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Abstract—The research on micro-expression recognition has
been drawing great attention in recent years, because of its great
potential in the lie detection, clinical diagnosis, and national
security. Amongst many challenges, data shortage stands out as it
directly prevents an accurate training of micro-expression recog-
nition algorithm. In this work, we present our approach within a
dataset alignment and active learning (DAAL) framework. DAAL
effectively queries minimum examples to label, as well as trans-
fers features from micro-expression dataset to macro-expression
dataset. Specifically, the features from micro-expression dataset
are mapped to the macro-expression dataset with a translator,
so that the classifier trained in macro-expression dataset can
be adjusted and adapted to boost the classification performance
on the micro-expression dataset. Besides, the most informative
examples in the micro-expression dataset are selected through
active learning in an iterative way, which effectively improves the
classification ability of the model. Comprehensive experiments
on CASME, CASME II, SAMM and SMIC databases firmly
demonstrate that the proposed DAAL outperforms previous
works by a large margin on micro-expression recognition task.

Index Terms—Dataset alignment, active learning, micro-
expression recognition.

I. INTRODUCTION

M ICRO-EXPRESSION is a facial action with an ex-
tremely short duration that can reveal the real emotion a

person tries to hide. Thus, micro-expression has great potential
in lie detection, clinical diagnosis, national security, and other
fields. Compared with ordinary dynamic facial expressions,
micro-expressions have much lower intensity and shorter du-
ration, which makes the automatic recognition very difficult.

Currently, micro-expression recognition methods can be
summarized into three categories. The first category is based
on traditional feature extractors [1]. Up to now, various fea-
ture descriptors have been proposed to capture low-intensity
micro-expression features. Zong et al. [2] proposed a feature
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descriptor of spatiotemporal hierarchy to enhance the ability
of describing micro-expressions, and a Kernel Group Sparse
Learning model was introduced to deal with micro-expression
features with hierarchical structure. This method has achieved
some promising recognition results on both CASME II and
SMIC database. The second category is based on deep learning
[3]–[5]. For example, Li et al. [6] applied a 3D flow-based
CNN model to video-based micro-expression recognition. The
deep learning features can better represent the fine motion
flow generated by subtle facial motion, which greatly enhances
the recognition performance. In the same year, Li et al. [7]
proposed a deep convolutional network model based on a
single APEX frame. Through extracting the APEX frame
of the micro-expression video sequences and fine-tuning the
VGG-Face model, this algorithm achieves the accuracy of
63%. Compared with the naked-eye recognized results, the
methods of these two categories have achieved significant
improvements. However, due to the limited micro-expression
examples, the performances of these methods are all limited
fundamentally. The third category is based on transfer learning
[8]–[10]. Its essential idea is to transfer the useful information
from the source domain to the target domain to assist the
recognition tasks in target domain. Based on transfer learning,
Peng et al. [11] proposed a convolutional neural network to
recognize the micro-expressions and obtained some promis-
ing results. Transfer learning is a good assistance to micro-
expression recognition, but they still need a certain number of
labeled examples so as to train effective models. Thus, how to
effectively recognize micro-expressions in case of extremely
small size of labeled examples is still a serious challenge.

In this paper, we innovatively propose the dataset alignment
and active learning (DAAL) framework for micro-expressions
recognition with an extremely small sample size. Dataset
alignment aims to acquire useful knowledge from the macro-
expression dataset to assist learning tasks in the micro-
expression dataset. The problem of small sample size of micro-
expression recognition is solved by dataset alignment, by
which a translator can be learned from the micro-expression
feature dataset to the macro-expression feature dataset. Ac-
tive learning can train an effective classifier with minimum
examples by selecting a few but high-quality examples. In
the active learning stage, the uncertainty criterion is firstly
adopted to establish an initial active learning model in the
micro-expression dataset. Subsequently, the most informative
examples in the micro-expression dataset are selected from a
candidate set in an iterative way, and added into the training
set after manual labeling, which can gradually improve the
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classification model. Note that the dataset alignment designed
in this paper is different from transfer learning, as transfer
learning is not applicable in our problem. If we transfer the
data from macro-expression space into micro-expression space
with transfer learning, the parameters of classifier would be
initialized with the micro-expression data. However, the micro-
expression examples can be used is very limited, which makes
the initial training impossible.

The main technical contributions of this paper can be
summarized as follows:

(1) This paper proposes a new Dataset Alignment and Active
Learning (DAAL) framework to solve the problem of
insufficient micro-expression examples. By using the un-
certainty criterion in iterative query process, high-quality
micro-expression examples are selected to build a good
micro-expression recognition model.

(2) The micro-expression data is translated and together with
macro-expression data for the establishment of the ini-
tial DAAL model in this paper. This translation process
for achieving dataset alignment between the micro- and
macro-expression datasets is designed, which can further
improve the recognition performance.

The rest of this paper is organized as follows. In Section II,
the state-of-the-art research of micro-expression recognition
and the related active learning are introduced in detail. The
proposed DAAL framework and its optimization solution are
given in Section III. Then, the experimental validation and
performance evaluation are presented in Section IV. Finally,
Section V concludes this paper.

II. RELATED WORK

A. Micro-expression Recognition

The traditional automatic micro-expression recognition
method is mainly composed of feature extraction and classi-
fication. To accomplish feature extraction, Pfister et al. [12]
extended the features of the Local Binary Pattern (LBP)
by adding time series and achieved the dynamic micro-
expressions analysis. Zhao et al. [13] used three orthogonal
plane local binary patterns (LBP-TOP) to describe the micro-
expression video clips. Experimental results show that the
LBP-TOP feature is effective for micro-expression recognition
tasks. Based on Zhao et al. [13], Ruiz-Hernandez et al.
[14] employed re-parameterization of second order Gaussian
jet to boost LBP-TOP. In order to better describe micro-
expressions, Wang et al. [15] proposed a new time-space
descriptor with six intersection points named LBP-SIP. LBP-
SIP can effectively reduce the redundant information in LBP-
TOP, thereby improving the recognition efficiency. Huang et
al. developed a variety of spatiotemporal descriptors, such
as SpatioTemporal LBP with Integrated Projection (STLBP-
IP) [16] and completed local quantized pattern-TOP (CLQP-
TOP) [17]. In addition to the above spatial-temporal based
descriptors, optical flow-based features have also been studied.
Xu et al. [18] proposed a Facial Dynamics Map (FDM) to
analyze the dynamic characteristics of micro-expressions. Liu

et al. [19] proposed a simple and effective Main Direction-
al Mean Optical flow (MDMO) to extract micro-expression
features. MDMO is a normalized statistical feature based on
the region of interest. It fully considers temporal and spatial
information and performs well. After extracting features, the
traditional classifiers such as SVM and K nearest neighbor
(KNN) classifier [20] are adopted to conduct micro-expression
recognition. Although the above methods based on feature
extraction and classification can recognize micro-expressions
to some extent, their recognition ability is far from ideal due
to the small sample size and poor example quality.

In recent years, deep learning has also been applied to
micro-expression recognition. Kim et al. [21] proposed a deep
learning framework for micro-expression recognition which
consists of a Convolutional Neural Network (CNN) and a
Long-term Short-term Memory (LSTM) recursive network. In
this framework, a representative emotion frame in each micro-
expression video clip is first selected to train the CNN. Then
the CNN features of each image frame in the video segment
are extracted to train the LSTM network, which ultimately
implementing micro-expression recognition. Takalkar et al.
[22] proposed a CNN-based model that uses two micro-
expression databases for data enhancement and generates a
wide range of synthetic image datasets. This algorithm solves
the small sample size problem of micro-expression recognition
and obtains a high accuracy.

The micro-expression recognition method based on transfer
learning has appeared only a few years ago, and the estab-
lishments of them are commonly based on singular value
decomposition (SVD) [23], coupled source domain targetized
[24], coupled metric learning [25], and transductive transfer
regression (TTRM) [26]. Jia et al. [23] proposed a linear
reconstruction of speech features to generate micro-expression
features using SVD. Zhu et al. [24] proposed a coupled source-
domain target recognition algorithm based on updated tag
vectors, which transfers rich speech data to micro-expression
and enhances the micro-expression recognition ability of the
method. Ben et al. [25] used a coupled metric learning method
to obtain a common subspace of micro-expression examples
and trained a more accurate micro-expression recognition
classifier. Zong et al. [26] paid attention to micro-expression
examples from another database, of which feature distribution
gap between the source and target domains is smaller than
[23], [24], and [25]. Sun et al. [8] proposed a knowledge
transfer technique that distills and transfers knowledge from
action unit for micro-expression recognition. The knowledge
from a pre-trained deep teacher neural network is distilled
and transferred to a shallow student neural network. Liu et
al. [9] proposed a neural micro-expression recognizer to solve
micro-expressions recognition tasks with small datasets. The
part-based model and two domain adaptation techniques were
their main contributions. Xia et al. [10] proposed two Ex-
pression Identity Disentangle Network, named MicroNet and
MacroNet, as the feature extractor to disentangle expression-
related features for micro- and macro-expression samples and
then fixed the MacroNet which is used to guide the fine-tuning
of MicroNet from both label and feature space so that the
MicroNet can efficiently capture the shared features of micro-
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expression and macro-expression samples. These methods out-
perform the state-of-the art non-transferring learning methods
in the same period. Different from References [8]–[10], the
proposed method aims to deal with the micro-expression
recognition based on semi-supervised learning. Considering
that there are extremely few labeled data in the training dataset,
the proposed method does not adopt deep learning methods,
but adopts an active learning method of making uses of the
unlabeled data in the training dataset, meanwhile aligns these
data with the data in another domain, and uses the classifier in
another domain to predict and recognize micro-expressions.

B. Active Learning
Active learning [27], [28] is an effective method to solve

small sample size problems. In the active learning process,
the design of the query function is the most important. The
two commonly used strategies are uncertainty criterion and
diversity criterion. The uncertainty criterion is to find an
example with high uncertainty, that is, to select an example
with abundant information to adjust the training model. Di-
versity criterion refers to selecting from the most uncertain
low-redundancy examples. Active learning algorithms based
on uncertainty criterion can generally be divided into three
categories.

The first category is based on the querying committee active
learning, which considers the uncertainty of the example with
the greatest disagreement between the learner committees.
Tuia et al. [29] proposed Entropy-based Query by Bagging
(EQB) to reduce computational complexity and the search
time of hypothesis space. Copa et al. [30] improved the
EQB algorithm to further avoid oversampling. Methods in this
category have the advantage of high adaptability for all kinds
of models, but require training a certain number of classifiers
and have a high computational complexity.

The second category is based on the marginal classifier,
which determines the uncertainty of the examples by mea-
suring the distance from the candidate object to the marginal
classifier. Support Vector Machine (SVM) [31] is a good basic
algorithm of active learning. Schohn et al. [32] made full use
of the geometric properties of SVM and proposed marginal
sampling. The main strategy of marginal sampling is to select
the examples that are closest to the classification hyperplane.
To extend to multi-class cases, Demir et al. [33] proposed
multi-level uncertain sampling that selects the most uncertain
examples based on confidence. Since the uncertainty is learned
with both distribution information and the kernel weights, it
can capture the various complex data structure effectively and
the query examples can improve the generalization of the
classifier more significantly.

The third category is based on the posterior probability.
These algorithms determine the uncertain region by analyzing
the posterior probability for example selection. Thus, they rely
on the posterior probability of the examples and show the
satisfactory computation speed. Rajan et al. [34] proposed a
new active learning algorithm, of which the key idea is to se-
lect examples with the greatest change in posterior probability,
leading to great compatibility with posterior probability based
classifiers.

Currently, researchers are combining active learning with
deep learning. Since training a deep neural network requires
a lot of labeled data, Wang et al [35] proposed an active
learning algorithm based on deep learning (AL-DL), which can
be applied to stacked RBMs or stacked self-encoder models.
The disadvantage is that the AL-DL algorithm treats the deep
training model and active learning as two separate processes.
In order to effectively combine active learning with deep
learning, Ranganathan [36] integrated active learning criteria
into the loss function of the Deep Belief Network (DBN).
The algorithm calculates the cross-entropy loss and entropy
loss on the labeled examples simultaneously, aiming to form a
joint loss function to optimize the DBN for better classification
results.

It should be noted that the proposed DAAL is novel,
although uncertainty criterion has been fully explored in other
fields. However, compared to the prior active learning based
uncertainty, the differences are mainly on three aspects: (1)
In terms of motivation: The motivation from the prior active
learning based on uncertainty is to select a few unlabeled
examples to query their label by its uncertainty prediction
since those samples with large uncertainty have greater prob-
ability of being more informative and representative. We are
motivated by the uncertainty prediction. The novelty of the
proposed method lies in the extension of such unlabeled-
examples selection for querying their labels onto the cases
that the number of labeled samples is extremely small in a
target domain (micro-expressions) but with sufficient labeled
samples of a relevant source domain (macro-expressions). (2)
In terms of objective function: for instance, active learning
by querying informative and representative examples (QUIRE)
[43] is one of famous active learning methods based on un-
certainty. QUIRE minimizes an evaluation function depending
on uncertainty based on the labelled and unlabeled data, and
simply provides a systematic way for selecting samples in the
only one domain. However, the proposed DAAL minimizes
classification error of examples from source and target do-
mains and an uncertainty evaluation function of the features
of all candidate examples translated from the target domain
into the source domain. (3) In terms of application: This paper
targets on the micro-expression recognition problem with the
help of sufficient macro-expression data and a few unlabelled
and labelled micro-expression data. Such heterogeneous data
cannot be handled only by the uncertainty criterion. Besides
uncertainty, the newly proposed DAAL alleviates the feature
variance between micro-expressions and macro-expressions
through mapping the micro-expression features from the target
domain into the source domain by a translator. This means
DAAL simultaneously alleviates feature bias between micro-
expressions and macro-expressions and incorporates querying
and manually labelling examples from the candidate unla-
belled micro-expression examples by uncertainty criterion.
The strategy assures the performance improvements on micro-
expression recognition under data shortage. Additional perfor-
mance comparisons between active learning methods including
QUIRE and the proposed DAAL are included in Sections IV.
F.
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Fig. 1. Pipeline of the proposed DAAL framework. Colored blocks and white
blocks represent labeled and unlabeled examples, respectively.

C. Active Transfer Learning

Recently, there are also some works that combine active
learning with transfer learning to actively decide which ex-
amples can be transferred from source domain and target
domain. For instance, Deng et al. [37] exploited stacked sparse
auto encoder to transfer the knowledge from source domain
to target domain, and utilized two active learning strategies
for example selection, namely: 1) selecting a small number
of the most informative examples from the target domain,
and 2) removing other bad examples which are incompatible
with the target distribution in the source domain. Lin et al.
[38] proposed a deep-mapping-based heterogeneous transfer
learning model via querying salient examples, and sought
the correlation between source and target domains by using
canonical correlation analysis layer by layer. However, nega-
tive similarities between source and target domains may lead to
negative transfer problem. In order to eliminate this, Peng et al.
[39] minimized the maximum mean discrepancy by introduc-
ing the orthogonal projection matrix and the weight coefficient
vector, and proposed an information diversity term to select
the informative and discriminative subsets from the source
domain. In this paper, we aim to recognize micro-expressions,
which are in the target domain, while the macro-expressions
are from the source domain. The proposed translator in this
paper can map the micro-expression examples to the macro-
expression space. In addition, the classifier is trained by the
macro- and micro-expression datasets, in which most of the
examples are macro-expressions and only a few of them are
micro-expressions. Therefore, the proposed method is different
from active transfer learning.

III. THE PROPOSED METHODOLOGY

This section details the framework of Dataset Alignment
and Active Learning (DAAL) and then describes the related
optimization process.

A. Problem Description

Currently, the features extracted from micro-expression se-
quences by hand-crafted feature descriptors usually have very
low discriminability, especially when the number of examples
in current micro-expression datasets is too small. Therefore,
DAAL framework is proposed to address such small sample
problem. Some notations and descriptions are summarized in

Table I. The notations xi
s ∈ Rds is the i-th example from

the macro-expression dataset, where ds is feature dimension
of this dataset. xi

l ∈ Rdt and xi
u ∈ Rdt are the i-th labeled

and the i-th unlabeled micro-expression examples, respective-
ly, where dt is feature dimension of these datasets. Here
Ls =

{(
xi
s,y

i
s

)}ns

i=1
is a labeled training macro-expression

dataset, where yi
s is the class label of xi

s, and ns is the number
of labeled examples in the macro-expression dataset. Besides,
Ll =

{(
xi
l,y

i
l

)}nl

i=1
is a labeled training micro-expression

dataset, where yi
l is the label of xi

l , and nl is the number of
labeled examples in the micro-expression dataset. The micro-
expression candidate dataset is defined as Lu =

{
xi
u

}nu

i=1
with

unknown labels and xi
u ∈ Rdt , where nu is the number of

unlabeled examples in the micro-expression dataset.
Active learning relies on the knowledge of Ll to train

an initial classifier, then optimizes the performance of the
classifier by iteratively selecting the most critical examples
from Lu. After that, these critical examples are manually
labeled and then added to the training set. Thus, the quality
of the initial classifier is critical to the overall performance
of the algorithm. However, the sample size of Ll is usually
very small with little information, which makes it difficult
to train an ideal classifier for micro-expression recognition.
Therefore, we hope to improve the effect of active learning
by introducing dataset alignment. Through dataset alignment,
rich relevant information is linked together between the macro-
and the micro-expression datasets, and thus the active learning
aided model training can be carried out with the assistance of
Ls. Based on the above analysis, we aim to establish a joint
learning framework of active learning and dataset alignment
to improve the effect of micro-expression recognition.

The whole pipeline of the proposed algorithm is presented
in Fig. 1. Through a translator W, the micro-expression ex-
amples are mapped into the macro-expression space, and an
initial classification model is trained with the labelled macro-
expression examples and limited labelled micro-expression
examples in a seed set. Subsequently, the most informative
examples in the micro-expression dataset are selected from
a candidate set, which are added into the training set after
manual labeling to further incrementally train the classification
model. The above process iterates so that the final model with
good classification performance can be obtained.

B. Dataset Alignment

Any classifier model f∗ trained on labeled examples can be
written as

f∗ = argmin
f∈F

(
λJ (f) +

nl∑
i=1

ℓ
(
yil , f

(
xi
l

)))
, (1)

where F is a hypothesis space; J (f) represents a regulariza-
tion term to constrain the complexity of the classification mod-
el f which is a functionality defined in the hypothesis space
[40]; λ is a penalty coefficient on J (f); and ℓ

(
yi
l , f
(
xi
l

))
denotes a loss function with f

(
xi
l

)
being the output of f on

xi
l .
Dataset alignment aims to acquire useful knowledge from

the macro-expression dataset to assist the learning tasks in the
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TABLE I
LIST OF IMPORTANT MATHEMATICAL NOTATIONS

Symbol Description Symbol Description Symbol Description

xi
s

The i-th example from the
macro-expression dataset. xi

l
The i-th labeled example from
the micro-expression dataset. xi

u
The i-th unlabeled example from
the micro-expression dataset.

Ls
The labeled macro-expression
dataset. Ll

The labeled micro-expression
dataset. Lu

The unlabeled micro-expression
candidate dataset.

yi
s The class label of xi

s. yi
l The class label of xi

l .

ns
The number of labeled examples
in the macro-expression dataset. nl

The number of labeled examples
in the micro-expression dataset. nu

The number of unlabeled examples
in the micro-expression dataset.

ds
The feature dimension of the
macro-expression dataset. dt

The feature dimension of the
micro-expression dataset.

micro-expression dataset. In order to ensure the consistency
of data distribution between micro- and macro-expression
datasets, we adopt a translator W by learning a feature map-
ping from the micro-expression space to the macro-expression
space. The common subspace of the two datasets can be
obtained, which is helpful for the active learning step that
will be introduced in Section III-C. Specifically, the dataset
alignment is achieved by solving

argmin
f,W

 λJ (f) +
ns∑
i=1

(
yis − f

(
xi
s

))2
+

nl∑
i=1

(
yil − f

(
W⊤xi

l

))2
+R (W)

 , (2)

where R (W) is a regularization term. By utilizing the trans-
lator matrix W, any micro-expression example xi

l is mapped
into the macro-expression space as W⊤xi

l , so that the classifi-
cation information of macro-expression dataset can be shared
for micro-expression recognition.

The formulation (2) is to solve the binary classification
problem, but the micro-expression recognition is a multi-
classification problem. Therefore, we extend this model to a
multi-class framework. The multi-class task can be divided
into C binary-class tasks (C is the number of class), which
are determined by classifiers f1, f2, ..., fC and the labels of
examples can be defined as vectors yi

s=
(
yi1s , yi2s , ...,yiCs

)⊤,
yi
l=
(
yi1l , yi2l , ..., yiCl

)⊤
, where

yics =

{
1, if xi

s is a positive sample of the c-th classifier
−1, otherwise

and

yicl =

{
1, if xi

l is a positive sample of the c-th classifier
−1, otherwise

.

Therefore, a multi-class dataset alignment framework can
be written as

arg min
Q,f,W

C∑
c=1

(
J (fc) +

ns∑
i=1

(
yics − fc

(
xi
s

))2
+

nl∑
i=1

(
yicl − fc

(
W⊤xi

l

))2)
+R (W) ,

(3)

where
ns∑
i=1

(
yics − fc

(
xi
s

))2 represents the structure risk of

labeled examples from the macro-expression dataset, and
nl∑
i=1

(
yicl − fc

(
W⊤xi

l

))2 represents the structure risk of fc on

the labeled micro-expression examples which are translated by
W.

C. Active Learning

In the active learning, the criterion for picking up the critical
examples from the candidate set is the core problem [41]. In
this paper, we introduce structure risk minimization into active
learning [42], and use the uncertainty criterion based on the
decision boundary to evaluate the examples.

Based on the uncertainty criterion [32], the examples closest
to the decision boundary are

Q∗ = argmin
x∈Q

|f∗ (x)| , (4)

where Q∗ and Q are respectively an optimal subset and a
candidate set for example selection in Lu. Then, the selected
examples are added into the training set to optimize the classi-
fier performance. Therefore, Eq. (1) can be further formulated
as

{f∗,Q∗} =argmin
Q,f

 λJ (f) +
nl∑
i=1

ℓ
(
yil , f

(
xi
l

))
+
∑
x∈Q

ℓ (ŷ, f (x))

 , (5)

where ŷ ∈ {−1, 1} is pseudo label of x. The maximum
possible regularized risk after querying the samples in Q can
be written as

max
ŷ:∀x∈Q

min
Q,f

 λJ (f) +
nl∑
i=1

ℓ
(
yil , f

(
xi
l

))
+
∑
x∈Q

ℓ (ŷ, f (x))

 . (6)

Fixing Q and f , we minimize the worst-case risk introduced
by the query samples to solve Eq.(6) w.r.t. ŷ. The worst case
should be that the pseudo labels are given by wrong labels, i.
e.

ŷ = −sign(f(x)). (7)

Then the related risk terms are represented by

min
Q,f

 λJ (f) +
nl∑
i=1

ℓ
(
yil , f

(
xi
l

))
+
∑
x∈Q

(
f(x)

2
+ 2 |f (x)|+ 1

)
 , (8)

which is still an upper bound of the true risk. In order to
simplify the computation, we choose the square loss and
remove the constant term, and then the following Eq.(9) can
be derived, which is

{f∗,Q∗} =argmin
Q,f

 λJ (f) +
nl∑
i=1

(
yil − f

(
W⊤xi

l

))2
+
∑
x∈Q

(
f(x)

2
+ 2 |f (x)|

)
 .

(9)
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Based on the above analysis, we construct a multi-class
framework based on Eq. (9) as

arg min
Q,f,W

C∑
c=1

(
J (fc)+

nl∑
i=1

(
yicl −fc

(
W⊤xi

l

))2
+
∑
xi∈Q

(
fc
(
W⊤xi

)2
+2
∣∣fc (W⊤xi

)∣∣) ,

(10)
where

∑
xi∈Q

(
fc
(
W⊤xi

)2
+ 2

∣∣fc (W⊤xi

)∣∣) is the uncertain-

ty evaluation of all candidate examples, which can be viewed
as a function of distances between the examples and their
classification boundaries [32] [43].

D. The Integrated Dataset Alignment and Active Learning
(DAAL) Framework

In order to balance the penalties on the classification error
of macro- and micro-expression examples, two nonnegative
parameters Cs and Ct are introduced to the DAAL framework
based on Eq. (3) and Eq. (10) as

arg min
Q,f,W

C∑
c=1

{
J (fc)+

Cs

2

(
ns∑
i=1

(
yics −fc

(
xi
s

))2)

+
Ct

2

(
nl∑
i=1

(
yicl −fc

(
W⊤xi

l

))2
+
∑
xi∈Q

(
fc
(
W⊤xi

)2
+2
∣∣fc (W⊤xi

)∣∣))}
+R (W) .

(11)
With the assistance of active learning, this model can select

micro-expression examples from multiple categories with the
richest information. Also, the effective supervised information
from the macro-expression dataset can be used to make up
for the insufficient labeled micro-expression data in the initial
stage of active learning.

For the classifier fc = wc
⊤x + bc with wc being the

parameter and bc being the offset, then the optimization
problem is formulated as

argmin
{(wc,bc)},W,Q

C∑
c=1

{
1

2

∥∥∥∥( wc

bc

)∥∥∥∥2
2

+
Cs

2

ns∑
i=1

(
yics −

(
xi
s

1

)⊤(
wc

bc

))2

+
Ct

2

[
nl∑
i=1

(
yicl −

(
xi
l

1

)⊤

W

(
wc

bc

))2

+
∑
xi∈Q

(( xi
l

1

)⊤

W

(
wc

bc

))2

+2

∣∣∣∣∣
(

xi
l

1

)⊤

W

(
wc

bc

)∣∣∣∣∣
)]}

+R (W) .

(12)

To simplify Eq. (12), we denote wc
∆
=

(
wc

bc

)
, xi

l
∆
=(

xi
l

1

)
, xi

u
∆
=

(
xi
u

1

)
and use the Ridge regularization

R (W)= 1
2 ∥W∥2F , so the final objective function becomes

argmin
{wc},W,

∑
qi=1

C∑
c=1

{
1

2
∥wc∥22 +

Cs

2

∥∥Yc
s −X⊤

s wc

∥∥2
2

+
Ct

2

[∥∥Yc
l −X⊤

l Wwc

∥∥2
2

+

(
nu∑
i=1

qi

(((
xi
u

)⊤
Wwc

)2
+ 2

∣∣∣(xi
u

)⊤
Wwc

∣∣∣ ))]}
+

1

2
∥W∥2F ,

(13)

where Xs =
(
x1
s,x

2
s, ...,x

ns
s

)
and Xl =

(
x1
l ,x

2
l , ...,x

nl

l

)
are the macro- and micro-expression datasets, respective-
ly; Yc

s=
(
y1c
s ,y2c

s , ...,ynsc
s

)⊤
, Yc

l=
(
y1c
l ,y2c

l , ...,ynlc
l

)⊤
; and

qi ∈ {0, 1} , i = 1, 2, ..., nu are used to indicate which
example is queried in Lu.

E. Optimization

Eq. (13) is a non-convex optimization problem and can be
solved by an alternative optimization procedure. Each wc, W
and qi can be solved by fixing the rest parameters as constants.

1) Computing wc, for fixed W and qi:
We first introduce an auxiliary vector z = X⊤

q Wwc, where
Xq is assumed as a Lu subset corresponding to the data matrix
determined by qi. The augmented Lagrangian function of Eq.
(13) is then given by

Lρ (wc, z,λ)

=
1

2
∥wc∥22 +

Cs

2

∥∥Yc
s −X⊤

s wc

∥∥2
2

+
Ct

2

(∥∥Yc
l −X⊤

l Wwc

∥∥2
2
+ ∥z∥22 + 2∥z∥1

)
+ λ⊤ (z−X⊤

q Wwc

)
+

ρ

2

∥∥z−X⊤
q Wwc

∥∥2
2
,

(14)

where λ is a Lagrangian multiplier and ρ > 0 is a constraint
penalty parameter.

The variables wc, z, λ in Eq. (14) can be solved separately
with the basic Gauss-Seidel iteration method. At the iteration
k + 1(k ≥ 0), we have

wk+1
c =argmin

wc

Lρ

(
wc, z

k,λk
)

zk+1=argmin
z

Lρ

(
wc

k+1, z,λk
)

λk+1 = λk+ρ
(
zk+1−X⊤

q Wwk+1
c

) . (15)

Then, the details related to the solutions of sub-problems Eq.
(15) are presented below. The sub-problem on wk+1

c becomes
a typical convex problem and can be effectively solved by
simple mathematical manipulations, namely

wk+1
c = A−1r, (16)
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where A = I+CsXsX
⊤
s +CtW

⊤XlX
⊤
l W+ρW⊤XqX

⊤
q W

with I being an identity matrix, and r = CsXsY
c
s +

CtW
⊤XlY

c
s +W⊤Xqλ

k+ρW⊤Xqz
k.

As for the sub-problem regarding zk+1 in Eq. (15), we have

zk+1=argmin
z

Ct

2

(
∥z∥22 + 2∥z∥1

)
+
(
λk
)⊤

z

+
ρ

2

∥∥z−X⊤
q Wwk+1

c

∥∥2
2

=argmin
z

1

2
∥z− v∥22 + η∥z∥1,

(17)

where v =
ρ
Ct

X⊤
q Wwk+1

c −λk

Ct
ρ
Ct

+1 and η= 1
ρ
Ct

+1 . Eq. (17) is a
typical sparse representation problem and can be easily solved
via [44].

2) Computing W, for fixed wc and qi:
Similar to wc, by introducing zc = X⊤

q Wwc, the augment-
ed Lagrangian function with respect to W is presented as

Lρ (W, z1, z2, . . . , zC ,λ1,λ2, . . . ,λC)

=

C∑
c=1

(
Ct

2

(∥∥Yc
l −X⊤

l Wwc

∥∥2
2
+ ∥zc∥22 + 2∥zc∥1

)
+λc

⊤ (zc −X⊤
q Wwc

)
+

ρ

2

∥∥zc −X⊤
q Wwc

∥∥2
2

)
+

1

2
∥W∥2F ,

(18)

where zc, λc and wc for c = 1, 2, ..., C correspond to the
parameters related to class c . The variables W, z1, z2, ..., zC ,
λ1,λ2, ...,λC in Eq. (18) can also be solved separately. At
iteration k + 1(k ≥ 0), we have

Wk+1=argmin
W

Lρ

(
W, zk1 , z

k
2 , . . . , z

k
C ,λ

k
1 ,λ

k
2 , . . . ,λ

k
C

)
zk+1
c =argmin

zc

Ct

2

(∥∥Yc
l −X⊤

l W
k+1wc

∥∥2
2
+ ∥zc∥22

+ 2∥zc∥1
)
+
(
λk
c

)⊤ (
zc −X⊤

q W
k+1wc

)
+

ρ

2

∥∥zc −X⊤
q W

k+1wc

∥∥2
2

λk+1
c =λk

c+ρ
(
zk+1
c −X⊤

q W
k+1wc

)
.

(19)
The sub-problem about Wk+1 becomes a typical convex

optimization problem as
Wk+1

=argmin
W

Lρ

(
W, zk1 , z

k
2 , . . . , z

k
C ,λ

k
1 ,λ

k
2 , . . . ,λ

k
C

)
=argmin

W

1

2
∥W∥2F +

C∑
c=1

(
Ct

2

(∥∥Yc
l −X⊤

l Wwc

∥∥2
2

)
−

λc
⊤X⊤

q Wwc+
ρ

2

∥∥zc−X⊤
q Wwc

∥∥2
2

)
,

(20)
which can be solved by gradient descent algorithm.

3) Computing qi, for fixed wc and W:
When wc and W are fixed, Eq. (13) can be converted into

solving the sub-problem of qi. The formula for solving qi can
be written as

argmin∑
qi=1

nu∑
i=1

qi

(
C∑

c=1

((
xi
u

)⊤
Wwc

)2
+2
∣∣∣(xi

u

)⊤
Wwc

∣∣∣).
(21)

Algorithm 1 Solution for Eq. (13)
Input:

The training macro-expression dataset:Ls =
{(

xi
s,y

i
s

)}ns

i=1
.

The training micro-expression dataset:Ll =
{(

xi
l ,y

i
l

)}nl

i=1
.

The candidate micro-expression dataset:Lu =
{
xi
u

}nu

i=1
.

Two nonnegative trade-off parameters Cs and Ct.
Output:

wc(c = 1, ..., C), W, qi

Algorithm steps:
1: Initialize: q(0)i = 0, ε = 10−3, maxIter = 50, k = 0.
2: Calculate w

(0)
c for c = 1, · · · , C by solving the problem:

min
wc

1
2
∥wc∥22+

Cs
2

∥∥Yc
s−X⊤

s wc

∥∥2

2

3: Calculate W(0) before selecting examples from the candidate set
by solving the problem:

min
W

1
2
∥W∥2F +

C∑
c=1

(
Ct
2

(∥∥Yc
l −X⊤

l Wwc

∥∥2

2

))
4: while not converged or k ≤ maxIter do
5: Update q

(k+1)
i according to Eq. (21) with W(k) and w

(k)
c

fixed;
6: for c = 1 : C do
7: Initialize: wc

(k+1) = 0, z(k+1) = 0, λ(k+1) = 0,
8: while not converged do
9: Update w

(k+1)
c according to Eq. (16) with W(k)

and q
(k+1)
i fixed;

10: end while
11: end for
12: Initialize: z(k+1)

c = 0 for c = 1, . . . , C, λ(k+1) = 0, ρ = 1,
13: while not converged do
14: Update W(k+1) according to Eq. (20) with w

(k+1)
c

and q
(k+1)
i fixed;

15: end while
16: k = k + 1
17: end while

In Eq. (21), assuming that qi is relaxed to the continuous space
[0, 1], then linear programming can be used in its solution.
While the values of qi for i = 1, . . . , nu should be either 1
or 0, so the obtained qi for i = 1, . . . , nu are rearranged, and
the maximum value is set to 1 and the others are zeros.

Based on the above analysis, the whole procedure of our
solutions is presented in Algorithm 1.

IV. EXPERIMENTS

This section presents the experimental results on four micro-
expression databases, evaluates the impact of the penalty
coefficients of DAAL on the performance, and also conducts
some ablation studies on the proposed DAAL method.

A. Databases

CK+ [45], RAF-DB [46], AffectNet [47], CASME [48],
CASME II [49], SAMM [50] and SMIC [51] databases are
used for algorithm evaluation. Fig. 2 shows the snapshots of
seven macro-/ micro-expression databases.

CK+ includes 593 image sequences from 123 subjects.
In addition, 327 out of the 593 sequences have emotion
labels. CK+ database is commonly used for facial expression
recognition and contains 7 categories of human emotions,
such as happiness, surprise, fear, sadness, disgust, anger and
contempt.
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(a) CK+ (b) RAF-DB (c) AffectNet (d) CASME (e) CASME II (f) SAMM (g) SMIC

Fig. 2. Snapshots of seven macro-/ micro-expression databases. The rectangle shows where the face muscles change. The facial features of all the databases
are properly aligned.

RAF-DB database contains single and mixed expressions
of 29,672 images from the real world. We use six categories
(Surprise, Fear, Disgust, Happiness, Sadness, and Anger) in
the single expression subset. In order to meet the requirements
of data alignment between micro-expression dataset (collected
in laboratory environment) and macro-expression dataset, all
the macro-expression samples are carefully screened. Those
images with non-frontal head, occlusion or pollution and
even too bright or too dark lighting are removed from the
dataset, and namely, samples with better shooting conditions
are left. Finally, 6248 macro-expression samples are used for
experiments.

AffectNet database contains 420,299 images captured in the
real world. It includes 11 categories of annotated emotions,
such as Neutral, Happiness, Sadness, Surprise, Fear, Disgust,
Anger, Contempt, None, Uncertain, No-face, and 7 categories
(Happiness, Sadness, Surprise, Fear, Disgust, Anger, and Con-
tempt) are selected. We perform the same pre-processing as
the operations on RAF-DB, and 69,027 samples leaves for
experiments.

CASME database consists of 195 micro-expressions exam-
ples from 20 subjects. The examples were taken at 640×480
under 60fps and contain seven emotionshappiness, surprise,
fear, sadness, disgust, repression and tension. CASME II
is an extension of CASME, which consists of 247 micro-
expression segments captured from 26 subjects, using high
speed camera with 200fps to capture the time-varying process
of micro-expressions and relieved the influence of illumination
variation. Compared with CASME, examples in CASME II
are larger in image size, therefore can provide more detailed
information of facial muscle movement. To simplify the e-
motion classification based on CASME, CASME II divides
the micro-expressions into happiness, surprise, fear, sadness,
disgust, repression, and others.

SAMM database contains 159 micro-expressions from 29
subjects at 200 fps. Consistent with CASME, SAMM also
contains seven emotions:anger, contempt, happiness, surprise,
fear, sadness and disgust. It uses similar procedures like
CASME II but has a higher image resolution and employs
an array of LEDs to avoid flickering. Because of the creators
with professional rating skills, these recorded expressions
are obtained from stricter lab situations and labeled more
accurately.

SMIC database contains 164 spontaneous micro-expressions
from 16 subjects. It is recorded by 100 fps high-speed cameras.
The participants are requested to watch high emotional video
clips with punishment and threat in an interrogation room to
induce the participants’ micro-expressions, so as to establish
the database. The emotion categories in SMIC are positive,
negative and surprise.

B. Experimental Settings

In order to verify the effectiveness of DAAL, all experi-
ments are carried out on two databases, including a macro-
expression database and a micro-expression database. We
choose CK+, RAF-DB and AffectNet as the macro-expression
databases and the other four as the micro-expression database
for experiments, forming twelve dataset combinations which
are respectively denoted as CK+&CASME, CK+&CASME
II, CK+&SAMM, CK+&SMIC, RAF-DB&CASME, RAF-
DB&CASME II, RAF-DB&SAMM, RAF-DB&SMIC, Af-
fectNet&CASME, AffectNet&CASME II, AffectNet&SAMM
and AffectNet&SMIC.

To achieve dataset alignment and use a unified e-
valuation metric, for CK+&CASME, CK+&CASME II,
CK+&SAMM, RAF-DB&CASME, RAF-DB&CASME II,
RAF-DB&SAMM, AffectNet&CASME, AffectNet&CASME
II, AffectNet&SAMM, we choose three categories of ex-
amples: happiness, surprise and disgust, which are common
included in these four databases and have larger example num-
bers. Since the proposed method is a semi-supervised learning
method, and the experimental dataset needs to be divided
into the training and test datasets. Moreover, the training set
contains labeled and unlabeled samples. The samples from
the categories of fear and sadness are too few to train in CK+,
CASME, CASME II, SAMM, therefore, we do not choose
the samples of these two categories. For CK+&SMIC, RAF-
DB&SMIC, AffectNet&SMIC, we merge seven categories in
CK+, RAF-DB and AffectNet into three classes to keep the
consistency with SMIC. The happy micro-expressions are
classified into ’Positive’ class as they indicate good emotions
of subjects. In contrast, the disgust, sadness, fear, contempt and
anger micro-expressions are classified into ’Negative’ class as
they are usually considered as bad emotions. For above twelve
dataset combinations, LBP can explicitly reflect a statistical
distribution of local binary patterns, in addition, it is suitable
to describe the feature of macro-expression which may be an
image. While a micro-expression is an image sequence, and
MDMO has been shown its best feature representation ability
in the field of micro-expression recognition [52]. Therefore,
LBP and MDMO are respectively used to extract the features
of macro-expressions and micro-expressions. Although LBP
and MDMO have different characteristics, we assume that
the features of macro-expression and micro-expression can
be translated by a linear translator W, because this model
is relatively simple. The proposed model takes advantage of a
linear translator W to transform the two features of LBP and
MDMO into the same feature space.

The implementation details of DAAL is as follows: for each
database combination, all examples of the macro-expression
database are used for training. The micro-expression database
is firstly divided into two parts, each kind of example is
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randomly divided, one-third as the test set, two-thirds as the
’training set’ (Note: the subjects in the test set and the ’training
set’ are not crossed). Then, the ’training set’ is divided into two
parts again. From the ’training set’, K examples are selected
as the seed set for each kind of emotion and the rest constitutes
the candidate pool. The value of K is selected to be 20% of
the number of micro-expression samples, therefore, the values
of K are selected as 1, 2, 1, 3 on CASME, CASMEII, SAMM
and SMIC respectively combined with any of the three macro-
expression databases (CK+, RAF-DB and AffectNet). Finally,
the micro-expression database is divided into three parts:
test set, seed set and candidate pool. All macro-expression
examples and seed set together constitute the final training set.
Linear classifier and cross validation are used to determine
the penalty coefficients Cs and Ct, which are selected from
the grid

{
10−1, 1, 10, 102,103,104

}
and all the experimental

results are reported under optimal parameters.
DAAL is an iterative process, in each iteration the most

valuable query example from the candidate pool is select-
ed and added into the seed set after manual tagging. The
classifier is subsequently trained with the updated seed set.
The accuracy (noted as Acc. for short), unweighted average
recall (UAR) and F1-score [26] on the test set are used as the
evaluation criterion of the proposed method. Accuracy is the
fraction of correct classifications. UAR can measure the direct
unweighted average multi-class recall performance. F1-score
is the harmonic mean of the precision and recall. Besides, there
is another evaluation metric called weighted average recall
(WAR), measuring the weighted average multiclass recall
performance, which is equal to accuracy. Since the test set,
seed set, and candidate pool are randomly obtained, we repeat
each experiment 20 times independently and the averaged
accuracy, the averaged unweighted average recall (UAR) and
the averaged F1-score are calculated as the final result.

C. Impact of Cs and Ct

We evaluate the impact of the penalty coefficients Cs and Ct

on the performance of DAAL using CK+&CASME II. Note
that Cs and Ct are parameters to balance the dataset alignment
and active learning in the whole DAAL framework, so they are
important to improve the micro-expression recognition perfor-
mance. To study their impact, we first fix Ct=103 and select
Cs from

{
10−1, 1, 10, 102, 103, 104

}
. The number of query

examples is set to {1, 2, 3, 4, 5}, respectively. Subsequently, we
fix Cs=102 and select Ct from

{
10−1, 1, 10, 102, 103, 104

}
.

The number of query examples is also set as {1, 2, 3, 4, 5},
respectively. We report the accuracies w.r.t. the change of the
number of query examples for the proposed DAAL in Fig. 3,
from which we can see that Cs=102 is a turning point with
fixed numbers of query examples and the accuracy reaches
the peak on CK+&CASME II. When Cs is selected from{
10−1, 1, 10, 102

}
, there is a positive correlation between the

accuracy and Cs , while an opposite tendency can be witnessed
when Cs is greater than 102. It is consistent with the structural
risk minimization theory. Cs is a penalty parameter on clas-
sification error of macro-expression examples. If Cs is small,
the classifier cannot fit macro-expression examples well and

Fig. 3. The impact of Cs on
the performance of the propo-
sed DAAL on CK+&CASME II.

Fig. 4. The impact of Ct on
the performance of the propo-
sed DAAL on CK+&CASME II.

Fig. 5. The impact of K on
the performance of the propo-
sed DAAL on CK+&CASME II.

Fig. 6. Results of ablation study
on the CK+&CASME II

less useful information is extracted from the macro-expression
dataset, which will decrease the effect of dataset alignment. If
Cs is too large, the classifier may over-fit the macro-expression
examples, which causes poor dataset alignment performance
on the heterogeneous data of macro-expression and micro-
expression. On the other hand, the competition exists between
dataset alignment and active learning in our DAAL framework.
If the small number of labeled micro-expression examples on
which active learning relies are underestimated, the classifier
may have opposite evaluation of the example information
in candidate pool, causing bad effect on active learning.
Similarly, as shown in Fig. 4, Ct=103 is a turning point with
the fixed number of query examples and accuracy reaches
the peak on CK+&CASME II datasets. There is a positive
correlation between the accuracy and Ct when Ct is smaller
than 103. Once Ct is larger than 103, the accuracy decreases
with the increase of Ct. Ct is a penalty parameter on the
classification error of the labeled micro-expression examples.
With the increasing of Ct , the objective function may pay
more attention to labeled micro-expression examples, which
brings more instructive information to the model and improves
the effect of active learning. However, when Ct increases
continuously, dataset alignment may compete against active
learning, which will decrease the effect of active learning.

D. Impact of K

In order to verify the influence of the parameter K, we
conduct experiments on CK+&CASME II, and the experimen-
tal results are shown in the Fig. 5. From the Fig. 5, we can
find that when K is equal to 2, 4, 8, the highest accuracies
on CK+&CASME II can reach 60.8%, 63.5%, and 66.3%,
respectively. As the parameter K increases, the accuracy of
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the proposed method on CK+&CASME II also increases. This
result is reasonable since the larger K leads to more supervised
information.

E. Ablation Study

In order to verify the performance of the proposed method,
we conduct ablation experiments. Replacing the dataset align-
ment terms of the proposed method, we minimize the Maxi-
mum Mean Discrepancy (MMD) [26], which is a distribution
distance measure, to eliminate the domain divergence between
macro-expressions and micro-expressions. In accordance with
Section IV-C, we choose CK+&CASME II for the analysis
of ablation study. We repeat each above-mentioned classi-
fication experiments under each number of query examples
ranging from 1 to 9 for 20 times. The average accuracies of
CK+&CASME II are reported in Fig. 6. It can be seen that the
proposed method after replacing dataset alignment terms with
MMD achieves the accuracy of 59.2%, which is 1.6% lower
than the accuracy of the proposed method. It indicates that
the proposed dataset alignment between the micro-expression
and the macro-expression datasets plays an important role in
improving the recognition performance.

Similarly, in order to verify the performance of active
learning in the proposed method, we replace active learning
terms with random selections, and also repeat the above-
mentioned experiments under each number of query examples
ranging from 1 to 9 for 20 times.The experimental results
are shown in Fig. 6, and it can be observed that the average
accuracy on CK+&CASME II is 54.4%, which is 6.4% lower
than that of the original proposed model. Therefore, it proves
that the active learning terms make a valuable contribution
towards raising the micro-expression recognition performance.

F. Comparison of DAAL with Existing Active Learning Meth-
ods

In order to verify the performance of the proposed method,
we compared it with four active learning methods including
random selection method and other three state-of-the-art active
learning methods such as USDM [53], Marginal Probability
(MP) [54], QUIRE [43]. In addition, we also compared it with
a transfer learning method which is a combination of Auxiliary
Set Selection Model and Transductive Transfer Regression
Model and denoted as (ASSM+TTRM) [26]. USDM follows
information quantity criterion. It estimates the probability of
examples in candidate pool by building the on-graph wander-
ing model of seed set and candidate pool so as to calculate
the information entropy of examples. This method is mainly
based on effectively setting the graph-related parameters. MP
is based on matching marginal probability distribution. It
can reduce marginal probability differences between seed
set and candidate pool, and select examples accord with
representative criterion. QUIRE is based on the minimum
maximization framework which can select both informative
and representative examples. ASSM selects an optimal set of
micro-expression examples from the target domain, and TTRM
bridges the feature distribution gap between the micro- and
macro-expression and target domains.

(a) Results on CK+&CASME (b) Results on CK+&CASME II

(c) Results on CK+&SAMM (d) Results on CK+&SMIC

Fig. 7. Comparison results (%) with other active learning methods.

We carry out the comparative experiments on
CK+&CASME, CK+&CASME II, CK+&SAMM and
CK+&SMIC respectively. Fig. 7 shows the recognition
results (%) w.r.t. different algorithms under different numbers
of query examples. As can be seen from Fig. 7, the
proposed method obtains the highest accuracy of 67.8% on
CK+&CASME when the number of query examples is 6,
8, 9, respectively, and the highest accuracy of 60.8% on
CK+&CASME II when the number of query examples is 7.
On CK+&SAMM and CK+&SMIC, the highest accuracies
are 62% and 50.38% respectively when 9 query examples are
selected. From Fig. 7 we can see that when the same example
size is selected from the candidate pool, on CK+&CASME,
CK+&CASME and CK+&SAMM, the proposed method can
always obtain relatively high accuracy, which benefits from
both the dataset alignment and active learning, especially the
dataset alignment. Dataset alignment allows our method to
have access to macro-expression data, the proposed method to
transfer more information from the macro-expression dataset.
USDM, MP and QUIRE are all methods based on active
learning. Among them, USDM and MP are active learning
methods with category maximization constraints, which
can select multiple dissimilar examples at the same time.
USDM and MP can avoid duplicate data while increasing the
number of examples, but they (including QUIRE) all lack
of dataset alignment. Compared with DAAL, they cannot
use information from the macro-expression database, so
their accuracies are lower than DAAL. On the contrary,
ASSM+TTRM, although it includes the dataset alignment
in the example selection phase, but its example selection
strategy only considers the feature distribution gap between
micro- and macro expression and target domains, and does
not evaluate the effectiveness of information carried by the
example itself, so its accuracy is also lower than that of
DAAL. Compared with other three database combinations,
the experimental results of all methods on CK+&SMIC
shown in Fig. 7(d) are not ideal. On CK+&SMIC, we solve
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TABLE II
COMPARISON RESULTS (%) WITH OTHER ADVANCED MICRO-EXPRESSION RECOGNITION METHODS(’-’ INDICATES NONE.)

Methods Auxiliary
dataset

CASME CASME II SAMM SMIC
Acc. UAR F1-score Acc. UAR F1-score Acc. UAR F1-score Acc. UAR F1-score

LBP-TOP [13] - 35.5 34.8 29.5 31.6 36.2 28.4 38.2 41.9 33.1 39.5 39.1 36.8
LBP-SIP [15] - 35.4 33.4 24.4 29.1 40.7 28.4 38.6 39.2 32.5 39.6 40.2 37.7

FDM [18] - 34.6 42.6 33.3 35.5 39.6 34.4 32.3 38.5 31.9 36.4 40.5 35.1
MDMO [19] - 41.7 39.9 28.2 42.1 38.8 33.5 42.1 48.3 39.5 44.8 42.0 37.8

Sparse MDMO [55] - 38.9 45.3 37.1 48.1 46.6 42.6 44.2 32.3 24.6 46.1 46.8 42.7

ASSM+TTRM [26]
CK+ 65.3 40.5 52.0 50.9 46.2 47.9 56.8 46.7 39.8 46.9 47.2 42.1

RAF-DB 52.9 44.1 33.6 44.6 46.2 41.1 47.9 44.1 42.1 39.1 38.1 37.1
AffectNet 54.1 52.7 41.7 46.7 44.1 42.1 50.7 44.6 39.9 43.0 41.5 40.0

Deep Transfer [11] CK+ 50.0 53.5 49.6 52.5 45.7 43.0 53.3 51.3 48.0 46.3 46.2 45.4
RCN-X [56] - 63.9 54.0 49.6 58.8 53.0 47.2 51.9 46.4 41.4 45.2 41.5 33.7

TS-AUCNN [8] CK+ 52.8 39.9 37.7 44.0 31.7 29.6 48.0 32.5 21.6 - - -
MEGC [9] CK+ 58.3 54.1 49.2 50.3 44.0 42.2 50.0 51.9 48.5 46.8 42.5 41.9

EIDNet+MTMNet [10] CK+ 59.6 41.3 38.2 56.7 43.3 42.3 50.6 48.5 43.7 47.1 41.7 39.5
G-TCN [57] - 51.7 46.8 45.3 50.8 44.8 45.0 44.9 41.6 41.5 43.6 40.1 40.6

AU-GACN [58] - 34.3 38.1 33.2 38.7 39.2 37.9 35.2 40.1 32.5 - - -

The proposed DAAL
CK+ 67.8 59.3 56.3 60.8 63.2 59.2 62.0 56.1 57.0 50.4 51.3 50.4

RAF-DB 60.3 56.7 51.7 52.4 44.9 45.0 56.3 48.5 48.9 45.2 45.2 44.8
AffectNet 62.5 56.7 52.1 53.6 48.2 48.0 60.0 51.6 51.6 47.1 46.3 46.3

a rough-classification problem. We forcibly map the seven
categories of examples in CK+ to a reduced label subspace
and only use a very small number of examples for training,
which undoubtedly is a great challenge. But our method
still achieves the highest accuracy of 50.4%, which strongly
demonstrates the effectiveness of our method again.

G. Comparison with Other Advanced Micro-expression
Recognition Methods

To further demonstrate the superiority of DAAL, we
conducted comprehensive experiments on CK+&CASME,
CK+&CASME II, CK+&SAMM, CK+&SMIC, RAF-
DB&CASME, RAF-DB&CASME II, RAF-DB&SAMM,
RAF-DB&SMIC, AffectNet&CASME, AffectNet&CASME
II, AffectNet&SAMM, AffectNet&SMIC these twelve dataset
combinations. We compare it with some typical micro-
expression recognition methods like LBP-TOP [13], LBP-SIP
[15], FDM [18], MDMO [19], Sparse MDMO [55], and
ASSM+TTRM [26], and advanced methods based on deep
convolutional neural network like Deep Transfer [11], RCN-X
[56], TS-AUCNN [8], MEGC [9], EIFNet+MTMNet [10],
G-TCN [57] and AU-GACN [58] in Table II. Worthy of note
is that, TS-AUCNN needs the support of action unit labels of
micro-expression and macro-expression data; unfortunately,
SMIC does not provide them. Therefore, the performance of
TS-AUCNN cannot be evaluated on CK+&SMIC. Besides,
AffectNet and RAF-DB also does not offer us AU labels, so
the experiments conducted by the AffectNet and RAF-DB as
auxiliary datasets cannot be done. MEGC needs to extract
optical flow feature from the macro-expression data, and
Deep Transfer uses 3DCNN to extract macro-expression
features. Namely, only video frame sequences for macro-
expression data can be used for MEGC and Deep Transfer.
EIDNet+MTMNet generates more samples with the help of
identity labels of macro-expression data. However, AffectNet
and RAF-DB does not contain identity information. Therefore,
MEGC, Deep Transfer and EIDNet+MTMNet are not suitable
to conduct experiments under the dataset combination with

AffectNet or RAF-DB as the auxiliary set. In our proposed
method, active learning can continue until all samples in the
candidate set are sampled, and we can also set the query
period to be a certain positive integer which is less than
the number of samples in the candidate. On each dataset
combination, we query 1∼9 samples, and Table II reports the
highest accuracy among these 9 test results. Deep Transfer
[11] follows a route of transfer learning and alleviates the
problem of small sample size of micro-expression database.
It takes ResNet10 as the backbone and improves the accuracy
of the model in the micro-expression database by pre-training
on the macro-expression database. RCN-X is a recurrent
convolution network integrating three modules including wide
expansion, short connection and attention unit. We conduct
experiments on the six derived RCN models and reported the
best recognition results. For the convenience of expression,
we denote the structures corresponding to the best results
as RCN-X uniformly. For a fair comparison, the training
data (including labeled data and unlabeled candidate set)
is the same, and the test sets are set the same for all the
methods. As Table II shows, we can find that the proposed
DAAL shows obvious advantages when compared with other
micro-expression recognition methods. When CK+ is used
as an auxiliary dataset, the accuracy, UAR and F1-score
of the proposed DAAL are at least 2.5%, 5.2% and 4.3%
higher than the best result among other methods on the
CASME, respectively. Moreover, the recognition accuracy of
the proposed DAAL exceeds all the other machine learning
methods by a large gap over 9.9%, and higher than deep
methods by 2% on CASME II. Meanwhile, compared with
both machine learning and deep learning methods, the
proposed DAAL has a significant advantage in UAR and
F1-score, which are 10.2% and 11.3% higher than the second
best method, respectively. We also have obtained similar
experimental results on SAMM and SMIC databases. The
recognition accuracy of the proposed method on SAMM and
SMIC are 62.0% and 50.4% respectively, which are 5.2%
and 3.5% higher than the second best methods. In addition,
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(a) CK+&CASME
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(b) CK+&CASME II
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(d) CK+&SMIC
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(e) RAF-DB&CASME
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(g) RAF-DB&SAMM
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(i) AffectNet&CASME
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Disgust Happiness Surprise
Predicted label

Di
sg

us
t

Ha
pp

in
es
s

Su
rp
ris

e
Tr
ue

 la
be

l

0.195 0.655 0.149

0.082 0.75 0.168

0.0 0.397 0.603

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(k) AffectNet&SAMM

Positive Negative Surprise
Predicted label

Po
sit

iv
e

Ne
ga

tiv
e

Su
rp
ris

e
Tr
ue

 la
be

l

0.408 0.404 0.188

0.248 0.533 0.218

0.205 0.349 0.446

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(l) AffectNet&SMIC

Fig. 8. Class-wise accuracy results in the form of confusion matrices for all dataset combinations.

the proposed DAAL has achieved better UAR and F1-score.
We also conduct experiments on a larger auxiliary dataset
such as RAF-DB, AffectNet, and the recognition accuracies
of the proposed method on the four micro-expression datasets
are 60.3%, 52.4%, 56.3%, 45.2% and 62.5%, 53.6%, 60.0%,
47.1%, respectively, which are lower than the accuracies of
the auxiliary dataset of CK+. Similarly, when the auxiliary
dataset is RAF-DB or AffectNet, the values of UAR and
F1-Score are also lower than those when the auxiliary set is
CK+. This is because both RAF-DB and AffectNet contain
facial expression images of real world with variable lighting,
poses and occlusions in the wild, accordingly, it is difficult for
them to achieve full alignment with micro-expression images
captured under the controllable laboratory environment in the
strict sense. It can be seen from Table II that the proposed
method has advantages compared with TS-AUCNN, MEGC,
EIFNet+MTMNet, G-TCN and AU-GACN, especially when
the auxiliary dataset is CK+.

The class-wise accuracy results in the form of confusion
matrices for all dataset combinations are shown in Fig. 8. From
Fig. 8, we can find that on the CASME database, when the
auxiliary set is CK+, RAF-DB or AffectNet, the recognition
performance of the three categories is good, especially the
disgust category. On CASME II, when CK+ is the auxiliary
set, the recognition performance of each category is the best,
and the accuracies of the three categories are 57.4%, 60.0%
and 72.2%. On the SAMM database and SMIC database, the
recognition performance of each category is not as good as that
of CASME and CASME II. This can be attributed to the small
sample size and sample imbalance of the database. Moreover,
sample imbalance is the reason for this phenomenon that a
simple average for all three categories is sometimes lower than
the Acc. value reported in Table II by up to about 7% accuracy.
This also confirms once again that we should evaluate the
performance with accuracy (equal to WAR), UAR and class-
wise accuracy (confusion matrices). The experimental results
on these four micro-expression databases show that DAAL
which integrates dataset alignment and active learning has
full advantages compared with other methods, and has good
generalization ability. After adding the examples selected
through active learning into the seed set, the recognition result
is greatly improved, which also indicates that the proposed

DAAL is very effective and conducive to selecting the best
examples to help the classifier training. In addition, it should
be noted that the proposed DAAL can achieve excellent
recognition results through tagging a small size of micro-
expression examples, which can effectively solve the small
sample or even extremely small sample problem of micro-
expression recognition.

On the other hand, different feature extraction methods have
great difference in their recognition results due to their dif-
ferent abilities of expressing micro-expression data. Different
feature extraction methods can represent the characteristics
of data from different aspects. Table II also shows that the
feature extraction has a great influence on the recognition
performance.

V. CONCLUSION

In this paper, we propose a novel dataset alignment and ac-
tive learning (DAAL) framework for micro-expression recog-
nition. An important advantage of the proposed method is
learning a feature translator matrix from the micro-expression
dataset to the macro-expression dataset. Thus, the common
features of the two datasets can be obtained. With the as-
sistance of active learning, this method can select micro-
expression examples from multiple categories with the rich-
est information. Extensive experimental results on CASME,
CASME II, SAMM and SMIC show that the proposed DAAL
can achieve superior performance to other existing approaches.
In the future, we will further explore different feature ex-
traction methods to boost the recognition performance. More-
over, the problem of unbalanced sample categories in micro-
expression recognition will also be investigated to further
improve the robustness of the algorithm. In addition, recent
studies [59] have shown that spatial-temporal salience are very
successful in computer vision, so it is worth trying to deep
dataset alignment and active learning problem with spatial-
temporal salience under extremely small size of training
example.
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