off the road.

In this sense, existing SS methods are improper for dealing
with autonomous driving problem as they have not taken the
object importance into consideration. For example, the tradi-
tional works based on handcrafted features [4], [5] and the
recent Deep Convolutional Neural Network (DCNN) based
methods [6]–[8] equally treat all the appeared classes. As a
result, they generate very low accuracy on segmenting the
important objects as mentioned above. As shown in Fig. 1,
we observe that for the important objects such as truck, bus,
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Fig. 2. The illustration of our importance-aware loss with hierarchical
structure. Level 1 to Level 3 indicate the importance levels of the classes
in different groups, and the more important a Group is, the higher level it
stands. lG1 , lG2 , and lG3 are respectively the loss values of three groups
calculated by cross-entropy loss. Besides, wG1 , wG2 , and wG3 are the weights
for eliminating class imbalance correspondingly. The term ft (X)+α (t = 1, 2)
is called importance factor.

and road, the segmentation results produced by the primitive
ENet model [8] are incomplete. More seriously, we see that
the person ahead of the car (see the last row) has been totally
missed by ENet, which may pose great risk to the pedestrian’s
life under practical situations.

From above explanations, we see that existing method-
ologies cannot render reliable segmentation results for
autonomous driving. This is because they all adopt the cross-
entropy [9] loss function for model training, which equally
evaluates the errors incurred by all image pixels without
focusing on the important objects. As a result, these con-
ventional SS approaches cannot assign different weights to
different object classes. Therefore, a novel importance-aware
loss function should be specifically designed for the appli-
cation of automatic driving. To this end, we introduce the
notion of class importance where pedestrians, vehicles, and
other objects on the road are more important for driving
than other classes such as sky and remote buildings that are
off the road. Based on this notion, we design a novel loss
function termed “Importance-Aware Loss” (IAL) that is able
to put more emphasis on accurately segmenting the important
objects than less important ones. From the last column of
Fig. 1, we notice that the segmentation errors produced by
the original ENet can be corrected if our proposed IAL is
incorporated (i.e., “ENet+IAL”). It can be easily found that
ENet+IAL can not only produce very compact segmentation
results on large targets such as truck, bus, and road, but also
successfully pick up small object like person.

Inspired by [10], we propose a novel loss function with
hierarchical structure as shown in Fig. 2. In this structure,
the objects with different degrees of importance are located in
different levels, and the more important an object is, the higher
level it stands. Consequently, the important objects are in
higher levels than the unimportant ones, and thus they are
multiplied by larger importance factors for computing the
final loss. To validate our proposed loss function, we replace
the cross-entropy loss utilized by representative deep learning
methods [6]–[8], [11] with our proposed importance-aware
loss. The experimental results on two typical autonomous

driving datasets including CamVid [12] and Cityscapes [13]
firmly demonstrate that the important objects can be seg-
mented more precisely than existing approaches.

This paper is the extended version of our previous con-
ference work [14]. Specifically, we conduct more empirical
studies on the proposed algorithm including investigating
the model behavior with cross-entropy loss of uniform class
weights, comparing a recent efficient and effective ERFNet
model, exploring the sensitivity analysis for the important
tuning parameters, providing the comparisons of training time
between cross-entropy loss based models and corresponding
importance-aware loss based models.

Notations: We first define some notations for the ease of
following descriptions. The final output of an SS algorithm
is represented by a tensor X ∈ R

C×Himg×Wimg where its
height and width correspond to a Himg × Wimg input image,
and its depth targets the one-hot encoding of the ground
truth and indicates the class of each of the Himg × Wimg

pixels. Here the one-hot encoding is employed for class
indication which has the formation [0, · · · , 0, 1, 0, · · · , 0]T

with the element corresponding to the correct label being 1.
Besides, the segmentation ground truth of an image is denoted
by a matrix Y ∈ N

Himg×Wimg with the (i, j)-th element
Yi, j ∈ {1, 2, · · · , C} representing the corresponding label of
the (i, j)-th pixel. Here C is the total number of pre-defined
classes in driving environment.

Organization: The rest of this paper is organized as follows.
In Section 2, some related works are reviewed. After that,
we describe the proposed loss function and also the relation-
ship with existing cross-entropy loss in Section 3. In Section 4,
we derive the forward-backward propagation rules for our
proposed loss function. In Section 5, we provide experimental
results on the representative traffic datasets including CamVid
and Cityscapes. Sensitivity analyses of parameters are also
presented in this section. Finally, the entire paper is concluded
in Section 6.

II. RELATED WORK

SS has been intensively studied for a long time as it is
an important tool for understanding a scene. For example,
some traditional methods focus on designing powerful hand-
crafted features and using Random Forest method [4], [15],
[16], Mean Shift technique [17], JSEG [18], Graph-based
approach [19], and Statistical Region Merging method [20]
Boosting-based technique [21]–[23] for predicting the class
of image pixels. Specifically, they comprehensively combine
different kinds of features such as motion point clouds,
appearance-based descriptors, and depth information [24] to
achieve a coherent spatial segmentation. Moreover, Wang and
Wang [25] provided detailed analyses and assessments for
some representative image segmentation methods. To improve
the segmentation accuracy, some post-processing strategies
have been developed to improve the initial segmentation
results. For instance, the techniques based on Conditional
Random Fields (CRF) [5], [21], [26] are used to suppress
the per-pixel prediction noise output by the classifiers. The
energy function of the CRF model usually combines the results
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from pairwise relationships between mid-level cues such as
superpixels, and low-level pixel-based unary and pairwise
relations.

With the rapid development of deep learning, various
deep neural networks have been applied to SS and achieved
state-of-the-art performance. The works such as [27]–[29]
employ the features extracted by DCNN for class prediction.
However, the feature extraction and pixel classification in
these works are isolated. To make SS an end-to-end process,
Long et al. [6] transform a classification-purposed DCNN to
output a spatial pixel-wise prediction by replacing fully con-
nected layers with convolutional layers. Moreover, to improve
the spatial details, Long et al. [6] fuse the coarse and high-
level information to the fine and low-level information, which
contributes to promising results. Based on [6], many other
methods [30]–[33] are proposed which further incorporate
multi-scale manipulation or post-processing based on CRF.
Another important architecture for segmentation is based on
the structure of encoder-decoder. SegNet [7] and some other
works like [34]–[36] belong to this type. For SegNet, Vijay
Badrinarayanan and Cipolla [7] use the max-pooling indices
to perform non-linear upsampling, which eliminates the need
for learning to upsample. Here the max-pooling indices are
computed and stored in the max-pooling step of the encoder
part. Then the upsampled maps are convolved with trainable
filters to produce dense pixel-wise prediction.

Recently, there are some attempts to distinguish different
image pixels for SS task. For example, Bulò et al. [37]
adaptively reweight the contributions of each pixel to address
the problem of long-tail distribution, which means that few
object categories comprise the majority of data and conse-
quently leading to the biased classification results. Li et al. [38]
consider that different pixels have different levels of difficulty,
and propose a difficulty-aware neural network for SS. In their
network, the earlier sub-models are trained to handle easy
and confident regions, while the later sub-models concentrate
on harder and ambiguous regions. However, these two works
are very different from our method which cares about the
importance of pixels in intelligent vehicles.

Recently, several works have been done to apply SS to
autonomous driving. Pohlen et al. [39] develops a deep neural
network for segmenting the major object classes in street
scenes and reaches state-of-the-art results on the Cityscapes
benchmark [13]. To further improve the efficiency and achieve
real-time segmentation, Paszke et al. [8] specifically design
a new deep neural network architecture termed ENet which
can be viewed as a special case of ResNet [40]. Similarly,
Treml et al. [41] also design a new network for the embedded
devices in self-driving cars. Their architecture consists of
ELU activation functions, a SqueezeNet-like encoder, paral-
lel dilated convolutions, and a decoder with SharpMask-like
refinement modules. Recently, Romera et al. [11], [42] pro-
posed a new efficient and effective network which is similar to
the ENet. This method adopted the specifically designed non-
bottleneck-1D layer and deconvolution technique to remark-
ably improve its performance.

Although above SS algorithms targeting self-driving have
achieved encouraging performance to some extent, none of

Fig. 3. The rankings of importance of 11 studied object classes. Group 3 is
the most important and Group 1 is the least important.

them take the importance of different classes into account,
so their results are not reliable for autonomous driving as men-
tioned in the introduction. Therefore, this paper presents the
concept of class importance and proposes a novel loss function
with hierarchical structure. By embedding the proposed loss to
four representative deep networks such as ENet, SegNet, FCN,
and ERFNet, we will show that our loss is able to attract the
network’s attention to important objects during self-driving.

III. THE PROPOSED MODEL

In this section, we firstly detail our proposed loss function
and then deduce its forward and backward propagation rules.
Finally, we describe the way for applying our loss to four
typical neural networks to handle the SS task.

A. The Proposed Loss Function

As mentioned in the introduction, different object classes
have different levels of importance for autonomous driving,
so this section introduces our proposed loss function that takes
the importance information into consideration. To make the
following explanations clear, we adopt CamVid [12] dataset
as an instance. CamVid [12] is a widely used dataset for
evaluating the self-driving performance, in which the image
data is captured from the perspective of a driving automobile.
This dataset suggests 11 meaningful object classes that are
often appeared in a driving scenario, and in this section we
use these 11 suggested classes for detailed descriptions.

First of all, safety is the most critical issue for driving
where the collisions with car, pedestrian, and bicyclist are
strongly opposed. Besides, the traffic lights and signs are also
essential to serve as important signals, so these objects show
the top level importance in our algorithm. In contrast, road,
sidewalk, column/pole, and fence are less important as they
only guarantee the normal driving. Sky, buildings, and tree
that are off the road are not essential here as they are seldom
used as a cue for car control, so they are the least important
among all above 11 classes. The detailed importance levels
of all the investigated classes are depicted in Fig. 3. It is
worth mentioning that the users can re-define the objects’
importance levels according to different criteria or their own
prior knowledge.

According to the importance levels as shown in Fig. 3,
we propose a novel importance-aware loss with hierarchical
structure as illustrated in Fig. 2, in which different levels
represent the objects with different importance. In Fig. 2,
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Fig. 4. Illustration of critical mathematical definitions in our method. (a) The
output of the algorithm is represented by a tensor X , of which the height and
width represent the Himg × Wimg image, and the depth corresponds to the
totally C classes. For a specific pixel, the depth corresponds to a one-hot
encoding. (b) and (c) respectively present the Himg × Wimg matrices M1
and M2 for comparing the importance levels of three groups, in which we
assume that the pixels of every Group are arranged together (see the blocks
with different colors).

the vectors lG1 , lG2 , and lG3 encode the values of cross-
entropy loss [9] of the objects in Group 1, Group 2, and
Group 3, respectively, and the j -th element (lGi ) j (i = 1, 2, 3)
is defined by

(lGi ) j = −
∑

c

qc log(pc), (1)

where pc = ex p(X c,i, j )/
∑C

k=1 ex p(X k,i, j ) is the probability
of the (i, j)-th pixel belonging to the c-th class (c takes a
value from 1, 2, · · · , C) based on the output X , and q is a
one-hot encoding with the c-th element qc being 1. Similar to
the formation of lGi , we use the vectors wG1 , wG2 , and wG3

to record the corresponding weights of the objects in the three
groups for avoiding class imbalance, and the object with fewer
pixels is assigned larger weight [8]. The j -th element in wGi

(i = 1, 2, 3) are

(wGi ) j = 1

ln (a + freqi, j )
, (2)

where freqi, j is the total number of pixels of the j -th class in
Group i divided by the total number of pixels of all images
belonging to training dataset, and a is a tuning parameter that
is set to 1.02 [8]. Therefore, the weighted cross-entropy losses
for Group 1 to Group 3 are wT

G1
lG1 , wT

G2
lG2 , and wT

G3
lG3

correspondingly.
Besides, for the three groups defined in Fig. 2, we intro-

duce two Himg × Wimg matrices Mt (t = 1, 2) to model
the importance relationship of three groups. For example,

the M1 for comparing Group 1 and Groups 2, 3 is presented
in Fig. 4(b), in which the elements corresponding to the classes
in Group 1 are set to 0, and the elements corresponding to
Groups 2∼3 are 1 indicating that they are more important than
Group 1. To further compare the importance of Group 2 and
Group 3, the elements of M2 (see Fig. 4(c)) regarding Group 2
are set to 0, and the elements of Group 3 are defined as
1 because they are more important than Group 2. In M2,
the elements indicating Group 1 are denoted as “x” which
means that the comparison of Group 1 and other groups has
been done before.

Based on Mt (t = 1, 2), we define ft (X) + α as an
importance factor where α is a tuning parameter with default
value 1, so the ft (X) (t = 1, 2) in Fig. 2 are computed by

ft (X) = 1

2
� (Mt + λE)

1
2 � (X − Mt ) � I{Mt �= “x”} �2

F ,

(3)

where E is an all-one matrix, and I{Mt �= “x”} returns a matrix
where its element is 1 if the corresponding element (Mt )i, j

is not “x”, and 0 otherwise. The notation “�” denotes the
element-wise product of two matrices. X is a matrix with the
same dimension of Y and its (i, j)-th element is defined by
Xi, j = X c,i, j

1 with c = Yi, j . In (3), λ ∈ R
+ is a tuning

parameter which we set to 0.5 in this paper. Note that if λ is
small, the value of ft (X) will be large due to the error between
Xi, j and (Mt )i, j when (Mt )i, j = 1 (i.e., the corresponding
class is important). By this way, Eq. (3) encourages the
model to focus on the classifications of important classes. The
discussion of the effect of λ to model output is referred to
Section IV-C.

Therefore, the loss of the objects in the three groups
can be computed by following the arrows in Fig. 2. For
instance, Group 1 has the lowest importance level, of which
the importance-aware loss is wT

G1
lG1 ; The weighted cross-

entropy loss of Group 2 should be multiplied by an importance
factor f1(X) + α, so its importance-aware loss should be
( f1(X) + α)(wT

G2
lG2). Similarly, the classes in Group 3 are

the most important and thus its weighted cross-entropy loss
wT

G3
lG3 should be augmented by two importance factors.

Consequently, the loss of Group 3 is ( f1(X) + α)( f2(X) +
α)(wT

G3
lG3). Finally, the total value of our importance-aware

loss is the sum of the loss values contributed by the three
groups, which is

Loss = wT
G1

lG1

+ ( f1(X) + α)(wT
G2

lG2)

+ ( f1(X) + α)( f2(X) + α)(wT
G3

lG3). (4)

One may argue that the weight for a certain class can
be manually specified based on the frequency of the pixels
belonging to this class. However, here we want to clarify
that the importance of an object in our work is not governed
by its size. In fact, whether an object is important or not
is dependent on its impact on driving safety. For example,
although the pedestrian region is much small than the sky

1Here all elements belonging to the (i, j)-th pixel (i.e., “X :,i, j ” in Matlab
expression) have been normalized to [0, 1].
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region in an image, it should be paid more attention as it
is very critical to avoiding accident. Therefore, we cannot
manually tune the class weights in the cross-entropy crite-
rion simply based on the frequency of pixels of each class.
Furthermore, the class weights manually specified are fixed
throughout the entire training process, however the weights in
our method are dynamically adjusted to obtain an optimized
network. Therefore, the weights considered by our IAL are
superior to the manually specified weights for all the classes.

In fact, our proposed loss is the generalization of the cross-
entropy loss. Specifically, from Eq. (4) we see that if we set all
importance factors ft (X)+α (t = 1, 2, · · · ) to 1, our proposed
IAL function will immediately degrade into the existing cross-
entropy loss with all classes sharing the equal importance.
As a consequence, the Eq. (4) will become Loss = wT

G1
lG1 +

wT
G2

lG2 + wT
G3

lG3 which is identical to the expression yielded
by the cross-entropy loss.

B. Forward and Backward Propagation Rules

In this section, we present the formation of the proposed loss
function, and then deduce its related forward and backward
propagation rules.

Suppose we have totally C classes that are grouped into
g groups G = {G1, G2, · · · , Gg} which satisfy Gi �= ∅

and Gi ∩ G j = ∅. For these g groups, their cross-entropy
losses and corresponding weights avoiding class imbalance are
{lG1, lG2 , · · · , lGg } and {wG1, wG2, · · · , wGg }, respectively.
According to the above description, the forward propagation
rule of the proposed loss function is

Q1 = ( f1(X) + α)(wT
G2

lG2 + Q2), (5)

Q2 = ( f2(X) + α)(wT
G3

lG3 + Q3), (6)

· · · · · ·
Qt = ( ft (X) + α)(wT

Gt+1
lGt+1 + Qt+1), (7)

where Qt+1 = ( ft+1(X) + α)(wT
Gt+2

lGt+2) corresponds to the
most important group. Therefore, the compact formation of
the forward propagation rule regarding our IAL is

I AL = wT
G1

lG1 + Q1. (8)

Note that the Qg(g = 1, 2, . . . , t+1) in the above equations
are intermediate variables. In Eq. (8), wT

G1
lG1 represents

the cross-entropy loss value incurred by Group G1. Q1 is
computed by Eq. (5), which is sequentially calculated by all
the importance-aware losses corresponding to the rest groups
{lG2, · · · , lGg } (see Eqs. (5) ∼ (7)). Specially, in Eq. (5),
the wT

G2
lG2 indicates the cross-entropy loss of Group G2. The

wT
G2

lG2 + Q2 multiplied by f1(X) + α shows that Group G2
is more important than Group G1. The rationales of Eqs. (6)
and (7) are similar to Eq. (5).

As a consequence, the backward propagation rules of IAL
corresponding to Eqs. (8) and (7) are

∂ I AL

∂X
= wT

G1
∗ ∂ lG1

∂X
+ ∂ Q1

∂X
, (9)

∂ Qt

∂X
= ∂ ft (X)

∂X
(wT

Gt+1
lGt+1 + Qt+1)

+ ( ft (X) + α)(wT
Gt+1

∗ ∂ lGt+1

∂X
+ ∂ Qt+1

∂X
). (10)

where
∂ ft (X)

∂X
= [(Mt + λt E) � (X − Mt ) � I{Mt �= “x”}] ∗ ∂X

∂X
.

(11)

By denoting

(
∂X
∂X

):,i, j = [0, 0, · · · ,
∂Xi, j

∂X c,i, j
, · · · , 0, 0]T (12)

and

A = (Mt + λt E) � (X − Mt ) � I{Mt �= “x”}, (13)

we have

(
∂ ft (X)

∂X
):,i, j = (A ∗ ∂X

∂X
):,i, j = Ai, j (

∂X
∂X

):,i, j , (14)

where c = Yi, j .
For

∂lGt
∂X , if the (i, j)-th pixel belongs to the class (Gt )r (i.e.,

the r -th class in Group Gt ), and its corresponding weight is
(wGt )r , we obtain

hc = (
∂ lGt

∂X
)c,i, j =

⎧
⎪⎪⎨

⎪⎪⎩

ex p(X c,i, j )∑C
k=1 ex p(X k,i, j )

, if c �= Yi, j ;
ex p(X c,i, j )∑C

k=1 ex p(X k,i, j )
− 1, if c = Yi, j ,

(15)

and then (wT
Gt

∗ ∂lGt
∂X ):,i, j is represented by

(wT
Gt

∗ ∂ lGt

∂X
):,i, j =(wGt )r [h1, · · · , hc−1, hc, hc+1, · · · , hC ]T .

(16)

By using the forward-backward propagation rules in
Eqs. (5)∼(8) and Eqs. (9)∼(10), the proposed IAL can be
embedded to various deep neural networks, which will be
detailed in the next section.

C. Deep Neural Networks

To verify the effectiveness of our proposed importance-
aware loss (IAL), we apply IAL to four existing deep
neural networks, i.e., FCN [6], SegNet [7], ENet [8], and
ERFNet [11] to deal with SS problem. The configurations of
these adopted neural networks are illustrated in Fig. 5.

FCN [6] has a similar architecture with VGG16 [43] net-
work. As depicted in Fig. 5(a), the numbers of the feature
maps in the neural network are 64, 128, 256, 512, 512,
4096, 4096, and 20, respectively. To obtain pixel-wise dense
prediction, the upsampling layers are utilized, which enlarges
the prediction with small spatial resolution to the same size as
the input image. Here the last layer contains 20 feature maps
as there are totally 20 classes in the investigated situation.
Additionally, Long et al. proposed to combine the predictions
from the Pool4 layer and Pool3 layer to improve the spatial
details. As illustrated in Fig. 5(a), the outputs of the Pool3,
Pool4, and Conv7 layers are summed up and then serve as the
input of the upsampling layer. Finally, the upsampling layer
is followed by a softmax classifier for pixel-wise prediction.

The setting of SegNet [7] is illustrated in Fig. 5(b), SegNet
follows a typical encoder-decoder architecture. The encoder
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Fig. 5. The structures of four representative deep neural networks for SS
problem. (a) FCN follows the main architecture of VGG16 where the numbers
of the feature maps in the neural network are 64, 128, 256, 512, 512, 4096,
4096, and 20, respectively. (b) SegNet consists of an encoder and a decoder
followed by a softmax classifier for pixel-wise classification. (c) ENet also
follows an encoder-decoder style and the numbers of the features maps in
the neural network are 16, 64, 128, 128, 64, and 16, respectively. (d) The
architecture of ERFNet is the same as that of ENet, but ERFNet adopted
deconvolutions instead of max-unpooling operations for upsampling, so there
are no pooling indices in the ERFNet. In our experiments, we simply replace
the original cross-entropy loss with the proposed IAL to introduce the class
importance.

network consists of 13 convolutional layers which correspond
to the first 13 convolutional layers in the VGG16 network [43],
and each encoder layer has a corresponding decoder layer. The
difference between the encoder layers and the first 13 convo-
lutional layers of VGG16 is that an additional module of batch
normalization [44] is inserted after the convolution layers.
To perform non-linear upsampling, SegNet stores the max-
pooling indices to provide the guidance for upsampling layers
in decoder part. Here the max-pooling indices are the locations
of the maximum feature value in each pooling window of
encoder part.

Different from above two networks that aim to solve gen-
eral SS problem in natural images, ENet [8] is specifically
designed for handling autonomous driving. Its structure is
shown in Fig. 5(c) which indicates that ENet is also designed
under the encoder-decoder style. Compared to the architectures
of FCN and SegNet, the number of feature maps of ENet are
drastically decreased, namely 16, 64, 128, 128, 64, and 16 for
achieving real-time semantic segmentation. Specifically, in its
input layer and first block with 16 feature maps, the input
images are passed to two branches where the first branch is
simply one max-pooling layer made up of non-overlapping
2 × 2 windows, and the second branch conducts normal
convolution operations with 13 filters. Then the output feature
maps of the two branches are concatenated. Sequentially, each
of the rest blocks has many bottlenecks [8] which can be
viewed as a special case of ResNet [40].

ERFNet [11] is a recent network which also aims at
tackling autonomous driving. Its architecture is very similar
to ENet (see Fig. 5(d)), so the numbers of its feature maps are
also 16, 64, 128, 128, 64, and 16. Compared to ENet, however,
the ERFNet introduced the non-bottleneck-1D layers to retain
the learning capacity while maximizing efficiency of residual
layers, and used the initial block of ENet in all downsampling
layers. Besides, ERFNet incorporated Dropout in all non-
bottleneck-1D layers for regularization, and adopted deconvo-
lutions instead of max-unpooling operations for upsampling.

All above networks classify the image pixels with the
cross-entropy loss after the last layer, which is incapable
of differentiating the importance of objects as explained in
the introduction. Therefore, we replace the original cross-
entropy loss with our proposed IAL and keep other network
configurations unchanged, so that the networks can pay more
attention to important classes than the trivial ones.

IV. EXPERIMENTS

In this section, we firstly introduce our experimental set-
tings such as the adopted deep networks, employed datasets,
parametric configurations, and evaluation metric. Then we
report the experimental results of compared settings on two
typical autonomous driving datasets, i.e., CamVid [12] and
Cityscapes [13]. Finally, we analyze parametric sensitivity and
also compare the training time between the IAL-based SS
models and the original networks with cross-entropy loss.

A. Experimental Settings

As mentioned in Section III-C, FCN and SegNet are
popular deep methods for conventional SS, and ENet
and ERFNet are recently proposed deep networks specif-
ically for autonomous driving application. As depicted
in Fig. 5, the cross-entropy loss adopted by these mod-
els will be replaced by our IAL during the training
stage, and we term them as “ENet+IAL”, “SegNet+IAL”,
“FCN+IAL”, and “ERFNet+IAL”, respectively. Meanwhile,
we also introduce “ENet+Uni”, “SegNet+Uni”, “FCN+Uni”,
and “ERFNet+Uni” for comparison, in which “Uni” describes
uniform weights for all classes in cross-entropy loss.
To achieve fair comparisons, the ENet, SegNet, FCN, ERFNet,
ENet+Uni, SegNet+Uni, FCN+Uni, ERFNet+Uni as well as
our ENet+IAL, SegNet+IAL, FCN+IAL and ERFNet+IAL
are implemented by using the identical Torch 7 deep learning
platform, so their results are directly comparable.

We use the CamVid dataset [12] mentioned in Section III-A
and a recent Cityscapes [13] dataset for our experiments.
CamVid contains 367 training images, 101 validation images,
and 233 test images. The resolution of images in this dataset is
960×720 which will be downsampled to 480×360 for accel-
erating the training stage of SS models. Cityscapes is also a
high-quality dataset for semantic scene understanding captured
from the view of cockpit, which contains 2975 color training
images, 500 validation images, and 1525 test images. The reso-
lution of all images is 2048×1024. Similar to the operation on
CamVid dataset, for the models ENet, ENet+Uni, ENet+IAL,
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ERFNet, ERFNet+Uni, and ERFNet+IAL, we will downsam-
ple these images by 2 times before training, and for the rest
models, the resolution of these images will be scaled into
512 × 256. In Cityscapes dataset, we pick up 19 the most
frequently occurred classes from the original 35 classes based
on the official evaluation metrics [13], and their importance
groupings from trivial to important are
Group 1 = {Sky, Building, Vegetation, Terrain, Wall};
Group 2 = {Pole, Road, Sidewalk, Fence};
Group 3 = {Traffic sign, Traffic light, Car, Truck, Bus, Train,
Motorcycle, Person, Rider, Bicycle};

For a certain deep neural work, the Adam optimization algo-
rithm [45] is employed for model training, as this algorithm
allows the training process to converge very quickly. We start
with the learning rate 10−3 and gradually decrease it by a
factor of 0.1 after every 100 epochs. Besides, we fix the mini-
batch size to 8 images, set the momentum to 0.9, and fix the
weight decay for �2 regularization to 5 × 10−4. The iteration
number is 300 for all models trained on two datasets. In addi-
tion, ENet, ENet+Uni, ENet+IAL, SegNet, SegNet+Uni,
SegNet+IAL, ERFNet, ERFNet+Uni, and ERFNet+IAL are
performed in two stages: first we only train the part of
encoder to map an input image to a downsampled label; then
we append corresponding decoder to the trained encoder to
perform upsampling and train the overall network followed
by a pixel-wise classifier. For the models FCN, FCN+Uni,
and FCN+IAL, we train them all at once via an end-to-end
fashion on CamVid and Cityscapes datasets, respectively.

Note that we adopt the weights defined by Eq. (2) in all
above SS models for dealing with class imbalance. Besides,
we follow [8] and use the intersection-over-union (IoU) and
class accuracy (ClassAcc) to evaluate the performance of
compared methods on different datasets. The IoU is defined
as

IoU = TP

TP + FP + FN
, (17)

where TP, FP, and FN denote the numbers of true positive,
false positive, and false negative pixels, respectively. Further-
more, in order to show the overall performance, we use the
metric of Mean IoU which is the average IoU over all classes.
The class accuracy is defined as

ClassAcc = TP

TP + FN
, (18)

where TP and FN have been explained above. We use the
metric of class average accuracy (ClassAvg) to express the
overall effectiveness, which is the average ClassAcc over all
classes. The main difference between IoU and ClassAcc is
that there is an additional FP in the denominator of Eq. (17).
Additionally, pixels labeled as ’Void’ or ’Unlabelled’ will be
ignored when one computes the loss in training an SS model
and computes the ClassAcc, ClassAvg, and Mean IoU scores
in testing stage.

B. Quantitative and Qualitative Analysis

In this section, we compare the performances of
ENet, ENet+Uni, ENet+IAL, and SegNet, SegNet+Uni,

TABLE I

THE COMPARISON RESULTS (%) OF VARIOUS METHODS ON THE
GROUPS 1 AND 2 OF CAMVID DATASET. THE BEST RECORDS AMONG

THE ORIGINAL CNN (I.E., ENET/SEGNET/FCN/ERFNET),
CNN+CROSS-ENTROPY LOSS WITH UNIFORM WEIGHTS, AND

CNN+IAL ARE MARKED IN BOLD

SegNet+IAL, and FCN, FCN+Uni, FCN+IAL, and ERFNet,
ERFNet+Uni, ERFNet+IAL under the above experimental
settings. Specifically, after training the above deep neural
networks, we observe their ClassAcc, ClassAvg, and Mean
IoU scores on test sets of CamVid and on validation sets of
Cityscapes. The experimental results of compared methods
on the investigated classes of the two datasets are shown
in Tables I∼II and Tables III∼IV, respectively.

From the results shown in Tables I and II, we find that by
embedding our IAL to the adopted deep models, the ClassAcc
values of the investigated important classes like sign/symbol,
pedestrian, and bicyclist can be significantly improved when
compared with the results of the cross-entropy (i.e., with
uniform weights and class balance) loss based deep mod-
els. Not surprisingly, some ClassAcc values on unimportant
classes such as sky, building, and tree weakly drop because
they are trained with small weights by our IAL. However,
if we compute the ClassAvg averaged over all classes for all
compared methods (see the “ClassAvg” column in Table II),
we see that these networks equipped with IAL are still able to
achieve better performance than the original networks with
the cross-entropy loss, and the improvements are 8.9 for
ENet, 3.0 for SegNet, 7.1 for FCN, and 3.5 for ERFNet,
respectively. Meanwhile, all ClassAvg values of CNN (i.e.,
ENet, SegNet, FCN, and ERFNet)+IAL are largely better than
that of CNN+Uni.

From the results in Table III and Table IV, we observe that
the important classes in Group 3 are segmented with very
high ClassAcc by ENet+IAL, SegNet+IAL, FCN+IAL, and
ERFNet+IAL such as traffic sign, traffic light, person, and
bicycle. Specifically, the ClassAcc values of the traffic sign,
traffic light, person, and bicycle generated by ENet+IAL are as
high as 86.0, 79.0, 89.3, and 85.9, which are significantly bet-
ter than the results of ENet+Uni that are 59.9, 27.9, 83.0 and
66.8, as well as the results of ENet that are 79.4, 71.9, 88.5,
and 84.7, respectively. Similar to the advantages of ENet+IAL
to ENet and ENet+Uni, the improvements of SegNet+IAL
over SegNet+Uni are 50.3, 44.7, 17.6, and 27.1, and the
performance gain of SegNet+IAL over SegNet are 13.3, 30.9,
11.4, and 5.3. For other important classes such as car, train,
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TABLE II

THE COMPARISON RESULTS (%) OF VARIOUS METHODS ON THE GROUP 3 OF CAMVID DATASET. THE BEST RECORDS AMONG THE ORIGINAL CNN
(I.E., ENET/SEGNET/FCN/ERFNET), CNN+CROSS-ENTROPY LOSS WITH UNIFORM WEIGHTS, AND CNN+IAL ARE MARKED IN BOLD

TABLE III

THE COMPARISON RESULTS (%) OF VARIOUS METHODS ON THE GROUPS 1 AND 2 OF CITYSCAPES DATASET. THE BEST RECORDS

AMONG THE ORIGINAL CNN (I.E., ENET/SEGNET/FCN/ERFNET), CNN+CROSS-ENTROPY LOSS WITH

UNIFORM WEIGHTS, AND CNN+IAL ARE MARKED IN BOLD

TABLE IV

THE COMPARISON RESULTS (%) OF VARIOUS METHODS ON THE GROUP 3 OF CITYSCAPES DATASET. THE BEST RECORDS AMONG THE ORIGINAL

CNN (I.E., ENET/SEGNET/FCN/ERFNET), CNN+CROSS-ENTROPY LOSS WITH UNIFORM WEIGHTS, AND CNN+IAL ARE MARKED IN BOLD

and motorcycle, the ClassAcc values of FCN+IAL are also
higher than that of FCN and FCN+Uni. For some unimportant
classes in Group 1, the performances of the IAL-based models
are inferior to the original models. However, they will not have
large impact on safe-driving as explained above.

To intuitively present the effectiveness of our proposed
loss function, we provide some representative segmen-
tation results of ENet, ENet+Uni, ENet+IAL, SegNet,
SegNet+Uni, SegNet+IAL, FCN, FCN+Uni, FCN+IAL,
ERFNet, ERFNet+Uni, and ERFNet+IAL, correspondingly.
The segmentation results here are originated from the test set

of CamVid and the validation set of Cityscapes, which are
illustrated in Figs. 6, 7 and Figs. 8, 9.

For the performance on CamVid dataset, Fig. 6 shows some
representative segmentation results of the ENet, ENet+Uni,
and ENet+IAL. Specifically, for the important classes with
large size (see the rows of car, bicyclist, and sidewalk), we find
that the interested regions segmented by the ENet+IAL are
highly compact, and the shapes of the segmented objects are
also more close to that of the ground truth. Other critical
objects such as sign/symbol, pedestrian, and pole are quite
small in the image, so they are very likely to bring about
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Fig. 6. Representative segmentation results of ENet, ENet+Uni, ENet+IAL, and SegNet, SegNet+Uni, SegNet+IAL on important classes of CamVid dataset.
Best viewed in color.

Fig. 7. Representative segmentation results of FCN, FCN+Uni, FCN+IAL, and ERFNet, ERFNet+Uni, ERFNet+IAL on important classes of CamVid
dataset. Best viewed in color.

imperfect results by using the ENet+Uni and original ENet
as no extra attention have been paid to above objects by the
two nets. However, our ENet+IAL successfully picks them up

and achieves accurate segmentation results. Therefore, IAL is
effective in emphasizing the small but critical targets, and thus
is useful for SS tasks.
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Fig. 8. Representative segmentation results of ENet, ENet+Uni, ENet+IAL, and SegNet, SegNet+Uni, SegNet+IAL on important classes of Cityscapes
dataset. Best viewed in color.

Fig. 9. Representative segmentation results of FCN, FCN+Uni, FCN+IAL, and ERFNet, ERFNet+Uni, ERFNet+IAL on important classes of Cityscapes
dataset. Best viewed in color.

To demonstrate the effectiveness of IAL on Cityscapes
dataset, Fig. 8 also depicts some typical segmentation results
of the ENet, ENet+Uni, and ENet+IAL. We see that for the
important objects dominated in an image (e.g., truck, bus, and
road), the regions segmented by the ENet+IAL are very coher-
ent and most pixels of the corresponding regions are correctly
classified. Comparatively, the original ENet yields much worse
outputs than the ENet+IAL such as the incomplete truck, bus,
and road. For the important objects with small size (e.g., traffic
light, person, and pole), the ENet+IAL also generates more
similar segmentation results to ground truth than the ENet.
For example, the traffic light indicated by a circle is rather
small, and it is nearly missed by the ENet+Uni and ENet.
However, our ENet+IAL successfully picks it up and renders
accurate segmentation. The pole in the last row is so tiny
that it is completely misclassified by the ENet. In contrast,
the ENet+IAL clearly identifies the pole from the background
as indicated by the white circle. Similarly, the comparisons
among CNN (i.e., SegNet, FCN, and ERFNet), CNN+Uni,
and CNN+IAL also reveal the similar results, which are
illustrated in Fig. 7 and Fig. 9, respectively.

According to above quantitative and qualitative results,
we conclude that the proposed hierarchical importance-aware
loss can improve the segmentation quality of the important
objects with a large margin in terms of ClassAcc. Therefore,
IAL is quite suitable for the application of autonomous driving.

C. Parametric Sensitivity
Our IAL contains two critical parameters α and λ, and in

this section we will show how the variations of these two
parameters influence the final results. As described in the
Section III-A, α is a tuning parameter that should be larger
than 1 to guarantee that the important classes obtain higher
weights. Besides, the parameter λ encourages the IAL-based
SS models to pay more attention to the classification of impor-
tant objects. In order to accelerate the training stage of SS
models, the size of images in CamVid dataset is downsampled
by 2 times. Meanwhile, we rescaled the image resolution of
Cityscapes dataset into 512 × 256. After obtaining trained
models, we investigate the ClassAvg values on the test set of
CamVid and the validation set of Cityscapes. The ClassAvg
values under different selections of α and λ achieved by
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Fig. 10. Sensitivity analysis for the parameters α and λ on the test set of
CamVid and the validation set of Cityscapes. (a) and (c) respectively represent
the ClassAvg values by varying the parameters of α = {1, 1.5, 2, 2.5, 3}
with the parameter λ fixed to 0.5 on CamVid and Cityscapes datasets.
(b) and (d) plot the ClassAvg values of ENet+IAL, SegNet+IAL, FCN+IAL,
and ERFNet+IAL when λ = {0.1, 0.3, 0.5, 0.7, 0.9} with α fixed to 2.5 on
CamVid and Cityscapes datasets, respectively.

ENet+IAL, SegNet+nIAL, FCN+IAL, and ERFNet+IAL are
reported in Fig. 10. We find that the outputs of these models
are generally stable under α ∈ [1, 3] and λ ∈ [0.1, 0.9], which
means that the segmentation results will not be significantly
influenced by the choices of these two parameters. Therefore,
the α and λ in our method can be easily tuned for practical use.

D. Comparison of Training Time

This section compares the training time of ENet vs.
ENet+IAL, SegNet vs. SegNet+IAL, FCN vs. FCN+IAL,
and ERFNet vs. ERFNet+IAL on CamVid and Cityscapes
datasets. Here we do not include the training time
of ENet+Uni, SegNet+Uni, FCN+Uni, and ERFNet+Uni
because their structures are identical to those of ENet, SegNet,
FCN, and ERFNet correspondingly, so deploying the uniform
class weights will not influence the training time of ENet,
SegNet, FCN and ERFNet. We aim to study whether the
incorporation of IAL will increase the training time. All SS
models are trained on two K80 GPU, and the mini-batch
size and iteration number are set to 8 and 300, respectively.
From the results provided in Table V, we see that the IAL
incurs very little extra time cost when compared with the
network equipped with the cross-entropy loss. Meanwhile,
Section IV-B reveals that the IAL based networks are able
to significantly improve the segmentation performance of the
cross-entropy loss based counterparts. Therefore, the proposed
IAL is both effective and efficient.

V. CONCLUSION

Semantic segmentation in driving environment is quite dif-
ferent from its traditional implementations for general natural
images, as various classes might have different levels of impor-
tance for driving safety. Based on this argument, this paper

TABLE V

TRAINING TIME OF VARIOUS DEEP MODELS ON
CAMVID AND CITYSCAPES DATASETS (UNIT: HOUR)

proposes a novel hierarchical importance-aware loss (IAL) so
that the object classes with different importance are adaptively
allocated different weights during the model training stage.
As a result, the objects that are critical for safe-driving can be
segmented more accurately than the traditional SS methods as
revealed by the experiments. Moreover, our loss function IAL
is general in nature and can be easily combined with many
other existing SS algorithms for various applications with the
consideration of class importance.
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