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Abstract

Distance Metric Learning aims to learn an appropriate metric that faithfully mea-
sures the distance between two data points. Traditional metric learning methods
usually calculate the pairwise distance with fixed distance functions (e.g., Eu-
clidean distance) in the projected feature spaces. However, they fail to learn the
underlying geometries of the sample space, and thus cannot exactly predict the
intrinsic distances between data points. To address this issue, we first reveal that the
traditional linear distance metric is equivalent to the cumulative arc length between
the data pair’s nearest points on the learned straight measurer lines. After that, by
extending such straight lines to general curved forms, we propose a Curvilinear
Distance Metric Learning (CDML) method, which adaptively learns the nonlinear
geometries of the training data. By virtue of Weierstrass theorem, the proposed
CDML is equivalently parameterized with a 3-order tensor, and the optimization
algorithm is designed to learn the tensor parameter. Theoretical analysis is derived
to guarantee the effectiveness and soundness of CDML. Extensive experiments on
the synthetic and real-world datasets validate the superiority of our method over
the state-of-the-art metric learning models.

1 Introduction

The goal of a Distance Metric Learning (DML) algorithm is to learn the distance function for data
pairs to measure their similarities. The learned distance metric successfully reflects the relationships
within data points and significantly improves the performance of many subsequent learning tasks,
such as classification [22], clustering [23], retrieval [24], and verification [14]. It has recently become
an active research topic in machine learning community [30, 29].

The well-studied DML methods are usually linear, namely Mahalanobis distance metric based
models [23]. Under the supervisions of pairwise similarities, they intend to learn a Semi-Positive-
Definite (SPD) matrixM=PP>∈Rd×d to decide the squared parametric distance Dist2P (x, x̂)=
(x−x̂)>M(x−x̂) between data points x and x̂ in the d-dimensional space. It is notable that such
a linear Mahalanobis distance is equivalent to the Euclidean distance in the m-dimensional feature
space projected by P ∈Rd×m. To perform the learning of the parameterM , intensive efforts have
been put to design various loss functions and constraints in optimization models. The early works
Large Margin Nearest Neighbor (LMNN) [27] and Information-Theoretic Metric Learning (ITML)
[7] utilized the must-link and cannot-link information to constrain the ranges of the learned distances.
Instead of fixing the distance ranges in the objective, Geometric Mean Metric Learning (GMML) [31]
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Figure 1: Conceptual illustrations of Euclidean metric, linear (Mahalanobis) metric, and our proposed
curvilinear metric in three-dimensional space. For a pair of data points (i.e., x and x̂) from the
spatial surface, metrics find out the nearest (calibration) points (i.e., T (x) and T (x̂)) on each learned
measurer line, and then use the arc length between nearest points as measured distance results. By
the curved measurer lines, our method can measure the intrinsic curvilinear distance more exactly.

proposed a geometric loss to jointly minimize the intra-class distances and maximize the inter-class
distances as much as possible. Considering that the above methods utilizing one single matrixM are
not flexible for complex data, the traditional Mahalanobis distance is extended to a combined form
of multiple linear metrics [30]. Recently, the strategies of adversarial training [8] and collaborative
training [20] were introduced in Adversarial Metric Learning (AML) [4] and Bilevel Distance Metric
Learning (BDML) [29], respectively, which showed further improvements on the linear metric.

To enhance the flexibility of DML for fitting data pairs from nonlinear sample spaces, the early works
transferred the original data points to the high-dimensional kernel space by using traditional kernel
methods [26]. Recently, the projection matrix P of the linear DML was extended to a nonlinear
feature mapping form PW(·), in which the mapping W(·) is implemented by typical Deep Neural
Networks (DNN), such as Convolutional Neural Network (CNN) [32] and Multiple Layer Perceptron
(MLP) [10]. To further utilize the fitting capability of DNN and characterize the relative distances, the
traditional pairwise loss was extended to multi-example forms, such as Npair loss [22] and Angular
loss [25]. It is worth pointing out that the above kernelized metrics and DNN based metrics are still
calculated with fixed Euclidean distance in the extracted feature space, which ignores the geometric
structures of the sample space. To this end, some recent works proposed to learn the projection matrix
P on differential manifolds (e.g., SPD manifold [33] and Grassmann manifold [13]) to improve the
representation capability on some specific nonlinear data structures. However, the geometries of their
used manifolds are usually specified and cannot be learned to adapt to various nonlinear data, and
hence remarkably hindering the generality of the manifold based DML approaches.

Although above existing DML models have achieved promising results to some extent, most of them
fail to learn the spatial geometric structures of the sample space, and thus their obtained metrics cannot
reflect the intrinsic curvilinear distances between data points. To address this challenging problem, in
this paper, we firstly present a new interpretation to reveal that the traditional linear distance metric is
equivalent to the cumulative arc length between data pair’s nearest points on the straight measurer
lines (see Fig. 1(a) and (b)). Such straight measurer lines can successfully learn the directions of
real distances, but they are not capable of adapting to the curvilinear distance geometries on many
nonlinear datasets. Therefore, we propose the Curvilinear Distance Metric Learning (CDML) model,
which extends the straight measurer lines to the general smooth curved lines (see Fig. 1(c)). Thanks to
the generalized forms of such curvilinear measurers, the geometries of training data can be adaptively
learned, so that the nonlinear pairwise distances can be reasonably measured. We theoretically
analyze the effectiveness of CDML by showing its fitting capability and generalization bound.
Furthermore, we prove that our proposed curvilinear distance satisfies the topological definitions of
the (pseudo-)metric, which demonstrates the geometric soundness of such a distance metric. The
main contributions of this paper are summarized as: (I). We provide a new intuitive interpretation
for traditional linear metric learning by explicitly formulating the measurer lines and measurement
process; (II). We propose a generalized metric learning model dubbed CDML with discovering the
curvilinear distance hidden in the nonlinear data, and the corresponding optimization algorithm is
designed to solve the proposed model which is guaranteed to converge; (III). The complete theoretical
guarantee is established, which analyzes the fitting capability, generalization bound, and topological
property of CDML, and therefore ensuring the model effectiveness and soundness; (IV). CDML
is experimentally validated to outperform state-of-the-art metric learning models on both synthetic
datasets and real-world datasets.
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Notations. Throughout this paper, we write matrices, vectors, and 3-order tensors as bold uppercase
characters, bold lowercase characters, and bold calligraphic uppercase characters, respectively. For a 3-
order tensor M, the notations Mi::, M:i:, and M::i denote the horizontal, lateral, and frontal slices.
The tube fiber, row fiber, and column fiber as Mij:, Mi:j , and M:ij . Let y=(y1, y2, · · · , yN )> be
the label vector of training data pairs X ={(xj , x̂j)|j=1, 2, · · · , N} with xj , x̂j ∈Rd, where yj=1
if xj and x̂j are similar, and yj=0 otherwise. Here d is the data dimensionality, and N is the total
number of data pairs. The operators ‖·‖2 and ‖·‖F denote the vector `2-norm and matrix (tensor)
Frobenius-norm, respectively. The notation Nn={1, 2, · · · , n} for any n∈N.

2 Curvilinear Distance Metric Learning

In this section, we first present a new geometric interpretation for traditional linear metric learning
models. Then the Curvilinear Distance Metric Learning (CDML) is formulated based on such an
interpretation. The optimization algorithm is designed to solve CDML with convergence guarantee.

2.1 A Geometric Interpretation for Linear Metric

It is well known that the linear distance metric (i.e., squared Mahalanobis distance) [30, 29] between
two given data points x, x̂ ∈ Rd is defined as

Dist2P (x, x̂) = (x− x̂)>M(x− x̂) = (x− x̂)>PP>(x− x̂), (1)

where the matrix M = PP> is assumed to be SPD in Rd×d. In previous works, the above linear
distance metric is usually interpreted as the Euclidean distance in the projection space, where the
projection matrix P ∈ Rd×m plays the role of feature extractions [28]. Here d and m are the
dimensionalities of the original sample space and the extracted feature space, respectively. Although
such an interpretation offers a friendly way for model extensions, it is not clear enough that why the
linear distance metric fails to characterize the curvilinear distances on nonlinear data.

Now we present a new understanding for the linear distance metric from its measurement process,
which offers a clear way to hand the nonlinear geometric data. We denote pi∈Rd as the i-th column
of P . By using the rule of inner products, Eq. (1) equals to the following cumulative form1∑m

i=1
‖pi‖22‖x− x̂‖22cos2〈pi,x− x̂〉=

∑m

i=1
‖pi‖22‖piTi(x)− piTi(x̂)‖22, (2)

where Ti(x) and Ti(x̂) are the projection points of x and x̂, which satisfy (piTi(x)− x)>pi = 0
and (piTi(x̂)− x̂)>pi = 0, respectively. After that, the `2-norm distance ‖piTi(x)− piTi(x̂)‖2 is
equivalently converted to the arc length from Ti(x) to Ti(x̂) on the straight line z = pit (t∈R), and
thus the squared Mahalanobis distance is rewritten as

Dist2P (x, x̂) =
∑m

i=1
‖pi‖22

(w Ti(x̂)

Ti(x)
‖pi‖2 dt

)2

, (3)

where the integral value is the arc length of the straight measurer line z = pit from Ti(x) to Ti(x̂).
Here the weight ‖pi‖22 is regarded as the scale of the measurer line which equals to the squared
unit arc length from 0 to 1. By using the convexity of g(t) = ‖pit− x‖22, the orthogonal condition
(piTi(x)− x)>pi = 0 is equivalent to finding the nearest point Ti(x) on the measurer line, namely

Ti(x) = argmin
t∈R

‖pit− x‖22. (4)

Based on the results of Eq. (3) and Eq. (4), we can clearly observe that the Mahalanobis distance of
the data pair {x, x̂} is intrinsically computed as the cumulative arc length between {x, x̂}’s nearest
points on the learned measurer line z = pit, which is shown in Fig. 1. It reveals that linear metrics
merely learn the rough directions of real distances, yet cannot capture the complex data geometry.

2.2 Model Establishment

As we mentioned before, traditional metrics learn the direction pi of the measurer line z=pit in the
d-dimensional sample space. However, such a straight line is far from adapting to complex nonlinear

1For calculation details, Dist2P (x, x̂) = (x − x̂)>PP>(x − x̂) = ‖P>(x − x̂)‖22 = ‖(p>1 (x −
x̂),p>2 (x− x̂), · · · ,p>m(x− x̂))‖22 =

∑m
i=1(p

>
i (x− x̂))2 =

∑m
i=1‖pi‖

2
2‖x− x̂‖22cos2〈pi,x−x̂〉.
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data in the real world. We thus use a general vector-valued function θi : R→Rd to extend the straight
line z=pit (t∈R) to the smooth curved line z̃=θi(t) (t∈R). Specifically, it can be written as

z̃ = (z̃1, z̃2, · · · , z̃d)> = (θi1(t), θi2(t), · · · , θid(t))> = θi(t), (5)
where the smooth function θik(t) is the k-th element of the vector-valued function θi(t). It should be
noticed that such a curved line is also assumed to be zero-crossing, i.e., θi(0) = 0 which is consistent
with the linear distance metric. Then the nearest point Ti(x) defined in Eq. (4) can be easily extended
to the nearest point set Nθi(x), and we naturally have that

Nθi
(x) = argmin

t∈R
‖θi(t)− x‖22. (6)

Nevertheless, the point set Nθi(x) might contain more than one element, so we simply use the
smallest element of Nθi(x), as described in Definition 1.
Definition 1. For a data point x∈Rd and a curved line θi, we define the calibration point Tθi(x) as
Tθi(x)=argmint∈Nθi

(x) t, where Nθi(x) includes all nearest points of x on the curved line θi(t).

According to our offered interpretation in Section 2.1, the curvilinear distance is consistently regarded
as the cumulative arc length values (see Fig. 1(c)). Here we follow the common formula of arc length
in calculus [21], which is given in Definition 2.
Definition 2. The arc length from T1 to T2 on the curved line θi is defined as

Lengthθi
(T1, T2) =

w max(T1,T2)

min(T1,T2)
‖θ′i(t)‖2 dt, (7)

where the derivative vector θ′i(t) = (θ′i1(t), θ
′
i2(t), · · · , θ′id(t))>.

Based on the above definitions of the arc length and the calibration point, the traditional linear
distance metric (i.e., Eq. (3)) is easily extended to the general curvilinear form. Specifically, the
squared curvilinear distance between data points x and x̂ is calculated by

Dist2Θ(x, x̂) =
∑m

i=1
sθi
· Length2θi

(Tθi
(x), Tθi

(x̂)), (8)

whereΘ=(θ1,θ2, · · · ,θm) is the learning parameter of the curvilinear distance metric, and m is
the number of measurer lines. Here the scale value sθi

=Length2θi
(0, 1). When we use the empirical

risk loss to learnΘ, the objective of Curvilinear Distance Metric Learning (CDML) is formulated as

min
Θ∈Fm

1

N

∑N

j=1
L(Dist2Θ(xj , x̂j); yj) + λR(Θ), (9)

where Fm= {(θ1,θ2, · · · ,θm)| θik(t)= 0 and θik(t) is smooth for i∈Nm and k∈Nd}, the regular-
ization parameter λ > 0 is tuned by users. In the above objective, the loss function L evaluates the
inconsistency between the predicted distances and their similarity labels, and the regularizer R is
used to reduce the over-fitting.

Implementation ofΘ. As the learning parameterΘ of CDML (i.e., Eq. (9)) is in an abstract form
and cannot be directly solved, we have to give a concrete form for each curved line θi(t) for learning
tasks. Here we employ the polynomial function to approximate θi(t), due to the guarantee of
infinite approximation which is described in Theorem 1. It is notable that θi(t) can also be infinitely
approximated by other ways, such as Fourier series, deep neural networks, and piecewise linear
functions [16]. Without loss of generality, we employ the polynomial function in this paper.
Theorem 1 (Weierstrass Approximation [21]). Assume that the vector-valued function θi(t) ∈ Rd
(i=1, 2, · · · ,m) is continuous and zero-crossing defined on [a, b]. Then for any ε > 0 and t ∈ [a, b],
there exists the c-order polynomial vector-valued function

Mi::(t) =
(∑c

k=1
Mi1kt

k,
∑c

k=1
Mi2kt

k, · · · ,
∑c

k=1
Midkt

k
)>

, (10)

such that
∑m
i=1 ‖θi(t)−Mi::(t)‖2 < ε, where the 3-order tensor M = [Mijk] ∈ Rm×d×c.

We let θi(t) :=Mi::(t) for i= 1, 2, · · · ,m, and then the abstract parameter Θ in Eq. (9) can be
materialized by the tensor M with infinite approximation in the following optimization objective

min
M∈Rm×d×c

1

N

∑N

j=1
L(Dist2M(xj , x̂j); yj) + λR(M). (11)

We thus successfully convert the abstract optimization problem Eq. (9) to the above concrete form
Eq. (11) w.r.t. the tensor M ∈ Rm×d×c, which can be easily solved by existing algorithms [11].
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Algorithm 1 Solving Eq. (11) via Stochastic Gradient Descent.
Input: Training data pairs X = {(xj , x̂j)|j ∈ NN}; labels y ∈ {0, 1}N ; batch size h; learning rate
ρ; regularization parameter λ; tensor size parameters c and m.
Initialize: k = 1; M(1) = 0.
Repeat:

1). Uniformly randomly pick h data pairs {(xbj , x̂bj )|j ∈ Nh} from X .

2). Compute calibration points TMi::
(xbj ) and TMi::

(x̂bj ) for i = 1, 2, · · · ,m by solving the
real roots of f ′i(t) = 0 in Eq. (13).

3). Update the learning parameter M by

M(k+1) :=M(k)−ρ
(
1

h

∑h

j=1
L′j∇M(k)Dist2M(k)(xbj , x̂bj )+λ∇M(k)R(M(k))

)
. (12)

4). Update k := k + 1.

Until Converge.
Output: The converged M∗.

2.3 Optimization Algorithm

Since the pair number N is usually large in Eq. (11), we use the Stochastic Gradient Descent (SGD)
method to solve it. As we know that the central operations in SGD are the gradient computation of the
objective function. Here we only need to offer the gradient of Dist2M(x, x̂) which mainly depends
on the calibration points TMi::

(x), TMi::
(x̂), and the arc length LengthMi::

(TMi::
(x), TMi::

(x̂)).

According to Definition 1, the calibration point TMi::
(x) can be directly obtained from the nearest

point set NMi::(x) = {t∗|fi(t∗) ≤ fi(t̂), and t∗, t̂ ∈ Γ i}, where the polynomial function is

fi(t) = ‖Mi::(t)− x‖22 =
∑c

j, k=1
(M>

i:jMi:k)t
j+k − 2

∑c

k=1
M>

i:kxt
k + x>x, (13)

and Γ i is the real root set for polynomial equation f ′i(t) = 0. Here the real roots of f ′i(t) = 0 can be
efficiently solved by simple numerical algorithms [17], of which the computation complexity does
not depend on the number of training data pair N and feature dimensionality d.

By using the definition of integral, the arc length is equivalently converted to

LengthMi::
(T1, T2)=

w max(T1,T2)

min(T1,T2)
‖M′

i::(t)‖2dt= lim
L→∞

∑L

l=0
‖M′

i::(min(T1, T2)+l∆t)‖2∆t, (14)

where ∆t= |T1−T2|/L. In practical uses, we fix L to a large number (e.g., L=103) and thus obtain
a well approximation GMi::(T1, T2) :=(

∑L
l=0‖M

′
i::(min(T1, T2)+l∆t)‖2∆t)2 for the squared arc

length value Length2Mi::
(T1, T2).

According to the chain rule of derivative, the gradient of Dist2M w.r.t. M is obtained as2

∇Mi::
Dist2M(x, x̂) = ∇Mi::

GMi::
(0, 1) ·GMi::

(TMi::
(x), TMi::

(x̂))

+GMi::(0, 1) · ∇̃Mi::GMi::(TMi::(x), TMi::(x̂)). (15)

It is noticed that the gradient of GMi::
(TMi::

(x), TMi::
(x̂)) does not exist necessarily, because the

intermediate variable TMi::
(x) is not differentiable w.r.t. Mi::. Therefore, here we use the smoothed

gradient3 instead of the original gradient ofGMi::
(TMi::

(x), TMi::
(x̂)). The optimization algorithm

for solving Eq. (11) is summarized in Algorithm 1.

Convergence. Notice that the main difference between Algorithm 1 and traditional SGD is that we
utilize a smoothed gradient instead of the original gradient. Previous works have proved that the
smoothed gradient still ensures that the SGD algorithm converges to a stationary point [12, 2].

2∇Mi::GMi::(0, 1) =
2
L

√
GMi::(0, 1)

∑L
l=0

M′
i::(l/L)·((l/L)1,(l/L)2,··· ,(l/L)c)

‖M′
i::(l/L)‖2

.
3∇̃Mi::GMi::(TMi::(x),TMi::(x̂))=

∆Mi::

µ‖∆Mi::‖22
(GMi::+µ∆Mi::(TMi::+µ∆Mi::(x),TMi::+µ∆Mi::(x̂))−

G(TMi::(x),TMi::(x̂))), where ∆Mi::∈Rd×c is generated from the standard normal distribution, and µ > 0
is a given small number used to smooth the gradient.
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3 Theoretical Analysis

In this section, we provide theoretical results for the fitting capability, generalization bound, and
topological property of CDML. All proofs of theorems are given in the supplementary materials.

3.1 Fitting Capability

We first reveal that the curvilinear distance learned by Eq. (11) is capable of distinguishing the
similarities of all training data pairs. We assume that the (dis)similar pair sets XSimilar and XDissimilar
are the partitions of the whole training data pairs set X , where the similarity label y(x,x̂) = 1 if
(x, x̂)∈XSimilar, and y(x,x̂)=0 if (x, x̂)∈XDissimilar. Then the conclusion is described as follows.

Theorem 2. For given ∆margin > 0, there exist m, c ∈ N and M̃ ∈ Rm×d×c such that

DistM̃(β, β̂)− DistM̃(α, α̂) > ∆margin, (16)

where (α, α̂) ∈ XSimilar and (β, β̂) ∈ XDissimilar.

From the above result, we know that the well learned curvilinear distance correctly predicts the
similarities of data pairs in the training set X , which ensures that the inter-class distances are always
greater than the intra-class distances. In most metric learning models, the loss functions are designed
to reward the larger inter-class distances and smaller intra-class distances. It means that the distance
DistM̃(·, ·) in Eq. (16) can be successfully achieved by minimizing the loss functions. Therefore, the
fitting capability of the curvilinear distance can be reliably guaranteed by the parameter tensor M.

3.2 Generalization Bound

Now we further analyze the effectiveness of CDML by offering the generalization bound of the
solution to Eq. (11). Such a bound evaluates the bias between the generalization error ε(M) :=

E(x,x̂)∼D(L(Dist2M(x,x̂); y(x,x̂))) and empirical error εX (M) := 1
N

∑N
j=1L(Dist2M(xj ,x̂j); yj),

where D is the real data distribution and E(·) denotes the expectation function. We simply use the
squared tensor Frobenius-norm [18] for regularization and have the following conclusion.
Theorem 3. Assume thatR(M) = ‖M‖2F =

∑
i,j,k(Mijk)

2 and M∗ ∈ Rm×d×c is the solution
to Eq. (11). Then, we have that for any 0 < δ < 1 with probability 1− δ

ε(M∗)− εX (M∗) ≤ X∗
√

2ln(1/δ)/N +BλRN (L), (17)

where Bλ → 0 as λ → +∞4. Here RN (L) is the Rademacher complexity of the loss function L
related to the space Rm×d×c for N training pairs, and X∗ = maxk∈NN

|L(Dist2M∗(xk, x̂k); yk)|.

In Eq. (17), the first term of the upper bound converges with the increasing of the number of training
data pairs N . We can also find that the second term converges to 0 with the increasing of λ, which
means the regularizerR(M) effectively improves the generalization ability of CDML.

3.3 Topological Property

In general topology, the metric5 is defined as the distance function satisfying the non-negativity,
symmetry, triangle, and coincidence properties [23, 9]. As an extended metric, the pseudo-metric
merely has the first three properties as revealed in [19]. Here we prove that the curvilinear distance
defined in Eq. (8) satisfies the topological definitions, and thus its geometric soundness is guaranteed.
Theorem 4. For the curvilinear distance DistΘ(x, x̂) and its corresponding parameter Θ, we
denoteΘ′(τ ) = (θ′1(τ1),θ

′
2(τ2), · · · ,θ

′
m(τm)) ∈ Rd×m and have that

1). DistΘ(x, x̂) is a pseudo-metric for anyΘ ∈ Fm;

2). DistΘ(x, x̂) is a metric, ifΘ′(τ ) is full row rank for any τ = (τ1, τ2, · · · , τm)> ∈ Rm.
4Here Bλ = 2EX ,Z [supM∈F(λ) εZ(M)−εX(M)]/EX ,Z [supM∈Rm×d×c εZ(M)−εX(M)] and F(λ)

is a shrinking hypothesis space induced by the regularizerR(M).
5The distance function Dist(·, ·) is a metric if and only if it satisfies the four conditions for anyα1,α2,α3 ∈

Rd: (I). Non-negativity: Dist(α1,α2) ≥ 0; (II). Symmetry: Dist(α1,α2) = Dist(α2,α1); (III). Triangle:
Dist(α1,α2) + Dist(α2,α3) ≥ Dist(α1,α3); (IV). Coincidence: Dist(α1,α2) = 0⇐⇒ α1 = α2.

6



Class-1 Margin Class-2 Class-1 Margin Class-2 Class-1 Margin Class-2

Figure 2: Visualizations of the measurer lines learned by CDML in two-dimensional space. The
grayscale denotes the distance from the origin point to the current point of the learned measurer line.

Table 1: Classification error rates (%, mean± std) of all methods on synthetic datasets including
Intersected Lines, Concentric Circles, and Nested Moons.

Datasets LMNN [27] ITML [7] Npair [22] Angular [25] ODML [28] CERML [14] CDML

Instersected Lines 14.33±1.21 17.46±2.11 8.52±0.99 8.10±3.24 10.52±2.17 6.21±1.92 5.12±1.13
Concentric Circles 16.62±2.14 15.92±3.12 9.13±1.51 8.98±1.89 11.31±2.23 10.32±2.16 6.95±1.41
Nested Moons 17.02±2.23 12.04±2.14 9.22±1.89 10.12±2.09 15.12±1.98 11.12±2.41 8.64±2.45

Notice that the above Theorem 4 has the same conclusion with the traditional linear distance metric
when θi(t) is specialized by pit, and thus such a result is a generalization of the property in the linear
model [23]. In fact, most of the real-world data indeed have non-negativity, symmetry, triangle, and
coincidence properties. Hence this theorem clearly tells us that the basic geometric characteristics of
real-world data can be well persevered in the curvilinear distance metric.

4 Experimental Results

In this section, we show our experimental results on both synthetic and real-world benchmark datasets
to validate the effectiveness of CDML. We first visualize the learning results of CDML on synthetic
datasets. After that, we compare classification and verification accuracy of CDML with two classical
metric learning methods (LMNN [27] and ITML [7]) and four state-of-the-art methods (Npair
loss [22], Angular Loss [25], ODML [28], and CERML [14]). Here LMNN, ITML, and ODML are
linear and the others are nonlinear. In our experiments, the parameters λ and c are fixed to 1.2 and 10,
respectively. The SGD parameters h and ρ are fixed to 103 and 10−3, respectively. We follow ITML
and use the squared hinge loss and squared Frobenius-norm as L andR in Eq. (11), respectively.

4.1 Visualizations on Synthetic Datasets

To demonstrate the model effectiveness on nonlinear data, we first visualize the learning results of
CDML on nonlinear synthetic datasets including Intersected Lines, Concentric Circles, and Nested
Moons [5]. Each dataset contains more than 300 data points across 2 classes in the two-dimensional
space. On each dataset, 60% of all data is randomly selected for training, and the rest is used for test.
The measurer line count m is fixed to 1 to clearly visualize the learned results.

As illustrated in Fig. 2, the learned measurer lines are plotted with gray lines, of which the gray-level
denotes the arc length distance from the origin point to the current point. According to the definition
in Eq. (6), we can clearly observe that the nearest points of data points from two classes are distributed
apart on the two sides of the measurer lines (i.e., the low gray-level and high gray-level). Therefore,
such measure results correctly predict large values for inter-class distances and small values for
intra-class distances. Furthermore, the test error rates of all compared methods are shown in Table 1,
and we find that DDML, PML, and CDML obtained superior results over other methods due to their
non-linearity. Meanwhile, CDML achieves relatively lower error rates than the deep neural network
based model (DDML) and manifold based model (PML) on the three datasets, which validates the
superiority of our method.

4.2 Comparisons on Classification Datasets

To evaluate the performances of all compared methods on the classification task, we adopt the k-NN
classifier (k=5) based on the learned metrics to investigate the classification error rates of various
methods. The datasets are from the well-known UCI machine learning repository [1] including
MNIST, Autompg, Sonar, Australia, Hayes-r, Glass, Segment, Balance, Isolet, and Letters.
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Table 2: Classification error rates (%, mean± std) of all methods on real-world datasets. The last row
lists the Win/Tie/Loss counts of CDML against other methods with t-test at significance level 0.05.

Datasets LMNN [27] ITML [7] Npair [22] Angular [25] ODML [28] CERML [14] CDML

MNIST 17.46±5.32 14.32±7.32 11.56±1.07 12.26±5.12 12.12±5.22 13.36±2.32 8.12±3.64
Autompg 25.92±3.32 26.62±3.21 21.95±1.52 19.02±3.01 25.32±5.32 26.36±3.02 15.32±6.11
Sonar 16.04±5.31 18.02±3.52 15.31±2.56 16.86±1.21 17.95±6.78 19.21±6.33 15.40±3.64
Australia 15.51±2.53 17.52±2.13 15.12±5.11 15.54±1.23 16.23±4.12 18.26±6.22 12.22±2.54
Hayes-r 30.46±7.32 34.24±6.32 24.36±2.17 23.12±1.37 29.76±1.07 30.12±5.32 25.15±5.23
Glass 30.12±2.32 29.11±3.28 22.32±4.72 23.02±1.22 28.26±1.22 29.11±0.12 22.12±4.64
Segment 2.73±0.82 5.16±2.22 8.77±0.32 4.11±1.22 3.76±1.34 5.36±3.12 1.23±0.32
Balance 9.93±1.62 9.31±2.21 8.12±1.97 7.12±2.22 8.63±2.22 9.45±5.45 5.01±2.64
IsoLet 3.23±1.32 9.23±2.32 5.43±2.12 5.49±1.12 2.68±0.72 7.26±2.32 3.12±1.64
Letters 4.21±2.05 6.24±0.32 5.14±1.04 4.67±1.82 4.88±0.82 5.32±2.22 2.09±0.64

W/T/L 8/2/0 9/1/0 5/5/0 6/4/0 8/2/0 8/2/0 —
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Figure 3: ROC curves of all methods on the 3 datasets. AUC values are presented in the legends.

We compare all methods over 20 random trials. In each trial, 80% of examples are randomly selected
as the training examples, and the rest are used for testing. The training pairs are generated by
randomly picking up 1000K(K−1) pairs among the training examples [31], where K is the number
of classes. Here the measurer line count m is fixed to the feature dimensionality (i.e., d). The average
classification error rates of all compared methods are shown in Table 2. We also perform the t-test
(significance level 0.05) to validate the superiority of our method over all baseline methods on each
dataset. From the experimental results, we can observe that CDML obtains significant improvements
on the linear metric learning models, which demonstrates the usefulness of our proposed curvilinear
generalization. Furthermore, the statistical records of average error rates and t-test results reliably
validate the superiority of our method over other baseline methods.

4.3 Comparisons on Verification Datasets

We use two face datasets and one image matching dataset to evaluate the capabilities of all compared
methods on image verification. The PubFig face dataset includes 2× 104 image pairs belonging to
140 people [15], in which the first 80% data pairs are selected for training and the rest are used for test.
Similar experiments are performed on the LFW face dataset which includes 13233 unconstrained
face images [15]. The MVS dataset [3] consists of over 3 × 104 image patches sampled from 3D
objects, in which 105 pairs are selected to form the training set, and 104 pairs are used for test.

The adopted features are extracted by DSIFT [6] and Siamese-CNN [32] for face datasets and image
patch dataset, respectively. We plot the Receiver Operator Characteristic (ROC) curve by changing the
thresholds of different distance metrics. Then the values of Area Under Curve (AUC) are calculated
to quantitatively evaluate the performances of all comparators. From the ROC curves and AUC
values in Fig. 3, it is clear to see that DDML and CDML consistently outperform other methods. In
comparison, CDML obtains better results than the best baseline method DDML on three datasets.

5 Conclusion

In this paper, we introduced the new insight of the mechanism of metric learning models, where the
measured distance is naturally interpreted as the arc length between nearest points on the learned
straight measurer lines. We extended such straight measurer lines to general curved lines for further
learning the intrinsic geometries of the training data. To the best of our knowledge, this is the first
work of metric learning with adaptively constructing the geometric relations between data points. We
provided theoretical analysis to show that the proposed framework can be well applied to the general
nonlinear data. Visualizations on toy data indicate that the learned measurer lines critically capture
the underlying rules, and thus making the learning algorithm acquire more reliable and precise metric
than the state-of-the-art methods.
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