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Abstract
Contrastive learning (CL) pretrains models in a
pairwise manner, where given a data point, other
data points are all regarded as dissimilar, includ-
ing some that are semantically similar. The issue
has been addressed by properly weighting simi-
lar and dissimilar pairs as in positive-unlabeled
learning, so that the objective of CL is unbiased
and CL is consistent. However, in this paper, we
argue that this great solution is still not enough:
its weighted objective hides the issue where the
semantically similar pairs are still pushed away;
as CL is pretraining, this phenomenon is not our
desideratum and might affect downstream tasks.
To this end, we propose large-margin contrastive
learning (LMCL) with distance polarization reg-
ularizer, motivated by the distribution character-
istic of pairwise distances in metric learning. In
LMCL, we can distinguish between intra-cluster
and inter-cluster pairs, and then only push away
inter-cluster pairs, which solves the above issue
explicitly. Theoretically, we prove a tighter error
bound for LMCL; empirically, the superiority of
LMCL is demonstrated across multiple domains,
i.e., image classification, sentence representation,
and reinforcement learning.

1. Introduction
Machine learning without human annotation is a long-
standing and important problem. Recently, the unsupervised
learning approach has been greatly promoted by contrastive
learning (CL), which shows encouraging performance com-
pared to fully supervised learning methods (Wu et al., 2018;
Saunshi et al., 2019). CL directly learns a generic feature
embedding for original data, and the learned embedding can
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Figure 1. Conceptual illustration of unregularized contrastive learn-
ing and distance polarization (DP) regularized contrastive learning.
The conventional unregularized model enlarges distances between
all pairs of instances and potentially leading to some ambiguous
intra/inter-cluster distances. We propose a DP regularized learning
algorithm to encourage pairwise distances to be extremely large or
small, and thus gaining the unambiguous distance determination
with a large margin between intra-cluster and inter-cluster.

be widely employed in many downstream recognition tasks
such as classification (Chen et al., 2020a) and clustering
(Zhong et al., 2020). Thereby, CL has become one of the
most important unsupervised learning approaches.

As human annotation is not available in an unsupervised
learning problem setting, CL algorithms usually consider
building the pseudo supervision in their learning objec-
tives (Saunshi et al., 2019; Jing & Tian, 2020). In general,
most existing CL frameworks regard any two instances in
the training data as a negative pair (including those false-
negative pairs consisted of semantically similar instances),
and meanwhile construct the positive pair by combining
each instance with its perturbation (Wu et al., 2018; Song
& Ermon, 2020). Due to the continued success from pos-
itive pairs, many recent efforts have increasingly focused
on various data augmentation techniques to further enrich
training data (Oord et al., 2018; Tian et al., 2020a) and si-
multaneously preserve semantic contents (Logeswaran &
Lee, 2018; Tian et al., 2020b).

While positive pair sampling has drawn much attention, rel-
atively fewer works consider the effectiveness of negative
pair in CL (Jing & Tian, 2020). Actually, as most existing
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CL methods directly repel all pairs of instances in the train-
ing data, the semantically similar instances are undesirably
pushed apart. Recent works propose weighting the positive
and negative pairs as in positive-unlabeled learning (Chen
et al., 2020b) to counteract the impact of false-negative pairs
(Chuang et al., 2020; Robinson et al., 2020). Nevertheless,
the weighted learning objectives still encourage repelling
each pair of original instances in the training data (Huynh
et al., 2020), so they are not able to faithfully reflect the
similarity between two semantically similar instances.

Although the above existing CL algorithms have achieved
promising results to some extent, most of their objectives do
not explicitly discriminate the semantic similarity of each in-
stance pair, and thus they cannot adequately capture intrinsic
features in the training data. To address this issue, we pro-
vide analytical results to reveal that when the conventional
CL encourages repelling each pair of original instances, the
finally learned pairwise distances nearly obey a unimodal
distribution in the region (0, 1). It implies that the conven-
tional CL fails to yield an explicit margin to discriminate the
similarities of data pairs (see the left panel of Fig. 1). There-
fore, this inspires us to propose large-margin contrastive
learning (LMCL) with distance polarization (DP) regular-
izer, which clearly separates the similar pairs from dissimilar
pairs with a large margin. Such a DP regularizer is moti-
vated by the general goal of metric learning (Weinberger
et al., 2006), which casts penalty onto all pairwise distances
within the margin region, and thereby encouraging polar-
ized distances for similarity determinations (see the bimodal
distribution in the right panel of Fig. 1). Theoretically, we
prove that the proposed DP regularizer effectively tightens
the error bound of conventional CL algorithm. Experimen-
tally, our approach consistently improves the state-of-the-art
methods on vision, language, and reinforcement learning
benchmarks. Our proposed DP regularizer is simple yet
generic, which can be easily deployed in many existing CL
methods. Our main contributions are summarized below:

• We propose a new distance polarization (DP) regular-
izer to enhance the generalizability of the conventional
CL algorithm by explicitly discriminating the pairwise
similarity between two original instances.

• We establish the complete theoretical guarantee for
our method to analyze the error bounds of similarity
measure and downstream classification.

• We conduct intensive experiments on synthesis datasets
and real-world datasets to validate the superiority of
our method over the state-of-the-art CL approaches.

2. Background & Related Work
In this section, we first introduce some necessary notations.
Then, we briefly review the background of contrastive learn-

ing. We also introduce the main concepts of metric learning
and regularization technique, which are related to this paper.

Notations. We write matrices and vectors as bold uppercase
characters and bold lowercase characters, respectively. We
denote the training dataset X ={xi∈Rm|i=1, 2, . . . , N}
where m is the data dimensionality and N is the total num-
ber of instances. Operator � denotes the element-wise
product of two vectors/matrices. Operators ‖ · ‖0 and ‖ · ‖1
denote the vector/matrix `0-norm and `1-norm, respectively.

2.1. Contrastive Learning

As an unsupervised / self-supervised learning approach, the
basic goal of contrastive learning (CL) algorithm is to learn
a generic feature embedding ϕ : Rm 7→ Rd, which trans-
forms the data point from m-dimensional sample space
to d-dimensional embedding space for extracting intrinsic
features. The primitive CL method called instance discrimi-
nation learns such an embedding by directly repelling each
pair of two instances in the training data (Wu et al., 2018).
Subsequent works such as momentum contrastive (MoCo)
encourage using larger negative pair batch size for better
learning results (He et al., 2020). Recently, the SimCLR
framework further introduces data augmentation to generate
positive pairs which incorporate more semantic information
into the learning objective (Chen et al., 2020a). In general,
the effectiveness of existing CL algorithms relies on two
key components: the negative pairs (x, x−) sampling from
every two original instances in the training data, and the
positive pairs (x, x+) built by each single instance x and
its perturbation x+. When the noise contrastive estimation
(NCE) loss (Gutmann & Hyvärinen, 2010) is employed to
learn a feature embedding ϕ from positive and negative
pairs, the general learning objective can be formulated as

LNCE(ϕ)

= Ex,x−j ∈X

−log
eϕ(x)>ϕ(x+)

eϕ(x)>ϕ(x+)+
∑n
j=1eϕ(x)>ϕ(x−j )

, (1)

where x and {x−j }nj=1 are uniformly sampled from the
training data X . Here n is the batch size of negative pairs.

It is worth noting that the conventional NCE loss for con-
trastive learning is biased, as the semantically similar (i.e.,
false-negative) data pairs might be pushed apart during the
repelling of all negative pairs. To alleviate this issue, the
clustering approach (Li et al., 2020) is applied on the learned
embedding to gather similar instances, though the reliability
of clustering results can be easily influenced by the learned
embedding itself. Recent works adopted popular practices
in positive-unlabeled (PU) learning (Chen et al., 2020b)
to reweight the NCE loss by increasing the importance of
positive pairs (Chuang et al., 2020) or allocating different
importance for negative pairs (Robinson et al., 2020).
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Although few works have been proposed to alleviate the
undesirable repelling of semantically similar instances, their
learning objectives still cannot clearly discriminate the pair-
wise similarity between two original instances. In this paper,
we address this issue from a different viewpoint, which em-
ploys the basic property of metric learning (Chu et al., 2020)
to constrain the similarity of negative pairs.

2.2. Metric Learning

As a supervised learning problem, metric learning aims
to learn a distance metric to faithfully measure the pair-
wise similarity between two instances in the sample space
(Davis et al., 2007; Chu et al., 2020). For the training
data X = {xi ∈ Rm|i = 1, 2, . . . , N}, the class labels
{yi ∈ {1, 2, . . . , C}|i = 1, 2, . . . , N} are provided for su-
pervision, where C is the number of classes. As the supervi-
sory information is available, the positive pairs and negative
pairs in metric learning can be directly built by the seman-
tics labels {yi}ni=1, and thus formulating the well-known
(n+ 1)-tuplet loss (Sohn, 2016)

LTUP(ϕ)

=E yi=yk 6=ybj

[
−log

eϕ(xi)
>ϕ(xk)

eϕ(xi)>ϕ(xk)+
∑n
j=1eϕ(xi)>ϕ(xbj

)

]
,(2)

which encourages to reduce the intra-class distance
‖ϕ(xi)−ϕ(xk)‖22 and enlarge inter-class distance ‖ϕ(xi)−
ϕ(xbj )‖22 for i, k, bj=1, 2, . . . , N , in which j=1, 2, . . . , n
and {bj}nj=1 is the index set of batch negative points. Sim-
ilar to Eq. (1), here n is the batch size of negative pairs.
Minimizing such a supervised learning objective will lead
to a margin between the intra-class and the inter-class dis-
tances, and thereby discriminating the pairwise similarity
between each two original instances (Yu & Tao, 2019).

Although the above Eq. (2) has a very similar form to Eq. (1),
we can find that here Eq. (2) is fully supervised, so its nega-
tive pairs are unbiased. In this paper, we convert the basic
property of the above metric learning model to a regularizer
for constraining the learning objective of the CL algorithm.

2.3. Regularization Technique

Regularization is a generic and effective technique that
has been well studied and widely applied in statistics and
machine learning (Dong et al., 2014; Scholkopf & Smola,
2018). Generally speaking, a regularization term (i.e., reg-
ularizer) usually considers introducing a specific inductive
bias into the empirical loss, and thus reducing the hypothesis
space complexity and improving the model generalizability
(Guo et al., 2017). For example, the well-known `2-norm
regularizer (i.e., weight decay (Krogh & Hertz, 1992) in
some deep learning models) restricts the scale of learning
parameter so that the learned embedding can successfully
capture scale-invariant features (Yang et al., 2011). The `1-

norm regularizer (i.e., sparse regularization) assumes that
only a few learning parameters should be activated in prac-
tical recognition tasks, and thereby alleviating the impact
from over-fitting results (Arpit et al., 2016).

Our proposed method in this paper can also be regarded as
a type of regularization technique. Similar to most existing
regularizers, our method effectively reduces the hypothesis
space complexity by introducing critical priori knowledge,
which is acquired from the metric learning algorithm.

3. Methodology
In this section, we first investigate the distribution of pair-
wise distances learned by the conventional CL algorithm.
After that, we propose a new large-margin contrastive learn-
ing algorithm by building a distance polarization regularizer.
The learning objective and the corresponding optimization
algorithm are finally designed with convergence guarantee.

3.1. Understanding The Distance Distribution of CL

As we mentioned before, the key element of CL is the simi-
larity relation between pairwise instances. For a learnable
mapping ϕ : Rm 7→Rd, the (squared) Euclidean distance
‖ϕ(xi)−ϕ(xj)‖22 measures the similarity between two orig-
inal instances xi and xj from training data X . Since ϕ(x)
is usually normalized to reduce over-fitting, the pairwise
distance in embedding space satisfies ‖ϕ(xi)−ϕ(xj)‖22=
2−2ϕ(xi)>ϕ(xj). For simplicity, we further denote the
following normalized Euclidean distance

Dϕ
ij = (1−ϕ(xi)>ϕ(xj))/2, (3)

which measures the similarity between instances xi,xj ∈
X with a real value Dϕ

ij ∈ [0, 1]. Then, from both empirical
and theoretical aspects, we investigate the distribution of the
distance Dϕ

ij for all 1 ≤ i < j ≤ N .

As we know, CL aims to repel each pair of instances away,
i.e., enlarging the distance Dϕ

ij to the maximal value 1 for
all 1≤ i<j≤N . Now, we conduct simple experiments to
investigate the distribution ofDϕ

ij in the range [0, 1] whereϕ
is learned by a conventional CL algorithm. Specifically, here
we choose the popular method SimCLR (Chen et al., 2020a)
as our framework to learn the embedding ϕ on CIFAR-10
(Krizhevsky et al., 2009) dataset using the Adam optimizer
(Reddi et al., 2018). Then we gather all pairwise distances
and plot the histogram in Fig. 2(a)).

From Fig. 2(a), we can clearly observe that a significant por-
tion of the distances lie in the range of [0, 1/2]. It means that
the finally learned embedding cannot equivalently enlarge
all pairwise distances to the maximal value 1, although the
learning objective of CL algorithm enforces to repel each
pair of original instances in the training data.

We further provide theoretical analyses to support the above
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Figure 2. Distance histograms obtained by different methods on
CIFAR-10 dataset, including the conventional self-supervised CL,
the fully supervised metric learning, and our proposed DP regular-
ized CL (which is also self-supervised).

empirical observation. To be specific, we assume that the
feature embedding ϕ(x)=(ϕ1(x), ϕ2(x), . . . , ϕd(x))

> is
learned from a general hypothesis set

H={ϕ | ‖ϕ(x)‖2=1 and ϕi(x) is differentiable
for any i=1, 2, . . . , d}, (4)

where ‖ϕ(x)‖2 = 1 denotes that the embedding result is
finally normalized for any data point x ∈ Rm. Then, we
investigate the maximal value of E1≤i<j≤N [Dϕ

ij ] where ϕ
is learned from the above hypothesis setH. For sufficiently
large sample size, we have that 1

lim
N→∞

max
ϕ∈H

E1≤i<j≤N
[
Dϕ
ij

]
≤ lim
N→∞

N/(2N−2)=1/2, (5)

which implies that the mean value of pairwise distances can
be maximally enlarged to 1/2 rather than the ideal value
1. To further investigate the overall distribution of pairwise
distances, we provide the following Theorem 1 to reveal the
continuity of distance distribution in the range [0, 1], even
though the intrinsic data distribution is unknown to us.

Theorem 1. Assume that the optimal feature embedding
ϕ̂ ∈ argminϕ∈H LNCE(ϕ) and the corresponding distance
value Dϕ̂

ij = (1 − ϕ̂(xi)>ϕ̂(xj))/2. Then for any given
µ ∈ [0, 1] and ε > 0, there exists sufficiently large N such
that min1≤i<j≤N {|Dϕ̂

ij − µ|} < ε.

The above Theorem 1 reveals that although conventional CL
algorithms repel each pair of original instances, the optimal
solution of their learning objectives will still contain many
small distance values in [0, 1/2] (e.g., the result in Fig. 2(a)),
and all pairwise distances will gradually cover the whole
range [0, 1] with the increasing of sample size.

According to the above empirical and theoretical analyses,
now the good news is that the conventional CL algorithms
could adaptively capture the similarity and dissimilarity
between pairwise instances during the repelling pairwise in-
stances. The CL algorithms will discard some negative pairs

1For detailed calculations, the mean value E1≤i<j≤N [Dϕij ]=
(
∑

1≤i<j≤N (1−ϕ(xi)>ϕ(xj)))/(N(N−1)) = (
(
N
2

)
+N/2−

‖
∑N
i=1ϕ(xi)‖

2
2/2)/(N(N−1))≤(

(
N
2

)
+N/2))/(N(N−1))=

(N(N−1)/2+N/2)/(N(N−1)) = N/(2N−2).

and regard them as semantically similar pairs, even though
their learning objective treat each pair of original instances
as dissimilar. This can be seen as a new interpretation to
understand the effectiveness of existing CL algorithms from
the viewpoint of similarity metrics.

However, the bad news is that conventional CL algorithms
are still not good enough since they fail to maintain a large
margin in the distance space for reliable instance discrim-
ination. As revealed in Theorem 1, the pairwise distances
will gradually cover the whole region of [0, 1], which makes
it difficult to put the decision plane. To overcome this issue,
we propose a distance polarization regularizer to constrain
the learning objective of conventional CL algorithm.

3.2. Model Setup

As we revealed, the distance space [0, 1] can be gradually
covered by pairwise distances and thus losing a margin re-
gion to clearly discriminate the distances of similar and
dissimilar pairs. However, when the supervisory informa-
tion is available, the intra-class and inter-class distances
obtained by metric learning algorithms should be clearly
discriminated with an explicit margin region (see Fig. 2(b)),
so that the metric learning algorithms can adequately cap-
ture the intrinsic features.

Actually, most metric learning methods aim to enlarge the
inter-class distances and reduce the intra-class distances
simultaneously, so they usually yield a margin region be-
tween the intra-class and inter-class. It means that the final
distances obtained by metric learning methods should be rea-
sonably polarized outside of an intermediate margin region,
whatever the class labels are. Therefore, we employ such
critical a priori to build a new regularizer which constrains
the pairwise distances learned by the CL algorithms.

Distance Polarization (DP) Regularizer. We suppose that
the matrix Dϕ=[Dϕ

ij ]∈RN×N consisting of pairwise dis-
tance Dϕ

ij measures the similarity between instances xi
and xj for i, j = 1, 2, . . . , N . We further assume that
the underlying intra-class distances are smaller than δ+

while the inter-class distances are larger than δ−, where
0<δ+<δ−<1. Then we construct the following distance
polarization (DP) regularizer

R0(ϕ) = ‖min((Dϕ−∆+)�(Dϕ−∆−), 0)‖0, (6)

where ∆+ = δ+ ·1N×N and ∆− = δ− ·1N×N are thresh-
old parameters. Here the region (δ+, δ−) ⊆ [0, 1] can be
regarded as the large margin to discriminate the similarity
of data pairs. The above `0-norm (Liu et al., 2010) based
regularizer will encourage the sparse distance distribution in
the margin region (δ+, δ−), because any distance Dϕ

ij fallen
into the margin region (δ+, δ−) will increase the value of
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R0(ϕ)
2. Thereby, minimizing such a regularizer will en-

courage all pairwise distances {Dϕ
ij}Ni,j=1 to distribute in

the regions [0, δ+] or [δ−, 1], and thus adaptively separating
each data pair into similar or dissimilar result (see Fig. 2(c)).

Determination of∆+ and∆−. The above DP regularizer
in Eq. (6) involves two critical parameters ∆+ and ∆−.
Here we demonstrate how to determine these two parame-
ters. We let τ = δ− − δ+∈(0, 1), and then we can regard
τ as the margin width which can be easily tuned. Thereby,
we just need to determine the threshold δ−. Intuitively, we
expect to employ a large δ− to repel the dissimilar pairs
of instances as far as possible, but the pairwise distances
cannot be really enlarged to an ideal maximal value 1 as
we discussed in Section 3.1. Here we provide the following
Theorem 2 to reveal that δ− = 1/2 is a good choice to yield
a margin width τ ∈(0, 1/2).
Theorem 2. For training data {xi}Ni=1 with underling class
labels {yi}Ni=1 and any given τ ∈ (0, 1/2), there exists a
feature embedding ϕ∈H such that

max
(i, j)∈I+

Dϕ
ij ≤ 1/2− τ < 1/2 ≤ min

(k, l)∈I−
Dϕ
kl, (7)

where yi = 1, 2, . . . , C for i = 1, 2, . . . , N and C < d.
Here the bivariate index sets I+ = {(i, j)|yi = yj , i, j =
1, 2, . . . , N} and I−={(i, j)|yi 6=yj , i, j=1, 2, . . . , N}.

With the above Theorem 2, we can easily implement the pro-
posed DP regularizer and deploy it in the learning objective
of conventional CL algorithms. Without loss of general-
ity, for most existing CL models equipped with NCE loss
LNCE(ϕ) in Eq. (1), we build the following large-margin
contrastive learning (LMCL) model

min
ϕ∈H

LNCE(ϕ) + λR0(ϕ), (8)

where the regularization parameter λ>0 is tuned by users.
As a regularized learning objective, LMCL is simple and
generic because here the loss term LNCE(ϕ) can be im-
plemented by many existing CL algorithms. In the next
subsection, we show that Eq. (8) can be easily solved by
existing stochastic optimization methods.

3.3. Optimization

Minimizing the objective function in Eq. (8) is a classical `0-
norm optimization problem which is usually non-continuous
and non-convex. Fortunately, for the original `0-norm based
regularizer Eq. (6), here we can easily find that Dϕ

ij−δ+∈
(0, 1) and δ−−Dϕ

ij ∈(0, 1) for any i, j=1, 2, . . . , N , so we
have that min((Dϕ−∆+)�(Dϕ−∆−), 0)∈ [0, 1]N×N .
As the `1-norm is a convex envelope of `0-norm in the

2Any distance Dϕij fallen into the margin region (δ+, δ−) will
incur the negative product (Dϕij − δ

+)(Dϕij − δ
−), and thereby

leading to that min((Dϕij−δ
+)(Dϕij−δ

−), 0) 6=0 which increases
the value of `0-norm as well as the value of regularizerR0(ϕ).

Algorithm 1 Solving Eq. (9) via Adam.
Input: Training Data X = {xi}Ni=1; Step Size η > 0;
Regularization Parameter λ > 0; Batch Size n ∈ N+.
Initialize: Momentum Vectors m(0) = v(0) = 0; Decay
Rates α1, α2∈(0, 1); Iteration Number t = 0.
For t from 1 to T :
1). Uniformly pick (n+1) data points {xbj}n+1

j=1 from X ;
2). Compute the stochastic gradient via Eq. (10):

g(t)←∇ϕ(`(ϕ;{xbj}n+1
j=1 )+λr(ϕ;{xbj}

n+1
j=1 )); (11)

3). Compute moment vectors: m(t+1) ← α1mt + (1 −
α1)g(t), and v(t+1) ← α2vt + (1− α2)g(t) � g(t);

4). Update the learning parameter:

ϕ(t+1) ← ϕ(t) − η
m(t+1)/(1− αt+1

1 )√
v(t+1)/(1− αt+1

2 ) + ε
; (12)

End.
Output: The converged ϕ̃.

unit hypercube [0, 1]N×N , we can simply convert the `0-
norm based regularizer in Eq. (6) to the `1-norm based form
R1(ϕ)

3 which is a good approximation to `0-norm in the
unit hypercube. By integrating such a differentiable almost
everywhere (a.e.) function, we finally have the following
learning objective F(ϕ)

min
ϕ∈H

{F(ϕ) = LNCE(ϕ) + λR1(ϕ)} . (9)

For the above objective function, we show that it can be
solved by existing stochastic optimization methods. For
n + 1 (i.e., the batch size) randomly selected data point
{xbj |xbj ∈X , bj ∈B}n+1

j=1 , the NCE loss defined by Eq. (1)
already has a stochastic form 4, so here we only need to
demonstrate the stochastic regularizer in a mini-batch, i.e.,

R1(ϕ)

=
2(
N
n

)∑
b∈B

∑n+1

j=1
|min((Dϕ

bibj
−δ+)�(Dϕ

bibj
−δ−), 0)|

=
1(
N
n+1

) ∑
b∈B

r(ϕ; {xbj}n+1
j=1 ), (10)

and thus F(ϕ) in Eq. (9) has the stochastic form
f(ϕ; {xbj}n+1

j=1 ) = `(ϕ; {xbj}n+1
j=1 ) + λr(ϕ; {xbj}n+1

j=1 ).
Based on such a stochastic loss, we further provide the
Adam iteration steps to solve Eq. (9) in Algorithm 1.

In summary, introducing the DP regularizer merely incurs

3HereR1(ϕ) = ‖min((Dϕ−∆+)�(Dϕ−∆−), 0)‖1.
4Here the NCE loss LNCE(ϕ) = E[`(ϕ; {xbj}

n+1
j=1 )],

and the corresponding stochastic loss `(ϕ; {xbj}
n+1
j=1 ) =

−log(exp(ϕ(xbn+1)
>ϕ(x+

bn+1
))/(exp(ϕ(xbn+1))

>ϕ(x+
bn+1

))+∑n
j=1exp(ϕ(xbj ))

>ϕ(x−bj )))). The index vector set B= {b=
(b1, . . . , bn+1)

>|bi, bj=1, . . . , N, bi 6=bj , i, j=1, . . . , n+ 1}.
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an additional stochastic gradient in Eq. (11). It means that
our method can be easily implemented in most existing CL
methods and only introduces very little computational over-
heads. Furthermore, the convergence of Adam has been
well studied in previous works (Zaheer et al., 2018). It can
be verified that `(ϕ; {xbj}n+1

j=1 ) and r(ϕ; {xbj}n+1
j=1 ) are

both Lipschitz-smooth and gradient-bounded, as long as the
embedding ϕ is Lipschitz-smooth and gradient-bounded.
In this case, the iteration sequence ϕ(1), . . . ,ϕ(T ) in Al-
gorithm 1 converges to a stationary point of the learning
objective F with a convergence rate O(1/

√
T ), where T is

the number of iterations (Huang et al., 2019; 2020).

4. Theoretical Analyses
In this section, we further provide in-depth theoretical anal-
yses for our proposed method. We first investigate the re-
liability of our method for similarity measure. After that,
we demonstrate the generalizability of our method on the
downstream classification task.

4.1. Error Bound for Similarity Measure

In general, CL usually considers the similarity between pair-
wise instances, so the reliability of CL algorithms depends
on whether the pairwise similarity can be faithfully mea-
sured. Here we follow the common practice in learning
theory (Xie et al., 2017) to study the error bound determined
by the minimizer of our learning objective in Eq. (9). Specif-
ically, we investigate the correctness of pairwise distances
Dϕ∗

ij by building the expectations Eyi 6=yj [max(δ−µ−D
ϕ∗

ij , 0)]

and Eyk=yl [max(Dϕ∗

kl −δ+µ, 0)] to evaluate the false nega-
tives and false positives, respectively. The corresponding
error bound is provided in Theorem 3.

Theorem 3. Assume that ϕ∗ ∈ argminϕ∈H LNCE(ϕ)+
λR1(ϕ), and the underling class labels of training data
{xi}Ni=1 are {yi}Ni=1. Then we have that

Eyi 6=yj [max(δ−µ−D
ϕ∗

ij , 0)] + Eyk=yl [max(Dϕ∗

kl −δ
+
µ, 0)]

≤ (δ− − δ+)R1(ϕ
∗) + (Kmax/Kmin)/C

≤ 4(δ− − δ+)/λ+ (Kmax/Kmin)/C, (13)

where the constants δ−µ = δ− − µ, δ+µ = δ+ + µ, µ ∈
(0, δ− − δ+), Kmin = min1≤k≤C ‖y− k · 1N×1‖0, and
Kmax=max1≤k≤C ‖y−k ·1N×1‖0.

The above Eq. (13) clearly reveals that the error bound of
the similarities measured by our method will gradually con-
verge to 0 with the increasing of class number C and the
decreasing of the regularizer value R1(ϕ

∗). Firstly, it im-
plies that the diversity of data (i.e., a largeC) will benefit the
reliability of the similarity measured by CL algorithms. This
conclusion is consistent with existing theoretical findings
that the larger C leads to the better generalizability (Saunshi

et al., 2019). Secondly, such an error bound also relies on
a small regularizer value R1(ϕ

∗). This demonstrates the
necessity and usefulness of our proposed DP regularizer,
because increasing the regularization parameter λ would
assist the error bound in converging to zero.

4.2. Error Bound for Downstream Classification

The experimental performance of most CL algorithms is usu-
ally evaluated by a downstream classification task. There-
fore, here we provide the generalization error bound (GEB)
of our method for the classification task which trains a
softmax classifier by minimizing the traditional cross en-
tropy loss (Zhang & Sabuncu, 2018), i.e., LSM(ϕ;X ) =
infW∈RC×d LCEP(Wϕ;X ). For a feature embedding
ϕ, the generalization error is defined by LTSM(ϕ) =
EX∼T [LSM(ϕ;X )], where T is the underlying distribution
of the training data X . Then we investigate how such a gen-
eralization error LTSM(ϕ) is far from the learning objective
LNCE(ϕ) of contrastive learning.

Theorem 4. Let ϕ∗ ∈ argminϕ∈H LNCE(ϕ) + λR1(ϕ).
Then with probability at least 1− δ, we have that∣∣LTSM(ϕ∗)−LNCE(ϕ

∗)
∣∣ ≤ O(Q1RH(λ)

N
+

√
Q2

N

)
, (14)

where Q1 =
√
1+1/n, Q2 = log(1/δ) · log2(n), and 5

RH(λ) is monotonically decreasing w.r.t. λ.

We can observe that the error bound in Eq. (14) gradually
decreases with the increase of the training sample size N ,
and this is consistent with the traditional supervised learning
method (Niu et al., 2016). Then, we find that the negative
pair size n in the error term

√
Q2/N is negligible for the

large sample size N . In this case, the relative large nega-
tive pair size n will effectively reduce the first error term
Q1(RH(λ)/N), and thereby tightening the error bound.
This conclusion is also in line with the empirical observa-
tions in existing works (He et al., 2020; Kim et al., 2020).
Finally, when we enlarge the regularization parameter λ,
the rademacher complexity RH(λ) will also be decreased,
and thus further reducing the error bound and improving the
generalizability of contrastive learning algorithm.

5. Experimental Results
In this section, we show experimental results on both syn-
thetic and real-world datasets to validate the effectiveness of
our proposed method. In detail, we first give visualization
results on synthetic data to demonstrate the efficacy of DP
regularizer. Then, we compare our proposed learning algo-
rithm with existing state-of-the-art models on vision and

5To be specific, here the Rademacher Complexity RH(λ) =
Eσ∈{±1}3dN [supϕ∈H(λ)〈σ,f〉], in which the restricted hypothe-
sis spaceH(λ) = {ϕ|ϕ ∈ H, and R1(ϕ) ≤ 4/λ}.
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(a). Three-Bars Dataset

Class-1 Class-2 Class-3

(b). Nested-Moons Dataset

(c). Projection by Conventional CL (d). Projection by Conventional CL

(e). Projection by Our LMCL (f). Projection by Our LMCL

Figure 3. Visualization results of the conventional CL method and
our proposed LMCL method on the two toy datasets.

Table 1. K-means clustering accuracy rates (mean ± std) of base-
line methods and our proposed method on the toy datasets.

METHOD Three-Bars Nested-Moons t-test

Euclidean Space 75.2± 1.2 77.3± 2.3 X
Conventional CT 78.3± 2.2 77.5± 1.2 X
LMCT (Ours) 84.2± 0.2 85.2± 2.3 −

language tasks. Finally, we test our method on the CL based
reinforcement learning task. The regularization parameter
λ of our method is fixed to 0.1. The thresholds δ+ and δ−

are fixed to 0.1 and 0.5, respectively. The hyper-parameters
of compared methods are set to the recommended values
according to their original papers.

5.1. Experiments on Synthetic Data

We first consider learning a linear embedding ϕ(x)=Px
on two-dimensional synthetic data, where the matrix P ∈
R2×2 is the learning parameter. Here we employ the Three-
Bars and Nested-Moons datasets (Chen et al., 2018) to eval-
uate the performance of the conventional CL algorithm and
our proposed LMCL algorithm. For each data point in the
two datasets (see Fig. 3(a) and (b)), we build its data aug-
mentation by adding Gaussian noise on the original data
point. Then, we simply regard each data point and its aug-
mentation as a positive pair, and sampling every two data
points as a negative pair. For these positive pairs and neg-
ative pairs, we use the Adam optimizer (learning rate =
0.001) for both the conventional CL (i.e., Eq. (1)) and our
proposed LMCL (i.e., Eq. (9) with λ=0.1). Both the projec-
tion matrices of conventional method and our method (i.e.,
P CL,P LM∈R2×2) are initialized by 0. After obtaining the
learned matrices P ∗CL and P ∗LM, we record the projected
points P ∗CLx and P ∗LMx to visualize the distribution of data
points in embedding space.
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(a). Classification accuracy of all compared methods on STL-10 dataset.
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(b). Classification accuracy of all compared methods on CIFAR-10 dataset.
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Figure 4. Classification accuracy of all methods on STL-10 and
CIFAR-10 datasets. The negative sample size is from 32 to 512.

We can clearly obverse that although the conventional CL
algorithm finds out the projection matrixP ∗CL to roughly dis-
tinguish each class of data points (as shown in Fig. 3(c) and
(d)), it still yields many ambiguous points between each two
classes in the embedding (projection) space. In comparison,
when the DP regularizer is employed, our method LMCL
could further improve the separability of data points and
successfully obtain unambiguous projected points between
each of the two classes (Fig. 3(e) and (f)). Furthermore,
the K-means (Bradley & Fayyad, 1998) clustering accuracy
(mean ± std, 20 random trials) of conventional CL and our
LMCL are reported in Tab. 1, and we can obverse that our
LMCL consistently outperforms the conventional CL algo-
rithm. We also perform the t-test at significance level 0.05
in the last column, and “X” indicates that our method is
significantly better than the baseline method.

5.2. Experiments on Image Classification

In this subsection, we validate the effectiveness of our
method on the image classification task. Here we select
SimCLR (Chen et al., 2020a) and contrastive multiview
coding (CMC) (Tian et al., 2020a) as baseline methods,
and implement our method LMCL under such two classi-
cal frameworks. We also compare our method with three
additional state-of-the-art methods including debiased con-
trastive learning (DCL) (Chuang et al., 2020), hard neg-
ative based contrastive learning (HCL) (Robinson et al.,
2020), and the clustering based method (SwAV) (Caron
et al., 2020) on STL-10 (Coates et al., 2011), CIFAR-10
(Krizhevsky et al., 2009), and ImageNet-100 (Russakovsky
et al., 2015) datasets. All methods are fairly implemented
by the ResNet50 with the same training epoch 100.

For STL-10 and CIFAR-10 datasets, we record the classi-
fication accuracy of all compared methods with varying
numbers of negative sample. From Fig. 4, we can clearly
observe that our method LMCL (DP+SimCLR) successfully
improves the baseline for at least 1% and 2% on CIFAR-10
dataset and STL-10 dataset, respectively. Similar experi-
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Table 2. Classification accuracy (%) of all methods on ImageNet-
100 dataset with negative sample size 1024 and 4096.

METHOD 1024 4096

Top1 Top5 Top1 Top5

CMC 60.23 79.23 73.58 92.06
SwAV 60.93 79.43 75.78 92.86
DCL 61.01 78.99 74.60 92.08
HCL 60.89 79.33 74.66 92.32
LMLC(CMC+DP) 61.23 79.44 75.67 93.02
LMLC(DCL+DP) 61.12 79.20 75.89 92.89
LMLC(HCL+DP) 60.92 79.43 74.94 92.39

Table 3. Parametric sensitivities of λ and τ . Here λ and τ are
changed in [0.01, 5] and [0.1, 0.4], respectively.

λ
τ 0.1 0.2 0.25 0.3 0.4

0.01 80.4 81.3 81.2 81.2 80.8
0.1 81.5 81.9 81.7 81.8 81.9
0.5 81.6 81.6 80.7 81.7 81.9
5 80.9 81.9 80.9 80.6 80.5

ments are conducted on ImageNet-100 dataset, and Tab. 2
shows that our method improves the baseline method CMC
from 73.58% to 75.88%. For different negative sample
sizes, the accuracy rates of our method are competitive or
superior to the compared methods DCL and HCL, which
clearly demonstrates the effectiveness of our method. Fur-
thermore, our method can also be incorporated by the two
existing methods (i.e., DP+DCL and DP+HCL) to achieve
the improved recognition accuracy. Therefore, our method
has good compatibility with existing CL algorithms on the
image classification task.

Parametric Sensitivity. Here we further investigate the
parametric sensitivities on λ and τ . Specifically, we change
λ and τ in [0.01, 5] and [0.1, 0.4] respectively, and record
the classification accuracy of our method on STL-10 dataset
(BatchSize=256). Tab. 3 shows that the accuracy variation
of our method is smaller than 1.5, so the hyper-parameters
of our method can be easily tuned in practice use.

5.3. Experiments on Sentence Representation

In this subsection, we employ the BookCorpus dataset
(Kiros et al., 2015) to evaluate the performance of all com-
pared methods on six text classification tasks, including
movie review sentiment (MR), product reviews (CR), sub-
jectivity classification (SUBJ), opinion polarity (MPQA),
question type classification (TREC), and paraphrase identifi-
cation (MSRP). We follow the experimental settings in the

Table 4. Classification accuracy (%) of all methods on BookCorpus
dataset including six text classification tasks.

METHOD MR CR SUBJ MPQA TREC MSRP

QT 76.8 81.3 86.6 93.4 89.8 73.6
DCL 76.2 82.9 86.9 93.7 89.1 74.7
HCL 77.4 83.6 86.8 93.4 88.7 73.5
LMCL(QT+DP) 77.3 82.3 86.9 93.7 90.2 74.1
LMCL(DCL+DP) 77.2 83.7 87.2 93.8 90.1 75.1
LMCL(HCL+DP) 78.1 83.5 87.2 94.0 89.1 74.2

Table 5. 100K Scores (mean ± std, 3 random trials) achieved by
all methods on the six control tasks.

METHOD Spin Swingup Easy Run Walk Catch

CURL 413±53 680±32 908±86 298±38 621±121 826±42
DCL 422±23 672±52 878±96 248±98 626±98 836±12
HCL 420±61 678±82 869±116 268±42 623±26 819±62
LMCL(CURL+DP) 423±63 682±13 926±73 296±32 625±53 842±27
LMCL(DCL+DP) 423±33 683±93 909±87 287±67 625±93 843±37
LMCL(HCL+DP) 421±51 681±83 910±95 292±78 626±89 832±83
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Figure 5. Distance histograms obtained by different methods (QT,
DCL, and our proposed LMCL) on BookCorpus dataset.

baseline method quick-thought (QT) (Logeswaran & Lee,
2018), which chooses the neighboring sentences as positive
pairs. Here the 10-fold cross validation is adopted, and the
average classification accuracy is listed in Tab. 4.

For the six classification tasks, our method improves the
classification accuracy of baseline method QT for at least
one percentage on most classification benchmarks. The
distance histograms of QT, DCL, and our LMCL are shown
in Fig. 5. We clearly observe that our method obtains the
more accurate distance determination than baseline methods,
and this reveals that our method is effective for the text
classification task.

5.4. Experiments on Reinforcement Learning

This subsection further extends our experiments on rein-
forcement learning task, which is another application sce-
nario of contrastive learning. Here the contrastive unsuper-
vised representations for reinforcement learning (CURL)
(Laskin et al., 2020) method is employed to perform image-
based policy control on representation learned by the CL
algorithm. All methods are tested on the DeepMind control
suite (Tassa et al., 2018), which consists of six control tasks
listed in Tab. 5. By following the experimental settings in
CURL, the positive pair is built by simply cropping a sin-
gle image, and the negative pair is composed of each two
images in the control sequence. All methods are retrained
for 3 times, and the corresponding means and standards of
100K scores are shown in Tab. 5.

For the six control tasks, our method consistently outper-
forms the baseline method CURL with higher means. When
compared to DCL and HCL methods, our method achieves
better results in most cases. Although our method LMCL
(DP+CURL) has slightly lower scores than DCL or HCL on
the last two control tasks, our method shows smaller vari-
ance. Moreover, when we incorporate our DP regularizer
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to DCL and HCL, our method could further improve the
overall scores of compared methods on the six tasks. This
also reveals that our method is compatible with existing CL
algorithms on the reinforcement learning task.

6. Conclusion
In this paper, we first revealed that existing CL algorithms
fail to maintain a margin region in the distance space to dis-
criminate the semantically similar and dissimilar data pairs.
To overcome such an issue, we proposed a distance polar-
ization (DP) regularizer, which encourages the polarized
distances and thus obtaining a large margin in the distance
space in an unsupervised way. To the best of our knowledge,
this is the first work in CL that considers introducing a mar-
gin region in the distance space. We conducted intensive
theoretical analyses to guarantee the effectiveness of our
method. Visualization experiments on toy data and com-
parison experiments on real-world datasets across multiple
domains indicate that our learning algorithm acquires more
reliable feature embedding than state-of-the-art methods.
Considering the uncertainty of similarity determination in
the distance polarization would be interesting future work.
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Supplementary Material for
“Large-Margin Contrastive Learning with Distance Polarization Regularizer”

Abstract
This supplementary document contains all technical proofs for Theorem 1, Theorem 2, Theorem 3, and
Theorem 4 in the ICML-2021 paper entitled “Large-Margin Contrastive Learning with Distance Polarization
Regularizer”.

A. Proof for Theorem 1
We first introduce the following Lemmas to prove our Theorem 1.
Lemma 1. The function g(t) = log(1 + γ

∑n
i=1 eti) is strictly convex for t = (t1, t2, . . . , tn)

> ∈ Rn, where the constant
γ > 0.

Proof. For the gradient of g, we have that
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−γetnet1 −γetnet2 · · · etn(1 + γ

∑
i6=n eti)

 . (2)

Then for any ∆t ∈ Rn\0, we have that

∆t>[((1 + γ
∑n

i=1
eti)2/γ)∇2g(t)]∆t

=
1

γ
∆t>


et1(1/γ +

∑
i 6=1 eti) −et1et2 · · · −et1etn

−et2et1 et2(1/γ +
∑
i 6=2 eti) . . . −et2etn

· · · · · · · · · · · ·
−etnet1 −etnet2 · · · etn(1/γ +

∑
i 6=n eti)

∆t

>
1

γ
∆t>


et1
∑
i 6=1 eti −et1et2 · · · −et1etn

−et2et1 et2
∑
i 6=2 eti . . . −et2etn

· · · · · · · · · · · ·
−etnet1 −etnet2 · · · etn

∑
i 6=n eti

∆t

=
1

γ

∑
1≤k<l≤n

etk+tl(∆tk −∆tl)2

≥ 0, (3)

which implies that the Hensen matrix of g is strictly positive definite, and thus g is strictly convex.
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Furthermore, we have the following Lemma 2 to reveal the distribution of embedding results in the spherical coordinate.
Lemma 2. Assume that the optimal feature embedding ϕ̂ ∈ argminϕ∈H LNCE(ϕ) and the spherical coordinate of the
embedding result zi = ϕ̂(xi) ∈ Rd is denoted as (θ(1)i , θ

(2)
i , . . . , θ

(d−1)
i )> where i = 1, 2, . . . , N 1. Then for any given

α ∈ [0, π] and β ∈ [0, 2π], we have that

lim
N→+∞

min
i=1,2,...,N

|θ(k)i − α| = lim
N→+∞

min
i=1,2,...,N

|θ(d−1)i − β| = 0, (4)

where k = 1, 2, . . . , d− 2.

Proof. We prove the above Eq. (4) via contradiction. Without loss of generality, we assume that there exists α̂ ∈ [0, π] such
that mini=1,2,...,N |θ(k)i − α| > δ > 0 for any N , and we have that there exists q ∈ {1, 2, . . . , N − 1} such that

|θ(k)q − θ
(k)
q+1| > δ > 0. (5)

We let θ̃(k)q = θ
(k)
q + (θ

(k)
q+1 − θ

(k)
q )/2 and θ̃(k)q+1 = θ

(k)
q+1 + (θ

(k)
q − θ(k)q+1)/2. Then we construct a new embedding ϕ̃ which

satisfies

ϕ̃(xi) =

{
zi, i = 1, 2, . . . , q − 1, q + 2, . . . , N

z̃i, Otherwise,
(6)

where the spherical coordinate of z̃q and z̃q+1 are (θ
(1)
q , θ

(2)
q , . . . , θ̃

(k)
q , . . . , θ

(d−1)
q )> and

(θ
(1)
q+1, θ

(2)
q+1, . . . , θ̃

(k)
q+1, . . . , θ

(d−1)
q+1 )>, respectively. By using the strict convexity of log(1 + γ

∑n
i=1 eti) as revealed in

Lemma 1, we have that

LNCE(ϕ̃)− LNCE(ϕ̂)

= Ex,x−j ∈X

−log
eϕ̃(x)>ϕ̃(x+)

eϕ̃(x)>ϕ̃(x+)+
∑n
j=1eϕ̃(x)>ϕ̃(x−j )

+ log
eϕ̂(x)>ϕ̂(x+)

eϕ̂(x)>ϕ̂(x+)+
∑n
j=1eϕ̂(x)>ϕ̂(x−j )


= Ex,x−j ∈X

[
log
(
1 + γ

∑n

j=1
eϕ̃(x)>ϕ̃(x−j )

)
− log

(
1 + γ

∑n

j=1
eϕ̂(x)>ϕ̂(x−j )

)]
= Ex−j

log

1 + γ
∑n
j=1ez̃

>
q ϕ̃(x−j )

1 + γ
∑n
j=1eẑ

>
q ϕ̃(x−j )

+ log

1 + γ
∑n
j=1ez̃

>
q+1ϕ̃(x−j )

1 + γ
∑n
j=1eẑ

>
q+1ϕ̃(x−j )


= Ex−j [(g(z̃

>
q ϕ̃(x

−
1 ), z̃

>
q ϕ̃(x

−
2 ), . . . , z̃

>
q ϕ̃(x

−
n )) + g(z̃>q+1ϕ̃(x

−
1 ), z̃

>
q+1ϕ̃(x

−
2 ), . . . , z̃

>
q+1ϕ̃(x

−
n )))

− (g(ẑ>q ϕ̃(x
−
1 ), ẑ

>
q ϕ̃(x

−
2 ), . . . , ẑ

>
q ϕ̃(x

−
n )) + g(ẑ>q+1ϕ̃(x

−
1 ), ẑ

>
q+1ϕ̃(x

−
2 ), . . . , ẑ

>
q+1ϕ̃(x

−
n )))]

= Ex−j [(g((t1 + t2)/2) + g((t1 + t2)/2))− (g(t1) + g(t2))]

= (1/2)Ex−j [g((t1 + t2)/2)− (g(t1) + g(t2))/2]

< 0, (7)

which is contradictory to the optimality of ϕ̂, and thereby the proof is completed.

Now we prove the Theorem 1 based on the above Lemma 2.
Theorem 1. Assume that the optimal feature embedding ϕ̂ ∈ argminϕ∈H LNCE(ϕ) and the corresponding distance
value Dϕ̂ij = (1− ϕ̂(xi)>ϕ̂(xj))/2. Then for any given µ ∈ [0, 1] and ε > 0, there exists sufficiently large N such that

min1≤i<j≤N {|Dϕ̂ij − µ|} < ε.

Proof. For any given µ ∈ [0, 1], by invoking Lemma 2, we have that there exists θ̃k = (θ
(1)
k , θ

(2)
k , . . . , θ

(d−1)
k )> and

θ̃l = (θ
(1)
l , θ

(2)
l , . . . , θ

(d−1)
l )> such that

‖θ̃k − 0‖2 < δ and ‖θ̃l − (arccos(1− 2µ), 0, . . . , 0)>‖2 < δ, (8)

1Here θ(1)i , θ
(2)
i , . . . , θ

(d−2)
i ∈ [0, π] and θ(d−1)

i ∈ [0, 2π].



Large-Margin Contrastive Learning with Distance Polarization Regularizer

and thus we have ∣∣∣Dϕ̂kl − µ∣∣∣
=
∣∣∣(1− cos(‖θ̃k − θ̃l‖2))/2− µ

∣∣∣
≤ |(1− cos(arccos(1− 2µ) + 2δ))/2− µ|
≤ |(1− (1− 2µ) +O(2δ))/2− µ|
≤ O(δ), (9)

which completes the proof by letting δ be sufficiently small.

B. Proof for Theorem 2
Theorem 2. For training data {xi}Ni=1 with underling class labels {yi}Ni=1 and any given τ ∈(0, 1/2), there exists a feature
embedding ϕ∈H such that

max
(i, j)∈I+

Dϕij ≤ 1/2− τ < 1/2 ≤ min
(k, l)∈I−

Dϕkl, (10)

where yi=1, 2, . . . , C for i=1, 2, . . . , N and C<d. Here the bivariate index sets I+={(i, j)|yi=yj , i, j=1, 2, . . . , N}
and I−={(i, j)|yi 6=yj , i, j=1, 2, . . . , N}.

Proof. For the training data examples {xi}Ni=1, we construct the mapping ϕ : Rm → Rd satisfying that

ϕ(xi) = eyi , (11)

where yi = 1, 2, . . . , C and {e1, e2, . . . , ed} is the standard orthogonal basis in the d-dimensional space. Then we have that

max
(i, j)∈I+

Dϕij = (1− e>yieyi)/2 = (1− ‖eyi‖22)/2 = 0, (12)

and
min

(k, l)∈I−
Dϕkl = (1− e>ykeyl)/2 = (1− 0)/2 = 1/2, (13)

which completes the proof.

C. Proof for Theorem 3
Theorem 3. Assume that ϕ∗∈argminϕ∈H LNCE(ϕ)+λR1(ϕ), and the underling class labels of training data {xi}Ni=1

are {yi}Ni=1. Then we have that

Eyi 6=yj [max(δ−µ−D
ϕ∗

ij , 0)] + Eyk=yl [max(Dϕ
∗

kl −δ
+
µ, 0)]

≤ (δ− − δ+)R1(ϕ
∗) + (Kmax/Kmin)/C

≤ 4(δ− − δ+)/λ+ (Kmax/Kmin)/C, (14)

where the constants δ−µ = δ−−µ, δ+µ = δ++µ, µ ∈ (0, δ−−δ+), Kmin = min1≤k≤C ‖y−k ·1N×1‖0, and Kmax =
max1≤k≤C ‖y−k ·1N×1‖0.

Proof. We denote that s1 ≤ s2 ≤ · · · ≤ sN(N−1)/2 is a ranking of the distances {Dϕ
∗

ij |1 ≤ i < j ≤ N}. Let
N+ = |{(i, j)|1 ≤ i < j ≤ N, yi = yj}| which is the number of intra-class pairs. Then for δ+ = sN+ , we have that

Eyi 6=yj [max(δ−µ−D
ϕ∗

ij , 0)] + Eyk=yl [max(Dϕ
∗

kl −δ
+
µ, 0)]

≤ (δ−µ − δ+µ )R0(ϕ
∗) + (N+/N)[max((1− δ+µ ), δ−µ )]

≤ (δ− − δ+)R1(ϕ
∗) + (Kmax/Kmin)/C. (15)
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Furthermore, for any ϕ0 satisfyingR1(ϕ0) = 0, by the optimality of ϕ∗, we have that

LNCE(ϕ
∗)+λR1(ϕ

∗) ≤ LNCE(ϕ0)+λR1(ϕ0) = LNCE(ϕ0), (16)

and thus

R1(ϕ
∗)

≤ (LNCE(ϕ0)− LNCE(ϕ
∗))/λ

≤ 1

λ

−log
eϕ0(x)

>ϕ0(x
+)

eϕ0(x)
>ϕ0(x

+)+
∑n
j=1eϕ0(x)

>ϕ0(x
−
j )

+ log
eϕ
∗(x)>ϕ∗(x+)

eϕ∗(x)>ϕ∗(x+)+
∑n
j=1eϕ

∗(x)>ϕ∗(x−j )


≤ 1

λ

(
−log

e−1

e−1+
∑n
j=1e1

+ log
e1

e1+
∑n
j=1e−1

)

≤ 1

λ
log

(
e1

e1+
∑n
j=1e−1

e−1+
∑n
j=1e1

e−1

)

≤ 1

λ
log

(
e2

e−1+
∑n
j=1e1

e1+
∑n
j=1e−1

)

≤ 1

λ
log
(
e2 · e2

)
≤ 4

λ
. (17)

By combining the above Eq. (15) and Eq. (17), we have that

Eyi 6=yj [max(δ−µ−D
ϕ∗

ij , 0)] + Eyk=yl [max(Dϕ
∗

kl −δ
+
µ, 0)] ≤ 4(δ− − δ+)/λ+ (Kmax/Kmin)/C, (18)

and the proof is completed.

D. Proof for Theorem 4
We introduce the following Lemma to prove the Theorem 4

Lemma 3. (Saunshi et al., 2019) Assume that ϕ∗ ∈ argminϕ∈H LNCE(ϕ) + λR1(ϕ). Then with probability at least 1− δ
over the training data X = {x1,x2, . . . ,xN}, for any ϕ ∈ H

LNCE(ϕ
∗) ≤ LNCE(ϕ) +O

(
Q1RH(λ)

N
+

√
Q2

N

)
, (19)

where Q1 =
√

1+1/n, Q2 = log(1/δ) · log2(n), the Rademacher Complexity RH(λ)=Eσ∈{±1}3dN [supϕ∈H(λ)〈σ,f〉],
and the restricted hypothesis spaceH(λ) = {ϕ|ϕ ∈ H, and R1(ϕ) ≤ 4/λ}.

Theorem 4. Let ϕ∗∈argminϕ∈H LNCE(ϕ) + λR1(ϕ). Then with probability at least 1− δ, we have that∣∣LTSM(ϕ∗)−LNCE(ϕ)
∣∣ ≤ O(Q1RH(λ)

N
+

√
Q2

N

)
, (20)

where Q1 =
√
1+1/n, Q2 = log(1/δ) · log2(n), and RH(λ) is monotonically decreasing w.r.t. λ.
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Proof. For the traditional cross entropy loss LTSM(ϕ), we have that

LTSM(ϕ)

= EX∼T [ inf
W∈RC×d

LCEP(Wϕ;X )]

= EX∼T

[
−log

eϕ(x)>µc

eϕ(x)>µc +
∑

eϕ(x)>µc−

]

= EX∼T

[
−log

eϕ(x)>Ex+∼p[ϕ(x+)]

eϕ(x)>Ex+∼p+ [ϕ(x+)] + nE[eϕ(x)>Ex−∼p− [ϕ(x−)]]

]

≥ EX∼T

[
−log

eϕ(x)>Ex+∼p[ϕ(x+)]

eϕ(x)>Ex+∼p+ [ϕ(x+)] + nEx−∼p− [eϕ(x)>ϕ(x−)]]

]

≥ EX∼T

[
−log

eϕ(x)>Ex+∼p[ϕ(x+)]

eϕ(x)>Ex+∼p+ [ϕ(x+)] + nEx−∼T [eϕ(x)>ϕ(x−)]]

]
= LNCE(ϕ). (21)

By combining the above Eq. (21) and Lemma 3, we finally have that

LTSM(ϕ∗)− LNCE(ϕ) ≤ LNCE(ϕ
∗)− LNCE(ϕ) ≤ O

(
Q1RH(λ)

N
+

√
Q2

N

)
, (22)

where RH(λ)=Eσ∈{±1}3dN [supϕ∈H(λ)〈σ,f〉] is monotonically decreasing w.r.t. λ.
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