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Abstract

Metric learning aims to learn a distance metric to properly measure the similarities between
pairwise examples. Most existing learning algorithms are designed to reduce intra-class
distances and meanwhile enlarge inter-class distances by critically introducing a margin
between intra-class and inter-class distances. However, such learning objectives may yield
boundless (distance) metric space, because their enlargements on inter-class distances are
usually unconstrained. In this case, excessively enlarged inter-class distances would rela-
tively reduce the ratio of margin to the whole distance range (i.e., the margin-range-ratio),
and thus being against the initial large-margin purpose for discriminating the similarities
of data pairs. To address this issue, we propose a new boundary-restricted metric (BRM),
which confines the metric space by a restriction function. Such a restriction function is
monotonous and gradually converges to an upper bound, which suppresses excessively
large distances of data pairs and concurrently maintains the reliable discriminability. After
that, the learned metric can be successfully restricted in a finite region, and thereby avoid-
ing the reduction of margin-range-ratio. Theoretically, we prove that BRM tightens the
generalization error bound of the traditional learning model without sacrificing the fitting
capability or destroying the topological property of the learned metric, which implies that
BRM makes a good bias-variance tradeoff for the metric learning task. Extensive experi-
ments on toy data and real-world datasets validate the superiority of our approach over the
state-of-the-art metric learning methods.

Keywords Metric learning - Boundary restriction - Generalization ability - Topological
property

1 Introduction

Measuring distances/similarities between pairwise examples are required in many pattern
recognition and machine learning tasks, such as clustering (Yan et al., 2022), classifica-
tion (Dong et al., 2019), and verification (Yang et al., 2018). The manually designed sim-
ple measures (e.g., the Euclidean distance (Meyer, 2000; Yang et al., 2016)) can hardly
adapt to diverse scenarios with different data distributions. Thereby, (distance) metric
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Fig.1 Conceptual illustrations of the unconstrained boundless metric space and the boundary-restricted
metric (BRM) space with the same margin width. a In the traditional unconstrained metric space, the mar-
gin-range-ratio (i.e., the value m/b) would be relatively reduced by excessively large distances. b Under the
boundary restriction, the metric space is confined to prevent the reduction of margin-range-ratio, so that the
data points could have better separability

learning (Lebanon, 2006; Weinberger et al., 2006; Yoshida et al., 2021) is proposed to
learn intrinsic distance functions for various datasets based on some available supervision.

Metric learning usually considers the distance between each pairwise examples in a
whole dataset, and determines a non-negative value for any two given examples to meas-
ure their similarity. Most existing learning algorithms are designed to enlarge the (inter-
class) distances between negative pairs of examples and meanwhile reduce the (intra-class)
distances between positive pairs of examples (Goldberger et al., 2005; Law et al., 2019),
so that the similarities of data pairs can be discriminated as far as possible. To this end,
loss functions in early learning algorithms punish the cases when inter-class distances
are smaller than intra-class ones (Xing et al., 2003; Bar-Hillel et al., 2003). However,
such learned metrics may not yield sufficiently large margin (i.e., the intermediate dis-
tance region for separating positive and negative pairs) to tolerate data variations in test
phase (Suarez et al., 2018), and thus hurting the model generalizability. Therefore, some
subsequent works set up a positive constant as the margin between their constrained intra-
class and inter-class distances, and those methods are commonly dubbed as contrastive
similarity loss (CSL) (Davis et al., 2007; Zadeh et al., 2016; Harandi et al., 2017). Nev-
ertheless, with the improvement of model fitting capability, the traditional CSL might be
over-fitted by trivial pairs (Oh Song et al., 2016). Accordingly, the relative similarity loss
(RSL) (Sohn, 2016; Qian et al., 2019) is proposed to directly restrict the difference between
inter-class and intra-class distances, which merely maintains a fixed margin width instead
of controlling the absolute values of distances themselves. In the past, both CSL and RSL
have shown promising results in many linear and nonlinear metric learning approaches (Ye
et al., 2019b; Yoshida et al., 2021).

Although the above methods employing margin-based loss functions have gained
increasing success, their learned metric spaces are usually boundless. In this case, the
ratio of width-fixed margin to the whole distance range (i.e., the margin-range-ratio)
would be reduced by the excessively enlarged distances (as shown in Fig. 1a). It leads to
the effect that the margin is suppressed, and thereby the actual power of margin in dis-
criminating data pair similarities is weakened (Xia et al., 2015; Sohn, 2016). A straight-
forward way to alleviate this issue is utilizing traditional regularization techniques (e.g.,
the £,-norm regularizer (Zadeh et al., 2016; Chen et al., 2019a)), which constrains the
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parameter space of the metric learning model and thus reducing the variation of the
predicted distances. However, distances with reduced variation may still yield boundless
metric space, so the regularization techniques cannot solve the problem in essence. As
an alternative strategy, recent works propose using upper-bounded functions (e.g., the
cosine function (Xia et al., 2015) or Lorentzian product (Law et al., 2019)) to measure
the difference between pairwise examples, and successfully improving the final recogni-
tion performance of learning algorithms. Nevertheless, this practice can hardly obtain
a strict metric (Xing et al., 2003; Suarez et al., 2018; Chen et al., 2019b) which well
preserves the critical topological properties of the conventional difference-norm based
metrics (e.g., the well-known triangle property of the Mahalanobis distance (Huo et al.,
2016) and the manifold-based metric (Zhu et al., 2018)). Thereby, a new metric learning
framework is desired to explicitly restrict a bounded metric space and meanwhile pre-
serve the topological property of metrics.

In this paper, we firstly provide the analytical study to understand how the boundless
metric weakens the model generalizability, and secondly, we propose a new distance
form to confine the metric space for enhancing model generalizability. To be specific,
we consider the worst case of the traditional learned metric in the test phase and derive
a probability value for incorrect distance prediction. Such a probability is monotoni-
cally increasing w.r.t. the metric space boundary, so it naturally inspires us to build a
new boundary-restricted metric (BRM) to alleviate the incorrect distance prediction.
To this end, we employ a monotonous and gradually convergent function to measure
the divergence between two examples in each projection. Then, the inter-class distance
can be confined in a bounded region, and thereby avoiding the reduction of margin-
range-ratio (see Fig. 1b). As a result, the good ability of margin in discriminating the
similarities of data pairs is well preserved. Theoretically, we prove that BRM tightens
the generalization error bound of the learning algorithm without sacrificing the model
fitting capability. We also reveal that the learned BRM preserves the topological prop-
erties of metrics, so that the model geometric soundness can be guaranteed. Intensive
experiments are conducted on toy datasets and real-world datasets in comparison with
both linear and nonlinear representative metric learning methods, and the results clearly
demonstrate the effectiveness and superiority of our approach. The proposed method is
simple and generic, and it can be easily deployed in many existing metric learning algo-
rithms. Our main contributions are summarized below:

e We provide a new analytical result, which clearly reveals the quantitative relation-
ship between the probability of incorrect distance prediction and the boundary of
metric space.

e By explicitly confining the metric space, we propose a novel boundary-restricted
metric (BRM) to enhance the generalizability of the traditional metric learning algo-
rithm, with complete theoretical analyses guaranteeing the model effectiveness.

e Experimental investigations on synthesis datasets and real-world datasets validate
the superiority of BRM to the state-of-the-art metric learning methods.

The rest of this paper starts with a brief review on the background in Sect. 2. Then,
Sect. 3 details the BRM framework based on our analyses for the boundless metric
space. Section 4 provides the theoretical guarantees on the topological property, fitting
capability, and generalizability of BRM. Section 5 shows the experimental results on
both synthetic and real-world benchmark datasets. Finally, Sect. 6 concludes our paper.
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2 Background and related work

In this section, we first introduce some necessary notations. After that, we briefly review
the main existing learning metrics and we also introduce the representative loss functions.

2.1 Notations

Throughout this paper, we write matrices and vectors as bold uppercase characters and
bold lowercase characters, respectively. Let {y,y,,...,yy} be the labels of training data
pairs X' = {(x,,X)|i = 1,2,...,N} with x,,X; € R¢, where y, = 1 if x; and ¥, are similar,
and y; = 0 otherwise. Here d is the data dimensionality, and N is the total number of data
pairs. Operators || - ||, and || - || denote the vector £,-norm (p = 1 or 2) and matrix Frobe-
nius-norm, respectively. We use the neighbourhood symbol 4(a, §) to simply represent all
real numbers in [a — 6, a + 6]. For a random event A, pr[A] denotes the probability value of
A that occurs.

2.2 Metric forms

In the metric learning task, the learnable metric forms are commonly divided into three
types: the linear metric, the manifold-based metric, and the deep neural network-based
(DNN-based) metric (Ye et al., 2019b; Chen et al., 2019b).

The Linear Metric. Originally, the learning metric is assumed as a Mahalanobis
distance \/(x —X)TM(x —X) = ||Lx — LX||,, where the data points x and ¥ are from the
d-dimensional sample space (Xing et al., 2003; Berrendero et al., 2020). Here the learn-
ing parameter M € R% is semi-positive definite (SPD) and can be equivalently decom-
posed to M = L"L with L € R™4 (r < d). Therefore, the Mahalanobis distance is also
interpreted as a projected Euclidean distance. Recent works propose to learn a projected
Manhattan distance ||Lx — LxX||, for reducing the impact from outliers (Lim et al., 2013).
Generally, the #,-norm based (Manhattan) distance has reliable robustness and the £,-norm
based (Euclidean) distance is with favorable smoothness (Huo et al., 2016; Suarez et al.,
2021). In the past, linear metric learning models have been well-studied with complete
theoretical guarantees for both generalizability (Perrot and Habrard, 2015) and topological
property (Paassen et al., 2018).

The Manifold-based Metric. As the above linear metrics might suffer from inadequate
fitting capabilities, manifold approaches were utilized to enhance the model non-linear-
ity on specific data following Riemannian manifold (Huang et al., 2018). They consider
the geodesic distance between two d-dimensional square matrix variables X and X with
a quadratic form of |M"g(X)M —MTg(;\\’)M lg, where M € R is the learning param-
eter, and the mapping g : R4 — R ig a transformation from the original space to the
manifold space. For example, when the mapping g(-) is instantiated by log(-) function, it
becomes to learn a metric on the SPD manifolds (Horev et al., 2017; Zhu et al., 2018).

The DNN-based Metric. To adaptively learn a nonlinear metric, the deep neural net-
work (DNN) is introduced to improve the fitting capability of metric learning models.
Specifically, the DNN-based metric intuitively extends the linear projection to a feature-
extracted linear projection ||[LWW(x) — LW(X)|| ,» Where the mapping W : R? - R"
(h e N,) is a feature extractor implemented by typical DNN models such as convolu-
tional neural network (CNN) (Zbontar and LeCun, 2016) and multi-layer perceptron
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(MLP) (Franklin, 2005). Some popular training tricks and novel mechanisms (e.g., self-
attention (Zhang et al., 2019a) and adversarial generation (Goodfellow et al., 2014)) are
also utilized in such a learning framework to improve the prediction accuracy. The DNN-
based metric learning has been successfully applied in some challenging recognition tasks,
especially showing promising results on some image related benchmarks (Lu et al., 2019;
Yan et al., 2022).

A Unified Form. Without loss of generality, for the learning parameters in the
above three types of distance metrics, we can define a general vector-valued function
@ : R? - R" which consists of 4 real-valued functions. Specifically, the mapping result

Px) = [@,(%), (%), ..., @,(x)]" and the real-valued function @, : R? - R is continuous
fori =1,2,...,h. Then the main existing distance metrics listed above could be briefly
unified as the following generic ¢ ,-norm based formulation 12
| h 1/p
d,(x,%) = <z D loix) - (p,@)lp) : e))
i=1

where p = 1 or 2 for common cases, and the general vector-valued function ¢ is learned
from given loss functions. Here the non-negative distance dq,(x,f) is usually boundless, as
the £ -norm can be arbitrarily enlarged with the increasing divergence between @(x) and
@(%). In this paper, we focus on such a unified distance metric [i.e., Eq. (1)] and explore the
corresponding issue incurred by its boundless distance form.

2.3 Loss functions

To explicitly learn the metric parameter by the way of empirical risk minimization
(ERM) (Alpaydin, 2020; Kwon et al., 2020), there are mainly two categories of margin-
based loss functions which are usually dubbed as contrastive similarity loss (Davis et al.,
2007; Xu et al., 2019) and relative similarity loss (Oh Song et al., 2016), respectively.

Contrastive Similarity Loss (CSL). For a parameterized distance metric d, in Eq. (1),
CSL aims to build evaluation functions f:(-) and 7 () for positive and negative pairs,
respectively. The function values will increase when the intra-class distance is greater than
u or the inter-class distance is smaller than v. Then the corresponding empirical risk on the
training dataset X’ with N data pairs has a form

N
1 ~ _ ~
Llp)=~ Z} Vil (e, B) + (1 = y)E7 (dy(x,, 8, @)

where the threshold parameters v > u > 0 are pre-set. Here the positive value v — u plays
the role of margin, which guarantees a margin space for discriminating the similarities of
positive and negative pairs. In the past, a considerable number of metric learning models
were learned with the above CSL and achieved promising results by different implementa-
tions of £*(-) and £ (-) (Xie et al., 2018; Law et al., 2019).

Relative Similarity Loss (RSL). For many nonlinear metrics, CSL would incur over-
fitting due to the high complexity of model nonlinearity, so it cannot always obtain a gener-

! Here h adaptively scales the oversized measurement of very high-dimensional projected features.
2 To include the manifold-based metric, we let px) = @(vec(X)) =d - vec(MTg(X)M) € R?.
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alizable metric for the test phase (Chu et al., 2020). In this case, RSL is proposed to explore
the relative similarity between positive pair (xi,x;r) and negative pair (x;,x;) in the triplet
set T= {(xi,x;’,xi‘)|(xi,x;’), (x,x7) € X, wherey(x,xf) = 1,y(xix;) =0,andi=1,...,T}.
For this triplet set, the corresponding relative similarities are penalized by the following
empirical risk

T
L(@) = % Y A(max(d, (. x}) — d,(x,,x7) + 7.0)), 3)
i=1

where 7 = v —u > 0 is a (relative) margin between positive and negative pairs, and z,;(-) is
implemented by a monotonically increasing function. With such relative similarities, non-
linear metric learning models could successfully benefit from the more plentiful supervi-
sion compared with the contrastive similarities. Nevertheless, the slow convergence of loss
functions might be incurred by the dramatic increase from the pair number N to the triplet
number T. Accordingly, recent works proposed various triplet and tuplet sampling tech-
niques (Qian et al., 2019; Sohn, 2016) to improve the convergence speed of RSL and have
shown promising results on DNN based metric learning approaches.

Considering that the above two loss functions have been widely employed by existing
metric learning methods, in this paper, we investigate the effectiveness of our proposed
BRM in such two cases.

3 Methodology

In this section, we first theoretically analyze the probability of incorrect distance prediction
for the traditional boundless metric. After that, a novel boundary-restricted metric (BRM)
is proposed to adaptively restrict the metric space. The learning objective and the corre-
sponding optimization algorithm are finally designed with convergence guarantee.

3.1 False positives on test data

Suppose that the metric parameter [i.e., the h-dimensional mapping @ in Eq. (1)] is
searched from the hypothesis space H. When the loss function in Eq. (2) or Eq. (3) is
employed to learn the metric, @ is expected to be contained in an optimized hypothesis
set H' = (@ € Hld,(a,&) > v>u>dy(p. ). ¥(ar,& € X and(B, f) € X}, where the
negative pair set X~ and positive pair set X" satisfy X~ U X* = X. Here the hypothesis set
H:; C H might contain more than one optimal hypothesis element, because the inter-class
distance d,,(a, @) can freely vary in the range of (v, +0). Therefore, we denote the metric
relationship between b(H})) and the generalizability of ¢ learned from 7.

Firstly, here we choose the widely-used triplet loss to empirical reveal the issue of bound-
less metric space. We employ the triplet loss to learn the distance metric on CAR-196 data-
set (Oh Song et al., 2016), and visualize the two distance distribution results in Fig. 2 by
respectively setting the margin parameter of loss function [namely 7 in Eq. (3)] to 1 and 3.
We can find that the maximal distance (i.e., the metric space boundary b(H’:)) is amplified
when increasing the margin value from 1 to 3. It means that the conventional method can
hardly improve the margin-range-ratio by merely setting a large margin parameter in the loss

@ Springer



Machine Learning

(a). Distance Histogram (Margin = 1) (b). Distance Histogram (Margin = 3)
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Fig.2 Distance histograms learned by triplet (relative similarity) loss on CAR-196 dataset. We set the mar-
gin parameter [i.e., the parameter 7 in Eq. (3)] as 1 and 3, respectively, and record the learned pairwise
distances to plot the histograms

function. This is because the learning algorithm may prefer to enlarge all negative pairs of
distances for obtain a large margin between intra-class and inter-class distances. In this case,
simply setting a larger margin parameter cannot always achieve better generalizability, and this
phenomenon is also observed in some existing works (Zhang et al., 2019b; Yu and Tao, 2019).

For further theoretically evaluating the model generalizability, it is well known that the
generalization error bound (GEB) (Ye et al., 2019a) measures the bias between the empiri-
cal risk and generalization risk for a machine learning model. However, most existing GEB
results (Chen et al., 2019b; Luo et al., 2019) mainly focus on the convergence behavior of
the error bound that is related to the sample size. They cannot take into account the impact
from boundary b(H:), so here we would like to conduct a new analytical study to connect
the model generalizability with the boundary of a metric space. Since most existing metric
learning algorithms (Harandi et al., 2017; Xie et al., 2018) are designed to seek for orthogonal
projections, we can assume that the /4 projections are independent to each other. Specifically,
as the orthogonal constraint is usually carried on the fully-connected layer of the (non-lin-
ear) neural network model or the whole projection matrix of the linear model. Without loss
of generality, we can formulate the feature embedding @(x) € R” as ¢(x) = L(¢p(x)), where
L= [LT,L;, ,LZ]T € R"™ is with h orthogonal rows and ¢(x) € R” is the feature map-
ping ahead of the fully-connected layer. Then we have that

cov[g;(x), p;(x)]

= El(p;(x) — 9)(@;(x) — ;)]

= El,() - ¢,(0)] - %,9;

= E[(L;¢px)) - (L;p(x))] — E[(L;p(x)E[(L;p(x))] @

= E[tr(¢) LT L($@))] - LE®)]) - LE[S)])

= E[ILL] )($x)  $p(x))] — (E[pe)])T(LLN(E[px)])

=0,
which implies that ,(x) and @;(x) are statistically uncorrelated under the orthogonal con-
straints. Here we also provide experimental results to further validate the reasonability of

this assumption. We select two representative metric learning methods GMML (Zadeh
et al., 2016) and SoftTriple (Qian et al., 2019) to visualize the covariance between each
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(a). Covariance of GMML

(b). Covariance of SoftTriple
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Fig.3 Visualization for the covariance matrices of the learned feature embedding

two features ¢,(x) and ®;(x). Here GMML is learned on the PubFig dataset and SoftTriple
is learned on the CAR-196 dataset. We set the embedding size & = 32 for both the lin-
ear method (i.e., GMML) and deep method (i.e., SoftTriple). As shown in Fig. 3, we can
observe that the diagonal elements (i.e., @,(x)" @;(x)) of the covariance matrices are signifi-
cantly larger than the other elements (i.e., @;(x)" @;(x) for i # j), and non-diagonal elements
are very close to zero. This clearly demonstrates that each two features @;(x) and @,(x) are
statistically uncorrelated.

As each projection would have its own characteristic, projection results are not iden-
tically distributed necessarily. It means that ¢,(x), @,(x), ..., @,(x) should be independ-
ent non-identically distributed (i.n.i.d.) random variables (Ralaivola et al., 2010). Then,
we investigate the distribution of distance dq,(x,)?) in the non-negative real space. As the
boundless metric space is incurred by negative pairs, here we consider to investigate the
incorrectly predicted negative pairs affected by the boundary b(H). Specifically, we con-
sider the distribution of distance dq,(x,f) in the non-negative real space. Specifically, by
invoking Lindeberg central limit theorem (CLT) (Vershynin, 2018) on dq,(x,)?), we can eas-
ily have the following assertion in the high-dimensional feature space (i.e., a sufficiently
large h)

2L (00 - 0®1 - 1)

h—o h o

21 O;

~ MO, 1), (5)

where p; € [y, puy] and o, € [0, 0,/] are the expectation and variance of |@;(x) — @,(X)|?,
respectively. Here p;; > py; > 0 and o, > 6, > 0 ensure the finite expectation/variance.
Note that the condition of 7 — oo can be easily satisfied in practical use. This is because
the CLT merely needs the dimensionality 4 to be larger than 30 (Montgomery and Runger,
2010) to take effect, while % is usually set to 128 or 512 in metric learning tasks (Huo
et al., 2016; Ye et al., 2019b). The above Eq. (5) reveals that the standardized learning
distance approximately obeys the standard normal distribution in the high-dimensional
feature space, and thus offering us a effective way to calculate the probability of incor-
rect prediction result. As the boundless metric space is incurred by negative pairs, here we
investigate the incorrectly predicted negative pairs (i.e., the false positive result dq,(z,?) <u
for the negative test pair (z,7)) affected by the boundary b(H:f). To be more rigorous, the
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corresponding upper bound of the expected false positive rate (FPR) on the test data is
described below.

Theorem 1 (Upper Bound of FPR) Assume that the h-dimensional feature mapping
@ € H, [i.e., the metric parameter in Eq. (1)] is learned from the training data X~ U Xt
with N data pairs. Then for a given 6 € (0, min(1,v’ — u”)) and sufficiently large integers N
and h, it holds that with probability at least 1 — 6

R
sup {prld, (z,2) <u|} €A —/ e "/2dt, 6 |, 6
AL NN ©

where the real-valued function y/[b(H‘v‘)] = \/;l(l +20077 —u)/ (VP — bP(H'V‘))) is strictly
monotonically increasing , and the real value b(H.) is the boundary of the hypothesis set
H:. Here the (random) test pair (z,2) obeys the same distribution with the training pairs in
X

The proof of Theorem 1 is given in the Appendix. From the upper bound result in
the above Eq. (6), we can clearly observe that (1/4/27) /_t/;Lb<H3)l e~"'/2dr is consistently
enlarged with the increase of the boundary value h(H!). This growing integral value is
a good approximation (with an arbitrary small §) to the probability of incorrect distance
prediction. However, for most existing metric learning models, the distance metric for-
mulated as Eq. (1) does not have an explicitly finite boundary to prevent the increase
of the probability in Eq. (6). Therefore, in Sect. 3.2, we propose a boundary-restricted
metric to suppress b(H‘V‘), so that we can guarantee a limited integral fractile w[b(Htf)]
in Theorem 1. Then the expected FPR could be controllable during the test phase of the
learning algorithm.

3.2 Boundary-restricted metric

As we discussed in the previous subsection, the boundless metric space potentially hurts
the model generalizability. Consequently, the traditional distance metric in Eq. (1) may
not deliver accurate prediction results in some difficult cases. Now we consider to make
a straightforward modification on its original metric form.

Actually, the boundless metric space of Eq. (1) results from the #,-norm computation
on |@;(x) — ¢;(X)|. We naturally restrict the difference value |@,(x) — @,(X)| by a specific
function instead of the original £,-norm in each projected direction. To be more spe-
cific, we employ a smooth and monotonically increasing function R(-) to restrict the
divergence |@;(x) — @;(x)| for i = 1,2, ..., h. Based on the unified form in Eq. (1), we
propose the following new boundary-restricted metric (BRM).

Definition 1 For a smooth and monotonically increasing function R : [0, +o00) — [0, B]
and an h-dimensional mapping ¢ : R? — R”, our BRM is defined as

h 1/p
D, (x,%) = (% Y [R(1pitx) - (pi(fn)]”) : ™)
i=1
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Predicted Distance

High-Dimensional Feature: () High-Dimensional Feature: @ ()

Fig.4 The overall framework of our proposed BRM (i.e., D, in Definition 1). For two given examples x
and X, we employ a bounded and monotonically increasing restriction function R to measure their diver-
gence on each projected direction (i.e., |@;(x) — @;(X)]). Then, the accumulated results are summed up as the
final predicted distance

where the mapping @(x) = [@,(*), @,(X),...,@,(x)]T and the data points x,X € R4,
Here the constant B > 0 is the upper bound of the restriction function R(:) in the domain
[0, +0).

Figure 4 offers an intuitive visualization for the above Definition 1. It is notable that the
restriction function R(-) plays a critical role in suppressing the distance result within a con-
trollable region. Specifically, as we assumed that the restriction function R(-) is monotoni-
cally increasing in the codomain [0, B], this restriction function will necessarily converge
to a definite value which is not larger than B. As shown in Fig. 5, such a gradually con-
vergent function adjusts the excessively large inter-class distances in a constrained region,
which is comparable with the intra-class distances. Thereby, it successfully ensures a rela-
tively large margin-range-ratio in the whole metric space.

Bounded FPR. Now we further investigate the expected FPR value of the proposed
BRM (i.e., D(p(-, -)). Specifically, according to our derived Theorem 1, it follows that for a
given 6 € (0, min(1, v — u)) and sufficiently large integers N and &, with probability at least
1 — 6 we have

B
sup {pr[D¢(z,2) < u]} e4a L/ e 2415 |, 8)
@EH, \/2; —o0
where the constant f = \/ﬁ(l +2(v" — u”)/ (v’ — B)) does not depend on the variation of
training data any more. Here the test pair (z,Z) obeys the same distribution with negative
training pairs. From the above Eq. (8), we can clearly observe that the expected FPR of
BRM is bounded by a constant f, so that the probability supremum the of incorrect predic-
tion can be well controlled.

Finally, we want to briefly discuss about the instantiation of the restriction func-
tion R(-). As stated in Definition 1, the smooth and monotonically increasing function
R : [0,400) — [0, B] does not have any other specific constraints. Interestingly, many acti-
vation functions (as listed in Table 1) in neural networks can be directly employed as the
restriction function R(-). That is to say, we can also regard the calculation of BRM as a
feedforward layer of neural network (see Fig. 4). Correspondingly, in our experiments, the
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Table 1 Representative activation functions defined in (—oo, +00) that could be served as the restriction
function R(-) in our proposed BRM

Function Expression Codomain
Soft-Sign (Glorot and Bengio, 2010) R =t/(1+|t]) -1,

Sigmoid (Cybenko, 1989) R =2/1+e") -1 -L1)

ArcTan (Weisstein, 2002) R(t) = tan~ (1) (—7/2,7/2)
TanH (Alpaydin, 2020) RE)= (" —e")/(e"+e™) -1LD

ISRU (Carlile et al., 2017) R@) = ,/m (0> 0) (_1/\/5’ 1/@)

Note here we only need the positive domain and codomain

Negative {

Margin Restriction Function R (-)

Positive

Difference between @,(z) and ¢,(Z)

Fig.5 A visualization of the restriction function R(-). For the consistently increased divergence between
a pair of examples, we utilize a bounded and monotonically increasing function to restrict the excessively
large divergence. After that, the boundless distance metric space (in horizontal) can be well adjusted in a
finite region (in vertical)

effectiveness of BRM is also validated in an end-to-end neural network architecture. It is
worth pointing out that there is no additional learning parameter introduced into the model.
Therefore, our proposed BRM maintains the computational complexity of the traditional
learning algorithm, which is also discussed in the next subsection.

3.3 Model setup and optimization

This subsection depicts the learning objective and the corresponding optimization algorithm
for our proposed BRM. As we discussed in Sect. 2.3, the optimization model of metric learn-
ing is usually based on the minimization of the empirical loss (Geng and Chen, 2018; Bian
and Tao, 2012). For our proposed BRM, we follow this common practice and also minimize
an empirical loss to learn the parameter @ of the distance function D, (-, -).

Without loss of generality, we denote that the function #(D ,(x;, X;);y;) evaluates the incon-
sistency between the predicted distance D, (x;,X,), where the label y; is the similarity (posi-
tive/negative) between x; and X,. By further leveraging the regularizer to reduce over-fitting,
the learning objective of BRM can be formulated as

N
. 1 ~
min § Fg) = ; £(Dy(x;,2)iy) + A2(@) ¢, )

where the regularization parameter A > 0 is tuned to balance the fitting accuracy and
the complexity of hypothesis space. The second term €2(¢@) can be implemented by
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commonly-used regularization techniques such as the £,-norm regularizer (Huo et al.,
2016). Due to the high sample complexity of metric learning, the number N is usually very
large, so we utilize the stochastic gradient descent (SGD) method to solve Eq. (9) which
picks up a mini-batch in each iteration. Specifically, in the (z + 1)-th iteration, we conduct
an update

K
1
Pt 1= @O _ ”(E Z Vol + AVq,.Q), (10)
i=1

where K is the batch size and n > 0 is the step size of each iteration (i.e., the learning
rate). Here £, =7 (D,p(xk[,fc\kl_);yk[) is the i-th element function in one single mini-batch
(k;=1,2,...,N for i=1,2,...,K). Based on the above discussion, we summarize the
main iteration steps solving Eq. (9) in Algorithm 1.

Gradient Analysis. We denote that 157(Dp¢(x,55)) = £(D,(x,X);y 3)) for simplicity. Then
the gradient of loss function can be calculated as

of (D" (x,%))/ 0,
= p/h- [dZ(DY,(x,9)/dD) (x,D)] - |,(x) — ;@)1

: Sign((p,-(x) - (p,-(f))[d((p,«(x) - (p,«(f))/d(p,«]
[dR(l@;(0) = @,(X)])/dl@;(x) = @,()]],

and we can observe that the restriction function R(-) will incur an additional term
dR(|@;x) — @,®)])/d|@;(x) — ¢;(X)] to the original gradient of conventional metric learn-
ing objective. As R(-) is assumed to be monotonically increasing and gradually convergent,
such an additional term dR(|@;(x) — @;®)|)/d|@;(x) — @;(X)| can be regarded as a scale
variable. Specifically, with the increasing of |@;(x) — @,(X)|, the function R(|@;(x) — @,(X)|)
converges to an upper bound so that the derivative dR(|@;(x) — @,(X)])/d|@;x) — @;(X)|
gradually converges to 0. Then the gradient 0157(17’;(&55)) /0@, is rescaled and converges
to 0 to prevent the update of learning parameters, and thus avoiding the extremely large
distance determination. From the above dependency relationship between the gradient and
restriction function, we can also find that introducing the restriction function R(:) effec-
tively overcomes the boundless problem in conventional metric learning algorithms.
Algorithm Convergence. Existing convergence analysis of SGD (Reddi et al., 2016)
usually focuses on a given optimization objective composed of a series of Lipschitz-contin-
uous functions °. Here we would like to discuss the Lipschitz-continuity of our final learn-
ing objective F(@) = % Zf\il 4 (D(I,(xi,fi);yi) + A€Q2(@) in detail. Specifically, it has already
been well proved that our employed hingle loss #(-) and £,-norm regularizer (-) are Lip-
schitz continuous (Kar et al., 2014; Li et al., 2019), respectively. Meanwhile, the Lipschitz-
continuity of CNN (namely the feature embedding ¢(x) in our manuscript) is also validated
by showing its corresponding Lipschitz constant (Fazlyab et al., 2019), ie.,
lex,) — @), < Lyllo — @], for any i = 1,2, ..., N. Furthermore, we can observe that
all restriction functions implemented in our experiments (e.g., the Sigmoid function) are

Y

3 A differentiable function f(a) defined on the domain C is Lipschitz-continuous if and only if there exists
L > 0 such that |f(a) — f(b)| < L|la — b||, for any a,b € C.
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gradient-bounded, SO there exists Lp >0 such that
|R(2) — R(t,)| = |t; — 1] - IR'(€)| < Lyt, — 1, Next, we consider the Lipschitz-continu-
1

1/p
ity of the function w(t) = <;Zi’:1 [R(%)]" ) by showing its bounded gradient.

Specifically,
dw(t a-p)/p 1,
20— (s REE) T a/mpRE)R (1)
< BRI (1) /h
< B Lg/h,

(12)

where B >0 is the upper bound of the restriction function. Therefore, we
have that [[Vo@)|, < B " 'Ly/ Vh < BU-P’L,  and thus we have
lo(t) — @] = |t =D Vot + EF—1)| < BVP Lyt =7, Based on the Lip-
schitz constants (L,, L;, L,, and Lp) of ¢(:), £(-), £(-), and R(-), we can obtain
that our learning objective F(@) is always Lipschitz continuous such that
| F(@) — F@)| < QLyL,B~""P’ Ly, + AL,)|l@ — @||, for any two different @ and @ (the
detailed calculations are given in the Appendix). Therefore, F is Lipschitz continuous and
the iterations of Algorithm 1 can converge to a stationary point according to the conver-
gence property of SGD. To be more specific, for the iteration sequence @, @, ..., @™
iterated with a specific learning rate n, we have that

min E[|VA@)I’] < 7V 2L(FH D) - Fo")/T. (13)

where 7, L > 0 are the upper bound and Lipschitz constant of JF(:), respectively. From the
above Eq. (13), we know that the gradient gradually approaches to zero with the increase
of the iteration number 7. The iteration algorithm converges to a stationary point of the

learning objective F with a convergence rate O(1/ ﬁ ).

Algorithm 1 Boundary-Restricted Metric Learning via SGD.

Input: Training data pairs X = {(x;, &;)|j = 1,2,..., N}; labels {yj}é»v:l; batch
size K; learning rate ) > 0; regularization parameter A > 0.

Initialize: ¢ = 1; randomize (1),

Repeat:

1). Uniformly randomly pick K data pairs {(xy,, Zx,)|j = 1,2,..., K} from the
training set X’;
2). Update the learning parameter ¢ by

1 K

3). Update t :=t + 1;

Until Converge.
Output: The converged ™.
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Computational Complexity It is easy to find that the main time consumption in Algo-
rithm 1 is the calculation of K gradients. For each gradient V ,& K AV, £, both two terms
V¢, and V€ have the complexity of O(dh) because @ is a projection from d-dimensional
space to h-dimensional space. Therefore, the total computational complexity of each itera-
tion is O(Kdh), where K, d, h are the batch-size, the dimensionality of sample space, and
the dimensionality of feature space, respectively. Such a computational complexity is the
same as most existing metric learning algorithms (Sohn, 2016; Chen et al., 2019b).

4 Theoretical analyses

This section provides further in-depth theoretical analyses for our proposed BRM. In detail,
we first consider the geometric property of BRM based on the topological definition of a
distance metric. After that, we demonstrate the fitting and generalization capabilities of
the BRM based learning model. Overall, BRM could make a good balance between fitting
and generalization (i.e., the bias-variance tradeoff), and thus successfully guaranteeing the
effectiveness of our method. All proofs of theorems are given in the Appendix.

4.1 Topological property preservation

It is well-known that the concept of metric is originally constructed in the topology com-
munity (Kelley, 2017), where a topological metric * is defined as the distance function sat-
isfying the non-negativity, symmetry, triangle, and coincidence properties. As an extended
metric, the pseudo-metric merely has the first three properties as revealed in (Paassen et al.,
2018; Ting et al., 2019).

The topological definition of metric intrinsically guarantees the geometric soundness
of a distance function. Further speaking, in metric learning algorithms, a well-defined
learning metric with geometric soundness could reasonably measure the distances between
pairwise examples of real-world data (Yang et al., 2013). Therefore, here we want to dem-
onstrate that our proposed BRM well preserves the topological property by the following
Theorem 2, and thereby naturally guaranteeing a strict metric space.

Theorem 2 For any feature mapping @ learned from H and the corresponding distance
function D¢(~, -) defined in Eq. (7), we have that: I). Dq,(-, -) is a pseudo-metric if the deriv-
ative of the restriction function R is monotonically decreasing; II). D (-, ") is a metric if
and only if D, (-, ) is a pseudo-metric with an invertible learned mapping ¢.

Note that the condition of monotone derivative can be easily satisfied (e.g., all functions
listed in Table 1). The above theoretical result reveals that our learned BRM is always a
topological pseudo-metric no matter how the training data and learning objective change.
This conclusion is completely consistent with the traditional linear and nonlinear metric
learning (Suarez et al., 2018). Furthermore, we can find that the 4th topological property
(i.e., coincidence property) could also be satisfied when the mapping ¢ is invertible. This

4 The distance function D(,) is a metric if and only if it satisfies the four conditions Ve, a,, a3 € R%:
(I). Non-negativity: D(a;,a,)>0; ). Symmetry: D(a,,a,)=D(a,,ca;); (). Triangle:
D(a,,a,) + D(a,, a3) > D(a;, a3); (IV). Coincidence: D(a, ;) =0 & a; = a,.
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coincidence property of our BRM is also consistent with the traditional metric. It means
that such a property is inherited from the traditional metric and is well preserved in our
BRM.

As we already theoretically proved the topological property preservation of BRM, here
we would like to further provide some intuitive understandings on how our proposed BRM
preserves those topological properties of the original Euclidean distance. Simply speak-
ing, this result mainly benefits from the monotonicity and boundedness of the restriction
function R. Although we use an upper-bounded function to explicitly constrain the diver-
gence between the feature embeddings ¢(x) and @(¥) on each element (i.e., |@;(x) — @,(X)|
fori=1,2,...,h), the restricted result R(|@,(x) — @,(X)|) is still monotonically increasing
w.r.t. the divergence |@;(x) — @;(¥)|. It means that the size relationship of divergence can be
completely preserved after the distance calculation of R(|@,(x) — @,(X)|), so that the key
topological properties that mainly depend on the size relationship of distance can also be
satisfied in our new BRM metric.

The topological properties of metrics ensure the theoretical soundness of metric learning
algorithms and are essentially important for properly predicting distances. For example, the
distance from x to X and the distance from ¥ to x should be the same value in most cases, or
switching the order of distance calculations will lead to (unreasonable) different classification
results. Therefore, the symmetry property is necessary for a distance metric. Meanwhile, the
non-negativity property ensures that the sum of multiple distances will not be a smaller value
which may lead to contradictory results in the loss evaluation. Furthermore, we suppose that
examples x; and x, are from the same class, and the example x; is from another class. As
the metric learning algorithm is designed to repel negative pairs of examples, the distances
d(x,x;) and d(x,,x;) are expected to be as large as possible. However, when the distance
function d(-, -) loses its triangle property, it may lead to that d(x,x,) > d(x,x3) + d(x,,x3),
which unreasonably enlarges the intra-class distance d(x,,x,), and this is against the purpose
of reducing distances between positive pairs of examples.

4.2 Fitting capability guarantee

In this subsection, we investigate the fitting capability of our proposed BRM. Intuitively, as
we mentioned that BRM restricts the learning metric space, the model fitting ability seems
to be weakened by the restriction function. Here we prove that although the metric space is
restricted, it is still capable of distinguishing the data pair similarities and thereby render-
ing an accurate fitting result.

We suppose that the traditional metric d,(-, -) learned from the hypothesis space H [the
¢ ,norm based form in Eq. (1)] is able to fit a given dataset. Then we investigate whether
there exists the new learning parameter @ such that Dy (-, -) is still capable of distinguishing
the data pair similarities correctly. We have the following Theorem 3 revealing the dis-
criminability of BRM on the dataset ¥ = X* u A~

Theorem 3 Assume that the original metric d,(-,-) with a learned @ € H satisfies
that d,(x~,X") 2 v>u> d¢(x+,5c\+) for any (x~, ) e X, &, ) e X", and given
v>u>0.IfR'(0) # 0, then there exists v > 1 > 0, and §(-) = c@(-) such that

— A ~ ~ A+
Dy(x™,X7) 2V >u>Dy(xt,x7), (14)
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where the data pairs (x=,X ) € X~ and (x+,5c\+) € X*. Here c € R, is the rescaling
parameter.

From the above Eq. (14), we can observe an interesting phenomenon that the learn-
ing parameter @ can be rescaled to the new learning parameter of BRM, and the obtained
metric still predicts the pairwise similarities correctly on the training data. Such an impor-
tant result implies that BRM does not essentially sacrifice the intrinsic fitting capability of
learning parameters, even though the metric space is restricted.

4.3 Generalization error bound

In Sect. 3.1 and Sect. 3.2, we have already demonstrated that the expected prediction accu-
racy can be hurt by the increased boundary of metric space [i.e., the FPR values in Egs. (6)
and (8)]. Now we further investigate the bias between the empirical risk and expected (gener-
alization) risk w.r.t. a given loss function. Such a bias could quantitatively evaluate the model
generalizability when the metric model is learned with a specific empirical loss function.

As we know that the generalization error bound (GEB) usually has a convergence rate
of (’)(1/\/]TJ) for an ERM model, where N is the sample size (Ye et al., 2019a; Luo et al.,
2019). Here we are not going to offer a faster convergence rate w.r.t. the sample size, but
showing a tightened GEB result benefited from the bounded metric space for validating the
effectiveness of BRM. Specifically, for the underlying data distribution P, we denote the
expected risk Z((p) =Eyz)pl? (D,p(x,f);y(x 2] and discuss how far it is from the empiri-

cal risk L(p) = % Zfil 4 (D(p(xi,fi);y,). The corresponding result is described as follow.

Theorem 4 For any @ learned within the hypothesis space H and any 6 € (0, 1), we have
that with probability 1 — 6

|L(@) — L(@)| < 0(B)V/[In(2/6)]/2N). s)

where 0(B) = max(£((1 — ¢;)B;1),£(—cyB;0)) is monotonically increasing. Here
0 < ¢y < ¢ < 1 determines thresholds c,B and cyB for positive pairs and negative pairs,
respectively.

From the above GEB result in Eq. (15), it is easy to observe that the error bound is dom-
inated by two main aspects. Firstly, the error bound gradually decreases with the increase
of the sampling number N, and this is consistent with the traditional GEB result. More
importantly, we can also find that such an error bound becomes tight when the boundary
B is decreased, and thereby the bounded metric space would assist the expected risk in
converging to the empirical risk. Therefore, Theorem 4 clearly demonstrates the usefulness
of metric space restriction for improving the model generalizability during the test phase.

5 Experimental results

In this section, we show experimental results on both synthetic and real-world datasets
to validate the effectiveness of BRM. In detail, we first give visualization results and
ablation studies on synthetic data to demonstrate the usefulness of BRM. After that, we
compare our proposed learning algorithm with existing state-of-the-art linear models on
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(a). Visualization Result of Traditional Metric (b). Visualization Result of BM (Ours)

[ Correct [ Correct
I ncorrect I ncorrect

Positive Negative IPositiv‘e Negative
(c). Distance Histogram of Traditional Metric (d). Distance Histogram of BRM (Ours)

Fig.6 Visualized learning results [(a) and (b)] and the corresponding predicted distance histograms [(c)
and (d)] of the traditional method (ITML) and our proposed BRM. Two methods share the same learning
objective and learning parameters (i.e., the projection matrix P)

classification and verification tasks. Next, we further implement our BRM in an end-to-
end neural network and also compare it with representative DNN based metric learning
approaches. Finally, we investigate the robustness of our proposed method on noisy (cor-
rupted) datasets. We adopt Sigmoid as the restriction function of BRM and fix the p value
in Definition 1 to 2 in our experiments. Here we did not use additional loss functions for
our BRM, and our proposed new metric is directly integrated into the existing contrastive
similarity loss, relative similarity loss, or Npairs loss for implementations, so we do not
need to tune the weights of different loss functions.

It is worth pointing out that the original distance in Eq. (1) parameterized by the learned
embedding @ is not necessarily bounded, so we still need to calculate the function R in the
test phase to obtain explicitly bounded distances. However, the computational complexity
of distance in Eq. (7) is independent of the sample size, so its complexity can be regarded
as O(1). Therefore, such a distance calculation will not affect the efficiency of metric learn-
ing during both the training phase and the test phase.

5.1 Experiments on synthetic data

We first construct 4 classes of data points in 10-dimensional space. Each class contains 500
data points sampled from the 10-dimensional normal distribution with a diagonal covar-
iance matrix. On such a synthetic dataset composed of 4 X 500 data points, we employ
the classical information theory metric learning ITML) (Davis et al., 2007; Suérez et al.,
2020) as a baseline method to validate the effectiveness of BRM. Specifically, ITML
learns a traditional £,-norm based metric ||Px — Px||% (P € R**!) to measure the distance
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Table 2 Training/test error rates
(%, mean =+ std, 20 random
trials) of the baseline method ) p=1 691+328/9.78+638 9.98+2.98/9.11+7.11 _
and our method on the synthetic

datasets p=2 112+0.12/425+2.33 132+1.02/2.31+1.14 \/

p=4 021%002/334+142 0.12+0.07/1.56 + 0.96 \/

Setting Traditional metric Boundary-restricted metric  #-test

Bold indicates the best test results

between x and X, while our method learns the metric %2?:1[R(|(Px)i — (PX),])]* with
h = 2 for visualizing the projection results in 2D space. Both methods employ the squared
hinge loss for model training with same hyper-parameter settings. Here 60% of all data is
randomly selected for training, and the rest is used for test.

Visualization. As shown in Fig. 6, four classes of points can be separated by both two
methods in their training phases. However, the inter-class distances predicted by the tradi-
tional method are imbalanced in Fig. 6a, e.g., the distance between Class-2 and Class-4 is
significantly smaller than the one between Class-3 and Class-4. In this case, such a small
margin between Class-2 and Class-4 is almost negligible and its discriminability would be
weakened in the test phase. As a result, the data points belonging to Class-2 and Class-4
are potentially treated as a single class, and thus incurring incorrect predictions (i.e., small
inter-class distances and large intra-class distances) in Fig. 6¢. In comparison, our method
obtains a more balanced separation, and all inter-class distances are comparable in Fig. 6b.
Accordingly, its distance histogram in the test phase is more accurate than ITML, as shown
in Fig. 6d.

Ablation Study. We adopt the k-NN classifier (k = 5) based on the learned metrics to
further investigate the classification accuracy of the baseline method and our method over
20 random trials. Here the distances between the centers of every two classes in original
10-dimensional space are set to p. As shown in Table 2, two methods obtain comparable
training accuracy. By integrating BRM into the objective of traditional metric learning,
the classification performance can be effectively enhanced. We also perform the #-test at
significance level 0.05 in the last column. It clearly demonstrates that the introduction of
BRM could significantly improve the classification accuracy of the traditional metric learn-
ing algorithm.

5.2 Classification and verification experiments

In this subsection, we compare our proposed BRM with existing linear metric learn-
ing methods on both classification and verification tasks. The compared methods are
LMNN (Weinberger et al., 2006), ITML (Davis et al., 2007), GMML (Zadeh et al., 2016),
CERML (Huang et al., 2018), ODML (Xie et al., 2018), and UM2L (Ye et al., 2019b). For a
fair comparison, BRM is also implemented by a linear feature mapping in this subsection.
Furthermore, both the contrastive similarity loss and relative similarity loss [i.e., Egs. (2)
and (3)] are introduced as the learning objectives. The corresponding distance metrics
learned from such two loss functions are denoted as BRM-C and BRM-R, respectively.
Classification. For the classification task, we adopt the k-NN classifier (k = 5) based
on the learned metrics to investigate the classification error rates of various methods.
The datasets are from the well-known UCI machine learning repository (Asuncion and
Newman, 2007), including Vowel, Vehicle, MNIST, German, Australia, Pima, Segment,
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(a). Example images from “Statue of Liberty”

R8T MZ

(b). Example images from “Notre Dame”
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(c). Example images from “Half Dome in Yosemite”

Fig.7 Example images from MVS dataset with 3 different scenarios

USPS, Isolet, and Letters. The sample size, data dimensionality, and class number of
each dataset are shown in the first column of Table 3. We compare all methods over 20
random trials. In each trial, 80% of examples are randomly selected as the training exam-
ples, and the rest is used for testing. By following the experimental settings in (Zadeh
et al., 2016), the training pairs are generated by randomly picking up 1000C(C — 1) pairs
among the training examples, where C is the number of classes. Based on the &-NN
prediction results of all compared methods, the average classification error rates of all
compared methods are shown in Table 3. We can find that our method outperforms most
of the compared methods on the ten datasets. We further analyze the accuracy improve-
ments from the statistical perspective. Specifically, we perform the ¢-test (significance
level 0.05) to validate the superiority of our method to all baseline methods on each
dataset. From the #-test results (Win/Tie/Loss), we can clearly observe that our method
obtains significant improvements on most datasets, which demonstrates the effective-
ness of our proposed BRM.

Verification. We evaluate the capabilities of all compared methods on the verifica-
tion task. For each method, the learned metric is used to calculate the distance value
between two test examples, and then we obtain the verification results based on some
distance thresholds. Our experiments are performed on the following two datasets:

e The PubFig dataset includes 2 x 10* pairs of face images belonging to 140 peo-
ple (Huo et al., 2016), where the first 80% pairs are selected for training and the rest
is used for test.

e The MVS dataset (Brown et al., 2010) consists of 3 x 10* grayscale patches sampled
from 3D reconstructions of the Statue of Liberty, Notre Dame, and Half Dome in
Yosemite, which are shown in Fig. 7. We randomly sample 10° pairs of patches to
form the training set and 10* pairs to form the test set.

For all compared methods, we use the high-level relative attribute descriptor (Biswas

and Parikh, 2013) to extract the image features of PubFig face data, and employ the
fully connected layer features of Siamese-CNN (Zagoruyko and Komodakis, 2015) for
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Fig.8 ROC curves of all compared methods on the 2 verification datasets. The corresponding AUC values
are presented in the legends

MVS dataset. By changing the verification thresholds of the learned distance metrics,
we plot the receiver operator characteristic (ROC) curves of the verification results on
the three datasets. The values of area under curve (AUC) are also calculated to evalu-
ate the performances of all comparators quantitatively. The corresponding ROC curves
and AUC values are shown in Fig. 8. It is clear to see that ODML, UM2L, and BRM-C/
BRM-R consistently outperform other methods. Furthermore, we can find that our
proposed BRM-C/BRM-R obtain obviously better ROC results than the best baseline
method. To be specific, for the two datasets, we achieve 1-6% AUC improvements over
the best baseline method.

5.3 Retrieval and clustering experiments

In this subsection, we investigate the capability of BRM on more challenging object rec-
ognition datasets. Considering the difficulty of the object recognition task, here we com-
pare our method with representative deep neural network based metric learning approaches
instead of the linear learning algorithms in the previous subsection. The compared meth-
ods are Npairs (Sohn, 2016), MDR (Kim and Park, 2021), MS (Wang et al., 2019), Soft-
Triple (Qian et al., 2019), JDR (Chu et al., 2020), and NASA (Li et al., 2022). To fairly
evaluate the performance of all compared methods, we conduct K-means and k-NN on the
learned distance metrics for clustering and retrieval tasks, respectively. By following the
experimental protocol in (Sohn, 2016), we compare all methods on the two benchmark
datasets below:

e Stanford CAR-196 (Krause et al., 2013) dataset is composed of 16185 car images from
196 categories. The first 98 categories are used for training and the rest is for testing.

e (Caltech-UCSD Birds (CUB-200) (Welinder et al., 2010) dataset is composed of 11,788
images of birds from 200 different species. Similarly, we use the first 100 categories for
training and the rest for testing.

e Stanford Online Product (SOP) (Oh Song et al., 2016) dataset is composed of 120,053
images from 22,634 categories, and is partitioned into 11,318 categories for training
and 11,316 categories for testing.
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Fig.9 The 4 nearest neighbor (top 4) results of our method BRM on CAR-196 and CUB-200 datasets for
image retrieval. The green box means that the retrieval result is correct, and the red box denotes that the
retrieval result is incorrect (Color figure online)

In our experiments, BRM is incorporated into the BN-Inception backbone (Ioffe and
Szegedy, 2015) to train an end-to-end network as the final distance metric. Here we
employ contrastive similarity loss, relative similarity loss, and npairs loss for learn-
ing objectives of our proposed metric, and the learned metrics are denoted as BRM-
C, BRM-R, and BRM-N, respectively. For pre-processing, input images are resized
to 256 X 256, randomly cropped to size 227 x 227. The dimensionality of embedding
is set to 512. The learning rate and the batch size of SGD algorithm are set to 0.01
and 256,respectively. For each dataset, we perform K-means based on the learned dis-
tance metric of each method. Since the performance of K-means heavily depends on the
initialization, we repeat the clustering 20 times independently and record the average
results. To evaluate the consistency between clustering results ¥ and given class labels
Y,, we use the popular normalized mutual information (NMI) score

NMI(Yy, ¥) = 21(Yy, Y)/(H(Yy) + H(Y)), (16)

where H(-) and I(-,-) are entropy and mutual information, respectively. After that, we
evaluate the retrieval performance of all compared methods by calculating the k nearest
neighbors based on their learned distance metrics. We record the percentage of the test-
ing examples whose k nearest neighbors contain at least one example of the same class.
This quantity is also known as Recall@R (Ye et al., 2019b). Some retrieval results of our
BRM on two datasets are illustrated in Fig. 9, where the hard examples can be success-
fully retrieved by our method. In summary, the NMI and Recall @R scores of all compared
methods are shown in Table 4. From the quantitative results, we clearly observe that MDR,
NASA, and our methods obtain better results than other baseline methods. Compared with
both the Euclidean and cosine based approaches, our methods (i.e., BRM-C, BRM-R, and
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BRM-N) can achieve further better or competitive NMI and Recall @R scores on the three
datasets.

Here we also conduct experiments to compare the learned distance distributions of
the traditional cosine metric and our proposed new metric BRM. As shown in Fig. 10,
for the cosine metric, the variance of inter-class distance is much larger than the vari-
ance of intra-class distance, which makes the corresponding margin-range-ratio not dis-
criminative. In comparison, for our proposed BRM, the variance of inter-class distance
is effectively reduced, so a large margin-range-ratio is ensured and the final recognition
performance is improved.

We also adopt ResNet-50 (with 512-dimensional features) (He et al., 2016) as an addi-
tional backbone of our method, and we compare the results with recent works including
MetricFormer (Yan et al., 2022), AVSL (Zhang et al., 2022), IBC (Seidenschwarz et al.,
2021), and the baseline method ProxyAnchor (Kim et al., 2020). For fair comparisons, all
methods are trained by the proxy anchor loss (Kim et al., 2020), where the temperature,
positive margin, and negative margin are set to 16, 1.8, and 2.2, respectively. We train all
networks 100 epochs using SGD with learning rate 0.001 and batch size is fixed to 256.
Based on the new implementations, we record the corresponding NMI and Recall@R
scores of all compared methods in Table 5.

On the three popular benchmark datasets, our BRM successfully improves the baseline
method ProxyAnchor by 1-6%. Meanwhile, we can observe that BRM can outperform the
compared methods MetricFormer, AVSL, and IBC in most cases, which clearly demon-
strates the superiority of our method.

Now we further validate the effectiveness of our method on the popular vision trans-
former (ViT) backbone (Dosovitskiy et al., 2020). Specifically, we adopt the ViT-S frame-
work pre-trained on ImageNet-21k as our encoder network (Steiner et al., 2021) and its
output dimensionality is 384. After that, it is further plugged into a linear projection head
to obtain the 128-dimensional features. In other words, our feature embedding @ consists
of the ViT-S encoder and an additional projection layer. Meanwhile, we adopt the well-
known pairwise cross-entropy as our loss function to calculate the empirical risk between
the supervisory information and the distances predicted by our BRM. Finally, we use the
Adam optimizer with a learning rate 1 X 107>, and the batch size is set to 900. The number
of optimizer steps depends on the dataset: 200 for CUB-200, 600 for Cars-196, and 25,000
for SOP, respectively.

Here we include two baseline methods (ViT-S + Euclidean distance, and ViT-S +
cosine dissimilarity) and two state-of-the-art ViT based metric learning methods (ViT-S
+ hyperbolic embedding, and ViT-S + hypersphere embedding) (Ermolov et al., 2022).
All methods are fairly trained with the same pairwise cross-entropy loss with the same
optimizer, learning rate, and batch size. From the above Table 6, we can observe the
solid performance of our method with ViT encoder, where our BRM consistently
improves the two baseline methods on all three datasets by at least 3%. Meanwhile, our
method can outperform the compared methods hyperbolic embedding and hypersphere
embedding on NMI scores and Recall@R scores in most cases. The above experiments
clearly demonstrate that our method is suitable for the ViT architecture, and it can suc-
cessfully make the ViT based metric learning approaches better on image classification
tasks.
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Fig. 10 Distance distributions of cosine similarity metric and our proposed boundary-restricted metric

5.4 Investigation on model robustness

In this subsection, we investigate the model robustness from two aspects, including the rec-
ognition accuracy under noisy conditions and the influence of choosing different restriction
functions.

5.4.1 Robustness under noisy condition

Now we study the robustness of BRM on the corrupted data with random feature noise.
Here we select three classical methods (LMNN (Weinberger et al., 2006), ITML (Davis
et al., 2007), and GMML (Zadeh et al., 2016)) and three representative robust methods
(L1-ML (Wang et al., 2014), CAP-LI1-ML (Huo et al., 2016), and BDML (Xu et al., 2018))
for comparisons. We corrupt the MNIST and Letters datasets by adding Gaussian noise
with 0 mean and 0.1 variance to normalized examples. After that, we conduct the clas-
sification experiments by using the same settings in Sect. 5.2 and record the classification
error rates for all compared methods.

By following the experiments in existing robust metric learning methods (Xu et al.,
2018), we evaluate the performance of all compared methods with clean training data
and corrupted test data. After that, both training and test data are corrupted to form more
challenging datasets. As shown by the error bars in Fig. 11, we can clearly observe that
such noisy data is rather difficult to handle, and the classification performance of all com-
pared methods consistently descends on the noisy data. For example, the classical methods
LMNN, ITML, and GMML become significantly worse, although they have shown prom-
ising results on the clean data. In comparison, our method BRM can still achieve robust
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classification performance, especially when the training data and test data are both cor-
rupted by random noise. This is because the restriction function confines the metric space,
and the excessive distance results affected by outliers can be effectively controlled. There-
fore, our proposed BRM can successfully enhance the model discriminability and obtain
reliable prediction results under noisy conditions.

5.4.2 Influence of different restriction functions

In previous subsections, we fixed the restriction function R(-) to Sigmoid for all experi-
ments. To further investigate the model robustness, here we explore the influence from dif-
ferent restriction functions. Specifically, we fix the network backbone and loss function,
and evaluate the recognition accuracy of our method implemented by different restriction
functions listed in Table 1. For different restriction functions, here we adopt the same SGD
parameters including batch size and learning rate.

Here we conduct experiments on the three benchmark datasets (CAR-196, CUB-200,
and SOP) to investigate the influence of restriction function R. For each dataset, we fix
the network backbone (BN-Inception) and loss function (Npairs loss), and we evaluate the
recognition accuracy rates of our method implemented by different restriction functions
(including Sigmoid, Soft-Sign, ArcTan, TanH, and ISRU). In Table 7, we clearly observe
that Sigmoid and Soft-Sign can obtain slightly higher accuracy than the other three restric-
tion functions on all three datasets. Meanwhile, we find that all five restriction functions
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can achieve relatively stable and comparable performance when they are adopted to imple-
ment BRM. These results are consistent with our expectations, as we merely assume that
the function R is smooth and monotonically increasing. It means that we do not need any
other preconditions for R to ensure the effectiveness of our method. This makes the design/
selection of the function R much easy in practical uses.

Although the classification accuracy rates are not significantly influenced by different
restriction functions, here we would still like to further discuss the selection/design of the
function R. Since we do not make additional assumptions on such an abstract function R,
it is pretty hard to theoretically analyze the superiority of each specific restriction function.
However, empirically, the Sigmoid and Soft-Sign functions have shown slightly higher
accuracy rates on the three benchmark datasets, so the two functions have stronger general-
izability than the others. Meanwhile, the Sigmoid function has better smoothness than the
Soft-Sign function (around R(0)), and the derivative of Sigmoid is also more computation-
friendly (as R’ = R(1 — R)) during the training phase. Therefore, we encourage to use the
Sigmoid function as a default setting in the implementations.

6 Conclusion and future work

This paper first derived an analytical result to reveal that the expected false positive rate
would be magnified by the expansion of the metric space boundary. To overcome this issue,
we proposed a new boundary-restricted metric (BRM) to confine the metric space, and we
employed a monotonous function with saturation property to suppress excessively large dis-
tances and concurrently maintain the useful topological property. We conducted intensive
theoretical analyses to guarantee the model effectiveness and soundness. Visualization exper-
iments on toy data and comparison experiments on real-world datasets indicate that our learn-
ing algorithm acquires the more reliable and precise metric than state-of-the-art methods.

Nowadays, self-supervised contrastive learning (CL) which is based on pairwise simi-
larities in an unsupervised manner, has attracted lots of attention and shown very powerful
performance in several downstream tasks. It is still unclear whether our method can be
directly applied in the self-supervised CL, but we think this is a potential improvement. It
would be interesting future work if we could further consider the boundary issue in self-
supervised CL approaches and investigate the effectiveness of our method in the unsuper-
vised (self-supervised) learning scenario.

Appendix A

This section provids the detailed proofs for all theorems in Sect. 3.1 and Sect. 4.

A.1 Proof for Theorem 1

We first introduce the following Lindeberg central limit theorem (CLT) as a Lemma to
prove our Theorem 1.

Lemma 1 (Lindeberg CLT (Vershynin, 2018)) Suppose {X,, ..., X, } is a sequence of inde-

. . . . 2
pendent random variables, each with finite expected value y; and variance o;. If for any
givene >0
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.1 h 2
im $2 Dot B = 1) Ly ] = 0, (17)
then the distribution of the standardized sum 1/S,, Zf; \(X; — ;) converges io the standard
normal distribution N0, 1), where Sﬁ = Z?zl o'i2 and 1 () is the indicator function.

Based on the above conclusion on i.n.i.d. random variables X;,X,,...,X,, here we
prove Theorem 1 by investigating the probability of that the distance value crosses a given
upper-bound. We show that such a probability is mainly determined by the boundary of the
metric space.

Proof We let X, = |@;(x)— @;X)P for i=1,2,...,h and we can obtain that
ELX; = #)  1jx s, ] < ELXG = 4 - L(\x,— 5br 3y 1 = O for sufficiently large h.
Specifically, we denote V2 = 1/h 2;’:1 61'2 >0and let h = [(b”(H:) - /,t,-)z/(eV)z], and we
have that

S, = eVhV 2 V[ (br(H) — [V = PP (HY) = (18)

where bp(HLV’) is the upper-bound of X; so that b”(H’j) — y; is always non-negative (y; is the
mean of X;). Then, if |X; — ;| < b”(H}) — p;, we have

X = 1) Lpxmpises,) = 0= O = 1)~ 1y iy (19)
If P (HY) — u; < 1X; — w| < €S, we have
X; = 1% Ly opses,) = 0 S X5 = 1) = X5 = 1 - Ly ppmroreron). (20)
Finally, if €S, < |X; — y;|, we have
X; - #i)z : 1(|Xi—”i|>esh} =X - #i)z =X - lli)z : 1(|x,—,4,.|>bn(Hg)—;4,-}’ (21)

and thus we have E[(X; — 4" L1y 1ses,)] < EICG = 1)+ 1y 1o rey— )] For suffi-
ciently large /. Furthermore, as |X; — ;| is always small than its upper bound b”(H}) — ;,
we have E[(X; — ;)" - 1{x_. |spo(3%)-,y ] = 0. Therefore, we have

h 2
"I = 1) Lo e .
lim Ziot EIX; o EPAE < fim h-0 ? =0, 22)
h—oo Sh h—oo hGL

which implies that the Lindeberg condition in Eq. (17) is satisfied. Therefore, the standard-
ized sum Zf; o) - @;(¥)|? /5 converges to the standard normal distribution 2 Then, for
any given €; > 0, there exists sufficiently large 4 such that

5 For simplicity, here 5~ = 11-1 " olandm = % DS

i=1 "
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1 h A~
pr|———= o) — @0 —u, <Z| € AP(2),¢€)), 23
[E\/Z Zz:l ] 1 (23)

where Z € R and ¢(-) is the cumulative distribution function of the standard norm distribu-
tion. Meanwhile, we have

N h ~
prldy @) <ul = pr| X 10,6 — oI < e, 4)
so for any €; > 0, there exists sufficiently large 4 such that

pild,y(z.2) < ul € APV’ ~1)/5).€)). (25)

As ¢(-) is monotonically increasing and e; is a given sufficiently small number,

SUP ey {pr [dq,(z,%) < u]} is dominated by \/Z(up — ) /o. According to the law of large
numbers (Vershynin, 2018), it follows that for any ¢ € M. there exists a sufficiently large
N making

[ —my| < e,and|5Vh — Zyl < e, (26)

with at least probability 1 — €,, where the sample mean my = (1/N) Zjil d,(z;z;) and

sample variance Zz%/ = ((1/N)) Zj]il(dq,(zj,i}) - mN)z. Then we have that there exists suf-
ficiently small €, and €, such that for any given 6 € min(1, v’ — u”)

sup {pr[dq,(z,/z\) < u]} € A((],’)[\/Z(u” — mN)/ZN],S). 27)
peEH,

Now we only have to consider the minimal value of the positive term (mN - up) /2, under
the constraint d(p(zj,i}) >v>uforj=1,2,...,N. To be specific, it holds that
(my =)/ 2y

= (mN—v”+v”—u1’)/ZN

> (mN —W W= up)/min(mN =V, bP(HY) — my)

> (my =V + V" =) [(my — V) (28)

=@+ =uP)/t

=0+0°7 —-u’)/t)

> (1+207 —u?)/(P(Hy) = V),

where t=my - € (0, %(b”(H‘V‘) —v)], and my is necessarily included in
or, %(b”(H’:) +v")). By combining the results in Egs. (27) and (28), we thus get

sugu {pr[d,.2) < u]} € A(p{w [b(H")]}.5). 29)
PE,

where  [b(H")] = [Vh(1 + 207 — u?) /(¥ — b (H")))]. Here w [b(H")] is a monotonically
increasing function w.7.t. the boundary b(?.). The proof is completed. O
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A.2 Proof for Theorem 2

Proof The Non-negativity and Symmetry can be trivially achieved by the definition of
BRM. Here we prove that D,(,-) has the triangle property when R’ is monotonically
decreasing. Specifically, for any given a, B,y € RY, we invoke the mean value theo-
rem (Rudin, 1964) and have that

R@() — 9B + R(|@:(B) — @:(1)])
=R(Q) + R(T;) — R(0)
= R(max(Q;, T})) + min(Q;, T)R' ()
> R(max(Q;, T))) + min(Q;, T)R' (max(Q;, T))
> R(max(Q;, T))) + min(Q;, TR’ (max(Q;, T))) + O(&,)
= R(max(Q;, T;) + min(Q;, T;))
= R(lpi(@) — @,(B)| + |9;(B) — @:(¥)])
= R(lp(a) = @:(n)D),

where the real numbers Q; = |@;(@) — @,(B)l. T; = |@;(B) — @;(Y)I, &, € [0, min(Q;, T))],
&, € [0, max(Q;, T;)], and ©(&,) = (1/2) min(Q7, TZ)R”(SZ) < 0. Then we have that

Dy(a,p) +D,(B.7)

(2 rol) "+ ( 2L rap)

(30)

1/,
> (3 X0 [R@)+R@)) G1)
1/p
> (3 2, [Rde@ - o]’
=Dy(a,y).

Finally, for any given D,(a,f)=0, and any given k€N, we have

R(lg(@) — @ (B)]) = 0, and thus it holds that [, (@), ..., g, ()] = [@,(B). ... ¢,(B)]. By
further invoking the invertibility of the mapping @, we have that @ = f which completes
the proof. a

A.3 Proof for Theorem 3

Proof We let §(-) = c@(-) (¢ > 0) and employ the Taylor expansion (Rudin, 1964) on each
restriction function, and we get

1/p
= (% Zfl | [Riclp;x) - (pi(f)|)]p>
1

h 1/p
= (3 2o, [RO + clg,) - 9 ®IR'© + o))"

= %R’(onw(x) — @@l + 0(0).

(32)
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According to the homogeneity of vector norm (Meyer, 2000), it follows that there exists
a, > ay > 0 such that Vx,¥ € R?

Ay ~ ~ a A~
?Ilqo(x) — @@, <d,(xX) < ;II(p(x) - @, (33)

so we have that

Dyx=.87) 2 LR (0)d,(x~, %) + 0(c),
P o 34)
D,x+,2) < SR (0)d,(x*, &) + 0(0). (
do
Then for u = a,/R’(0) and v = a, /R’ (0), we have
Dyx™,X7) 2 cv+o(c) > cu+o(c) > Da(x+,5c\+), (35)
which completes the proof by letting ¢ be sufficiently small. a

A.4 Proof for Theorem 4

We first introduce the following McDiarmids inequality as a Lemma to prove our
Theorem 4.

Lemma 2 (McDiarmid Inequality (Meyer, 2000)) For independent random variables
11, by, ..o t, €T and a given functionw : T' —> R, ifva e7 (i=1,2,...,n), the function
satisfies

lo(ty, oty t) — 0ty . 1) < py, (36)

then for any given u>0, it holds that
pr{|o(, ..., 1,) — E[w(t,, ... .t )]| > u} <22/ Eii ],

We prove Theorem 4 by analyzing the perturbation [i.e., p; in the above Eq. (36)] of the
loss function L.

Proof Firstly, we denote that

N
1 ~
w = N Z f(D(,,(x;,x,-);yi), 37
i=1
and
N
1 . ~
@y = Y, £(Dyx,2)y) +£(D @, d)iby) | (38)
i=1,i#k

where (a,,@,) is an arbitrary data pair from the sample space with similarity label b,. Then
we have that
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| — w(k)l

= 1D, B — £ (D, @by
~ ~ 3
Max(£(D,, (810, (D @, 8):b,) 39

1
N
< Il\’ max(Z((1 = c¢;)B;1), 2((0 — ¢()B;0)).

Meanwhile, we have

N N
Z f(D(p(xi"(x\i);yi) - [EX(% Z f(D¢(xi’:r\i);yi)>
i=1 i=1

Z|=

R . _ (40)
= 3 2ol fD2) = B [£ Dyl D0

= L(p) - L(9).
By Lemma 2, we let that

9 = 1%] max(Z((1 — ¢)B;1), £((0 — ¢y)B:0)), 41)

foralli=1,2,...,N, and we get

Pr{ |L() - L(g)] < 9(B)v[1n(2/5)]/(2N)}

=1 —2e 24/ XL, P}

>1=2 max2(£((1—c})B;1).£((0—c()B:0))
2 € (42)

2
1 2e‘2N<‘/““(2/5”/(2N)>

=1- ze—ln(Z/ﬁ)
=1-3,

monotonically increasing function

where the real-valued
O

0(B) = max(Z((1 — ¢,)B;1), £(—cB;0)). The proof is completed.

A.5 Proof of Lipschitz-Continuity

Here we demonstrate that our learning objective F(@) is always Lipschitz continuous based
on the Lipschitz-continuity of ¢(-), £(-), £2(-), and R(:). To be more specific, for any two

given @ and @, we have
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|F(@) - F @)l
= [1/N Y £y, 2)35) + 12(@)

— N Y 6D R ) — A2)

1 N ~ ~ ~
SLiy X, 1Py %) = Dl 8l + ALs @ = Bl
N ~ 1/p
=L X (1/n Y Re@) - o@D
1/p -
- (125 RUGE) -3G@N]") "1+ 2Lalle - 1,
1 ~ ~ ~ o~ ~
=Ly Y (o) - 9@ — o(§x) - $E)DI+ iLallg - Bl
3)
1 N o p2 ~ ~ ~ o~
SLiy X B Lellle) — o@)l ~ [§6e) ~ F@)I,
+ AL, llg -
1 N (1—pp AN s
<Ly X B Lpllee) — 0@) + 3@ ~ 3,
+ AL, llg =
1 N o, ~ ~ ~ o~
SLig X B L (o) — Bl + lo@) ~ BE)Io)
+ AL, llg -

—(1=n)2 ~ ~
<2LL B Lyl — @ll, + ALl — @,
= QLyL,B" """’ Ly + AL,)||l@ — @1,

which implies that (2LyL;B~"P” Ly, + AL,) is a valid Lipschitz constant of our learning
objective F.
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