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Coupled Patch Alignment for Matching
Cross-View Gaits

Xianye Ben , Member, IEEE, Chen Gong , Member, IEEE, Peng Zhang , Xitong Jia,

Qiang Wu, Senior Member, IEEE, and Weixiao Meng , Senior Member, IEEE

Abstract— Gait recognition has attracted growing attention in
recent years, as the gait of humans has a strong discriminative
ability even under low resolution at a distance. Unfortunately,
the performance of gait recognition can be largely affected by
view change. To address this problem, we propose a coupled
patch alignment (CPA) algorithm that effectively matches a pair
of gaits across different views. To realize CPA, we first build
a certain amount of patches, and each of them is made up
of a sample as well as its intra-class and inter-class nearest
neighbors. Then, we design an objective function for each patch to
balance the cross-view intra-class compactness and the cross-view
inter-class separability. Finally, all the local-independent patches
are combined to render a unified objective function. Theoreti-
cally, we show that the proposed CPA has a close relationship
with canonical correlation analysis. Algorithmically, we extend
CPA to “multi-dimensional patch alignment” that can handle
an arbitrary number of views. Comprehensive experiments on
CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate
the effectiveness of our methods over other existing popular
methods in terms of cross-view gait recognition.

Index Terms— Coupled patch alignment, gait recognition,
cross-view gait, multi-dimensional patch alignment.

I. INTRODUCTION

OVER the past few years, biometrics has been broadly
applied to social security and personal safety due to
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Fig. 1. The Euclidean distance between different pairs of view angles from
0◦ ∼ 180◦ in terms of the GEIs of a single subject. Different colors indicate
different distance values.

a growing necessity in recognition and authentication of indi-
viduals. Compared with other biometrics such as face, finger-
print, vein, iris, ear, hand shape, palm print, retina and lip, gait
[1]–[5] can be efficiently recognized at a distance without
subjects’ cooperation, so it has gained much attention for a
variety of practical usages.

The viewing angle is a challenging factor for accurate
gait recognition [6]. The perceptions of the same subject’s
gait from different viewing directions may differ dramatically.
As a result, the performances of most existing cross-view gait
recognition techniques [6]–[12] are far from perfect, and the
larger the variation of viewing direction is, the worse the
recognition performance will be. For example, Gait energy
Image (GEI) [13] is an effective and well-known gait feature
representation. However, under large view variations GEIs will
generate very different representations for the same subject
as shown in Fig. 1. To be specific, the Euclidean distance
between GEIs of one view and other views shows that the
GEI feature is very sensitive to view change. Besides, the GEI
similarity of a single subject sharply decreases as the angle
between different views becomes larger. Therefore, how to
find robust and discriminative representations that enlarge the
margin between different subjects and meanwhile narrow the
variations of the same subject is a critical but challenging
problem in cross-view gait recognition.

Up to now, a range of advanced methods have
been proposed to solve the cross-view recognition prob-
lem, which can be attributed into three categories. The
first category is to construct 3D gait information via
panoramic cameras or multiple calibrated cameras [14], [15].
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However, these 3D-based methods require a complicated
setup of controlled multi-cameras, which may not be avail-
able in practice. Even such cooperative system is available,
the computational burden is quite heavy that further lim-
its its practical usage. The second category is based on
view transformation model (VTM). Representative techniques
such as single value decomposition (SVD) and regres-
sion have been intensively used to generate the gait fea-
ture by utilizing the information from the other view
[11], [16]–[21]. Although VTM minimizes the error between
the transformed gait features and the original ones, it does
not take the discriminative factor into consideration. The
third category is to extract view-invariant gait feature. The
general idea of view-invariant methods is to generate a view-
invariant gait feature among cross-view gait data. The most
representative method on generating view-invariant gait feature
was developed by Goffredo et al. [7] who proposed a self-
calibration of limbs’ pose in the image reference system.
However, this method cannot accurately estimate the limbs’
pose when the view of input query gait is very different
from the gallery gaits or the gait is captured from a frontal
view. To alleviate the above problems, techniques of domain
transformation [8]–[10], [12], [22], metric learning [23], and
deep CNNs [24] have been introduced recently, among which
deep CNNs [24] have achieved encouraging recognition accu-
racy on the cross-view task due to its powerful representation
ability. However, the usage of deep CNNs is often hampered
by the insufficient labeled cross-view gait data for model
training.

The model proposed in this paper belongs to the last cate-
gory as the methods of this category have exhibited the state-
of-the-art performance up to now. All the methods belonging
to this category can reduce the gap caused by view difference
to some extent, but most of them do not consider the neighbor-
ing relationship between the gait features in separate views,
so the information potentially shared by different views have
not been sufficiently exploited. To address this shortcoming,
we propose to use the patch alignment framework [25] that
contains part optimization and whole alignment to explore the
neighboring information of different gait samples. Specifically,
in part optimization, each patch is formed by a gait sample
and also its intra-class and inter-class nearest-neighbors. As a
result, all these patches can be used to depict the compactness
of intra-class gaits and the separability of inter-class gaits
under cross-view situations. In the stage of whole alignment,
the established patches are further combined to render an
optimization problem for cross-view gait recognition. Based
on this motivation, we propose a novel supervised algorithm
called Coupled Patch Alignment (CPA) to explicitly build the
relationship between cross-view gait data. CPA projects the
gait features in two different views onto a common subspace
such that the distance between the projected samples that are
originally neighbors in the same class can be minimized, and
the distance between the projected samples in different classes
(i.e. subjects) is maximized. Moreover, we generalize CPA to
Multi-dimensional Patch Alignment (MPA) to handle the gait
recognition with an arbitrary number of views.

It is worthwhile to highlight our main contributions:

(1) An efficient CPA algorithm which consists of cross-view
part optimization and whole alignment is proposed to
address cross-view gait recognition. It can be extended
to a more general MPA that learns the common dis-
criminant subspace characterizing both the intra-class
compactness and the inter-class separability.

(2) The proposed CPA is theoretically related to the existing
Canonical Correlation Analysis (CCA) algorithm.

(3) The proposed CPA performs superiorly to existing meth-
ods under large view variations, even when the observa-
tion angle between the gallery and the probe is as large
as 90◦.

It is worth noting that the differences between Marginal
Fisher Analysis (MFA) [26] and CPA are: (1) In terms of
intrinsic and penalty graphs design: MFA characterizes the
intra-class compactness and the inter-class separability through
the intrinsic and penalty graph functions respectively in a
single view. However, CPA models the cross-view gait data
as a cross-view patch and conducts alignment among hetero-
geneous data. (2) In terms of motivation: The motivation from
MFA is that the paper [26] builds intrinsic graph and penalty
graph in order to maintain intra-class compactness and inter-
class separability respectively. The proposed CPA not only
achieves the best discriminability as marginal fisher criterion
in MFA but also eliminates the variance caused by camera
view change in gait recognition. (3) In terms of objective
function: MFA minimizes the Marginal Fisher Criterion which
is quotients of intra-class compactness and inter-class separa-
bility. However, the proposed CPA minimizes the difference
between intra-class compactness and inter-class separability
with a tuning parameter, which avoids the matrix singularity
problem due to no inverse operation over a matrix. Also, for
CPA, both intrinsic and penalty graphs are constructed by
using adjacent neighbor samples from two views. (4) In terms
of application: CPA targets on the cross-view gait recognition
problem which treats gait images from different views. Such
heterogeneous data cannot be handled by the existing MFA.

This paper is organized as follows: In Section II, we provide
an overview of existing cross-view gait recognition technolo-
gies and the relationship with CCA. In Section III, the gait
feature presentation and CPA algorithm are presented, and the
use of CPA for matching cross-view gaits is also described.
Section IV details MPA which is the extension of CPA. Exper-
imental results on typical practical databases are presented in
Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORKS

A. Cross-View Gait Recognition

Generally speaking, gait recognition is a challenging task.
A person’s gait is often affected by health condition, body
weight, clothing, shoe, emotion, carrying condition, and walk-
ing surface [27]. The performance of gait recognition is very
susceptible to different carrying conditions, camera views,
ground surfaces, and the appearance under different time
interval between the gallery samples and the query ones [27].
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TABLE I

SUMMARY OF CROSS-VIEW GAIT RECOGNITION METHODS

Matovski et al. [28] claimed that if certain factors (e.g. cloth-
ing and shoes) can be controlled, the time interval will not
affect the recognition performance significantly. To address the
issue of clothing changes, the recovery model of static para-
meters regarding the body [29] can be utilized. For the issue
of cross walking speed, Kusakunniran et al. [30] proposed a
higher order shape configuration which can preserve speed-
invariant and discriminative information. Huang et al. [31]
extracted a non-affine component as the cross-speed gait
feature from an affine component which was learned by a
thin plate spline kernel-based RBF interpolation. To overcome
the issue of shoes that may impair the gait recognition per-
formance, Wang et al. [32] proposed a new gait signature
termed Chrono-Gait Image (CGI). CGI is a multichannel
temporal description, and it can be viewed as a pseudo-color
image when the number of channels is 3. In addition, several
methods have been proposed to overcome the gait recognition
problem in the spatially [33] or temporally [34] low resolution
situations.

One of the most challenging issues for gait recognition is the
dramatic view change for gait feature matching. To overcome
this difficulty, a range of methods have been proposed which
can be summarized into three categories (see Table I).

The first category, i.e. 3D gait information construction,
is to construct the 3D gait information via panoramic cam-
eras or multiple calibrated cameras. Zhao et al. [15] captured
the video sequences from multiple cameras to achieve 3D gait
recognition. Sugiura et al. [14] reconstructed a 3D gait model
from multi-view observation with an omnidirectional camera.

The second category is based on the view transformation
model (VTM) which enables a gait feature from one view
to be transferred into another view. A lot of techniques have
been adopted in this branch, such as SVD and regression. For
example, Kusakunniran et al. [20] utilized the truncated SVD
to transform the gallery gait data and probe gait data into the
same direction. Due to the biased dissimilarity score naturally
inherited by VTM, some specific measures were incorporated
into VTM to quantify the degree of bias [19]. Considering
that the training data are embedded in a potential Grassmann
manifold, Connie et al. [17] proposed the Grassmann View
Compensation (GVC) with randomized kernel extreme learn-
ing machine to generate a virtual view, so that the missing view

in the sets can be estimated. When the view of the probe gait
is very different from that of the training samples, these VTMs
often cannot perform well. Therefore, Muramatsu et al. [16]
proposed Arbitrary VTM (AVTM), which is trained on the
2D gait features generated from 3D gait volume that has the
same view with the target. These methods construct a large
matrix of which each column contains the gait information
of the same individual with different viewpoints, and each
row represents the gait information for different individuals
but from the same viewpoint. The basic assumption is that
such matrix can be decomposed into two matrices which
model the view independence and individual independence,
respectively. As this assumption lacks theoretical foundation,
Kusakunniran et al. [21] showed that this assumption can be
formulated as a regression problem, so they constructed VTM
by Support Vector Regression (SVR) based on the GEI feature.
In addition to SVR, Kusakunniran et al. [11] also adopted
the sparse regression and multilayer perceptron [18] as VTM
construction regression functionals.

The third category is to find view-invariant gait feature.
Several approaches have been used to extract the gait rep-
resentation which is robust to view change, such as self-
calibration [7], body part trajectory normalization [35], domain
transformation [8]–[10], [12], [22], [36], sparse reconstruction
based metric learning [23], and deep CNNs [24], [38], [39].
Goffredo et al. [7] estimated the lower limbs’ pose in the
image reference system and reconstructed the limbs’ pose for
identification in the sagittal plane. Jean et al. [35] proposed
an approach to estimate fronto-parallel view of body part tra-
jectories. Different from the geometry-based feature [7], [35],
Kusakunniran et al. [12] transformed each gait sequence from
a certain view onto the common canonical view by domain
transformation. Domain transformation can not only obtain
the canonical view, but also obtain the prototypes of different
views, therefore each sample can be expressed as a linear
combination of these prototypes in the corresponding views.
Recently, several methods have emerged for this purpose,
such as joint subspace learning [10], uncorrelated discriminant
simplex analysis [22], uncorrelated multilinear sparse local
discriminant CCA [8], and Multi-view discriminant analysis
(MvDA) [36]. Hu [9] used the Regularized locally tensor
discriminant analysis to extract the feature output by enhanced
Gabor GEI, and then adopted an aggregation scheme to fuse
different features generated by various regularizers of local
tensor discriminant analysis. Lu et al. [23] proposed a sparse
reconstruction based metric learning approach to learn the
discriminative gait feature for identification. Zhang et al. [37]
proposed a novel view-independent gait representation named
gait individuality image (GII), and employed list-wise con-
straints to learn a projection, which can map gait features
from different views into a common discriminative subspace.
So far, deep CNNs [24] have yielded the highest accuracy
on the cross-view gait recognition task. The cross-view pairs
can be processed by deep CNNs with an end-to-end manner,
so that the CNNs can predict whether the input pairs belong to
the same subject or not [24], [38]. Yu et al. [39] generated a
fake/real discriminator and a fake/real discriminator to obtain
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view-invariant gait images containing human identification
information.

B. Relationship With CCA

In this section, we will show that the proposed CPA is
related to the existing CCA [40]. Suppose that X1 and X2 are
centralized, CCA aims to find a pair of linear combination
coefficients (also called projection directions) in order to
maximize the correlation between the linear combinations of
the two sets X1 and X2. Let P1 and P2 denote the two
projection directions for X1 and X2, respectively, therefore
the objective function of CCA is

max
P1,P2

(P1)�X1(X2)�P2
�

(P1)�X1(X1)�P1
�

(P2)�X2(X2)�P2
. (1)

Two constraints (P1)�X1(X1)�P1 =1, (P2)�X2(X2)�P2 = 1
are introduced to (1) so as to make the optimization results
invariant to scale change. Then this problem can be written as

�
X1(X1)�P1 − X1(X2)�P2

X2(X2)�P2 − X2(X1)�P1

�
= λ

�
X1(X1)�P1

X2(X2)�P2

�
. (2)

Furthermore, we can decompose (2) into the form

�
X1

X2

� �
I −I

−I I

� �
X1

X2

�� �
P1

P2

�

= λ

�
X1

X2

� �
X1

X2

�� �
P1

P2

�
, (3)

which is exactly the Lagrangian expression of the following (4)

J (P1, P2) = tr

��
P1

P2

�� �
X1

X2

� �
I −I

−I I

� �
X1

X2

�� �
P1

P2

��

s.t .

�
P1

P2

�� �
X1

X2

� �
X1

X2

�� �
P1

P2

�
= I.

(4)

We can see that CCA can be expressed as the trace function
with cross-view data concatenation. Although (4) and (10)
share an analogical expression form, they differ in the meaning
of related notations and the imposed constraints. CCA uses the
global sample sets, and does not take the local geometry into
consideration. CPA, by contrast, sorts and rearranges the sets
based on local patches measured by intra-class and inter-class
neighbors.

Different from CCA, the alignment matrix of CPA contains
Wi = diag(ωi ) which imposes different weights to different
intra-class and inter-class neighbors. The nearest neighbors in
the same class rely on ‘1’ to strengthen the intra-class com-
pactness, while the nearest neighbors from different classes are
punished by adjusting the parameter ζ . Besides, we carry out
the comparison experiments between the proposed CPA and
Complete Canonical Correlation Analysis (C3A, an algorithm
of reducing computational complexity for CCA) [41]. The
results in Table IV, V and VI demonstrate the performance
improvement provided by CPA.

TABLE II

LIST OF IMPORTANT MATHEMATICAL NOTATIONS

III. COUPLED PATCH ALIGNMENT FOR

MATCHING CROSS-VIEW GAITS

This section introduces gait feature representation and the
proposed CPA for cross-view gait recognition.

A. Gait Feature Representation

Regular gait can be regarded as a cyclic motion at a stable
frequency, therefore there are two shortcomings if the entire
gait video is used for person recognition. First, this large
amount of data contains redundant information, leading to the
phenomenon of “data rich but information poor”. Second,
the massive data will increase the computational burden.
Therefore, gait cycle estimation plays an important role in
the gait recognition task. In this paper, as shown in Fig. 2,
we employ the dual-ellipse fitting approach [42] based on
the local maximum eccentricity points to estimate the gait
cycle of input cross-view gait sequences. This approach is
robust to scale and view variations, therefore it is very suitable
for solving the gait cycle estimation problem in cross-view
gait recognition. Then, GEI [13] is used as the gait feature
representation because it is computationally efficient, storage
space-saving, and robust to the noise in silhouette images.
After that, CPA developed in this paper is proposed to find
the corresponding bases in separate views. The GEI in an
arbitrary view can be written as a linear combination of its
corresponding view bases. The coefficients in linear combina-
tion under each view are taken as features for the subsequent
gait recognition.

B. Coupled Patch Alignment (CPA)

For ease of representation, the important notations that will
be later used are listed in Table II.

As discussed in Section I, GEIs from different views for the
same individual may not be similar in the original data space.
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Fig. 2. The pipeline of the proposed cross-view gait recognition approach. We first estimate the gait cycle from the input images, and then represent the gait
sequence via GEI. The GEI of a certain view can be written as a linear combination of bases of the corresponding views by the proposed CPA. Therefore,
[α1, α2, ...] for frontal GEI and [β1, β2, ...] for lateral GEI are final feature representations used for the subsequent cross-view gait recognition.

Therefore, CPA is proposed in this paper to fill the information
gaps across different views.

Without loss of generality, we assume that there are 2N
cross-view gait samples (GEIs) in the training set, and
then the samples of each view can be denoted as X1 =
[x1

1, x1
2, ..., x1

N ] and X2 = [x2
1, x2

2, ..., x2
N ], respectively, where

the associated superscripts indicate different views, and N
is the number of samples for each view. Given the sam-
ple pairs

�
(x1

i , x2
i )|x1

i ∈ R
h, x2

i ∈ R
l , i = 1, 2, ..., N

�
(h and

l are the feature dimensionalities in two different views,
correspondingly) denoting the cross-view gait samples for the
same subject, our goal is to learn two projection matrices�
(P1, P2)|P1 ∈ R

h×d , P2 ∈ R
l×d

�
, by which the transformed

cross-view gait samples are projected onto a common sub-
space, namely

y1
i = (P1)�x1

i , y2
i = (P2)�x2

i . (5)

Assuming that the nearest neighbors of a gait sample under
different views are identical, the goal is to transform a pair of
cross-view gait samples to the common subspace such that the
distance between the projected nearest neighbors in the same
class is minimized while the distance between the projected
nearest neighbors in different classes is maximized. Thus we
have

arg min
y1

i

k1	

j=1






y1

i − (y2
i ) j








2
, (6)

arg max
y1

i

k2	

j=1






y1

i − (ȳ2
i ) j








2
. (7)

The designed optimization expression (6) characterizes the
intra-class compactness across two different views. A sample
y1

i is connected to k1 intra-class nearest neighbors of y2
i which

is the counterpart of y1
i in View 2. Similarly, (7) character-

izes the inter-class separability across two different views.

Fig. 3. Diagram of CPA. X1 and X2 represent two sets of cross-view gait
samples. The red cycles in View 2 represent the intra-class nearest neighbors
of cross-view counterpart x1

i . The red four-point stars in View 2 represent the
inter-class nearest neighbors of x1

i . The aim of the proposed CPA is to project
the cross-view gait samples onto the common space, so that the projected gait
features of x1

i (i.e. y1
i ) and its intra-class cross-view nearest neighbors are

gathered together, while y1
i and the projected inter-class cross-view nearest

neighbors are dispersed.

A sample y1
i is connected to k2 intra-class nearest neighbors

of y2
i in View 2.

As shown in Fig. 3, a cross-view patch is constructed by the
i -th sample x1

i from View 1 and its counterpart nearest neigh-
bors from the other View 2. After CPA, both of the cross-view
gait samples are projected onto the common space. For exam-
ple, we expect that the transformed (y2

i )1, (y2
i )2, ..., (y2

i )k1 are
as close to y1

i as possible, while (ȳ2
i )1, (ȳ2

i )2, ..., (ȳ2
i )k2 are as

far away from y1
i as possible in the common space.

By following the idea of the differential scatter discriminant
criterion [1], we balance the intra-class compactness and inter-
class separability by using a tuning parameter ζ ∈ [0, 1] and
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then the objective functions of (6) and (7) can be unified as

arg min
y1

i

⎛

⎝
k1	

j=1






y1

i − (y2
i ) j )








2 − ζ

k2	

j=1






y1

i − (ȳ2
i ) j )








2

⎞

⎠. (8)

It can be seen that the objective function of CPA is the
difference between the sum of squared distance of k1 intra-
class nearest neighbors weighted by 1 and the sum of squared
distance of k2 inter-class nearest neighbors weighted by ζ .
That is to say, the parameter ζ plays an important role in
balancing the influence of the intra-class and inter-class nearest
neighbors. More discusses about ζ are given in Section V-D.

By defining a weight multiplier vector as

ωi =
�

1, ..., 1� �� �
k1

,−ζ, ...,−ζ
� �� �

k2

��
, (9)

(8) can be simplified as

k1+k2	

j=1






y1

I dxi(1) − y2
I dxi( j+1)








2
(ωi )I dx( j )

= tr

�k1+k2	

j=1

�
(P1)�x1

I dxi(1) − (P2)�x2
I dxi( j+1)

�

×
�
(P1)�x1

I dxi(1) − (P2)�x2
I dxi( j+1)

��
(ωi )I dx( j )

�

= tr

��
P1

P2

���X̄1
i

X̃2
i

��
Wi −Wi

−Wi Wi

��
X̄1

i
X̃2

i

���
P1

P2

��

(10)

where Idxi =
�

i, (i)1, ..., (i)k1 , (ī)1, ..., (ī)k2� �� �
k1+k2+1

�
, Idxi(1)

and Idxi( j + 1) denotes the first and ( j + 1)-th item of
Idxi . (ωi )I dx( j ) denotes the j -th item of ωi . Besides, Wi =
diag(ωi ), X̄1

i =
�

x1
I dxi(1), ..., x1

I dxi(1)� �� �
k1+k2

�
=

�
x1

i , ..., x1
i� �� �

k1+k2

�
,

and X̃2
i =

�
x2

I dxi(2), x2
I dxi(3), ..., x2

I dxi(k1+k2+1)� �� �
k1+k2

�
=

�
(x2

i )1, (x2
i )2, ..., (x2

i )k1 , (x̄
2
i )1, (x̄2

i )2, ..., (x̄2
i )k2� �� �

k1+k2

�
. Here the

matrix P =
�

P1

P2

�
is a concatenation of the projection matrices

P1 and P2. Let F1 =
�

X̄1
i

X̃2
i

�
and �i =

�
Wi −Wi

−Wi Wi

�
, (10)

can be rewritten as

Ji (P) = tr
�

P�Fi�i F�
i P

�
. (11)

In order to achieve the whole alignment for all 2N cross-
view gait samples in the training set, N local optimizations

Algorithm 1 CPA-Based Cross-View Gait Recognition

are combined into a single objective function, which is

arg min
P

N	

i=1

tr
�

P�Fi�i F�
i P

�

= arg min
P

tr

�

P�(

N	

i=1

Fi�i F�
i )P

�

= arg min
P

tr
�

P�F�F�P
�

, (12)

where F = [F1, F2, ..., FN ] and � = diag (�1,�2, ...,�N ).
In order to uniquely determine P, the constraint P�P = I is
imposed on (12), where I is the identity matrix. Therefore,
the objective function can be written as

arg min
P

tr
�

P�F�F�P
�

s.t . P�P = I. (13)
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By using Lagrangian multiplier method, (13) can be converted
to the following eigenvalue decomposition problem

F�F�p = λp, (14)

where F�F� is called coupled-alignment matrix, and λ is
the eigenvalue of this matrix. Let p1, p2, ..., pd be the d
eigenvectors corresponding to the d smallest eigenvalues. The
optimal solution P∗ to (14) is

P∗ =
�

P1∗
P2∗

�
= �

p1, p2, ..., pd
�
, (15)

where P1∗ and P2∗ constitute the 1st∼h-th rows and the
(h + 1)-th∼(h + l)-th rows of P∗, respectively.

C. Cross-View Gaits Matching

In this paper, we use the proposed CPA to learn the
projection matrices

�
P1, P2

�
for Views 1 and 2, and use the

nearest neighbor classifier for matching the cross-view gaits.
Given NG samples

�
x2

i ∈ R
l |i = 1, ..., NG

�
for View 2 in the

gallery set, the query gait sample x1
q for View 1 can then be

assigned to the class πi∗ , where πi∗ is the class label of the
i∗-th sample in the gallery set

i∗ = arg min
i

di s
�
(P1)�x1

q, (P2)�x2
i

�

= arg min
i

⎧
⎪⎨

⎪⎩
−
�
(P1)�x1

q

 � �
(P2)�x2

i

�

�(P1)�x1
q� 

(P2)�x2

i






⎫
⎪⎬

⎪⎭
.

(16)

Based on the above analysis, the procedure for CPA-based
cross-view gait recognition is presented in Algorithm 1.

IV. EXTENSION TO MULTI-VIEW CASE

In many real-world scenarios, the gallery gait samples can
be captured under multiple views, simultaneously. Without
loss of generality, we extend CPA to a more general Multi-
dimensional Patch Alignment (MPA) framework to better
characterize the shared information in an arbitrary number of
views. To formulate the MPA for V (V > 2) views, we may
follow the similar derivation as CPA with a few modifications.

Fig. 4. The visualization of eigenvectors of our MPA and PCA. (a) MPAgaits
trained by multiple view GEIs, (b) Eigengaits trained by multiple view GEIs,
(c) Eigengaits trained by each view GEIs.

A. Multi-Dimensional Patch Alignment (MPA)

Let Xv = �
xv

i , xv
2, ..., xv

N

�
(v = 1, ..., V ) be V gait

sample sets collected from different views. Moreover,�
(x1

i , x2
i , ..., xv

i ), i = 1, 2, ..., N
�

represents the corresponding
multi-view gait samples for the same subject. Let Pv (v =
1, ..., V ) be V transformation matrices, which project multi-
view gait samples into the unified subspace. Then the objective
function for MPA can be formulated as1

arg min
P

N	

i=1

Ji (P) = arg min
P

tr
�

P�GP
�

s.t . P�P = I,

(17)

where P =
⎡

⎢
⎣

P1

...

PV

⎤

⎥
⎦, and G =

N*

i=1
Gi is called multi-

dimensional alignment matrix. Gi is formulated by (18), as
shown at the bottom of this page.

1The detailed mathematical deductions are put into the Appendix.

Gi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(V − 1)X̄
1
i Wi (X̄

1
i )

� −X̄
1
i Wi (X̃

2
i )

� · · · −X̄
1
i Wi (X̃

V
i )�

−X̃
2
i Wi (X̄

1
i )

� (V −2)X̄
2
i Wi (X̄

2
i )

� + X̃
2
i Wi (X̃

2
i )

� · · · −X̄
2
i Wi (X̃

V
i )�

−X̃
3
i Wi (X̄

1
i )

� −X̃
3
i Wi (X̄

2
i )

� (V − 3)X̄
3
i Wi (X̄

3
i )

�

+ 2X̃
3
i Wi (X̃

3
i )

� · · · −X̄
3
i Wi (X̃

V
i )�

... · · · · · · . . .
...

... · · · · · · . . .
...

−X̃
V
i Wi (X̄

1
i )

� −X̃
V
i Wi (X̄

2
i )

� · · · (V −V )X̄
V
i Wi (X̄

V
i )�

+ (V −1)X̃
V
i Wi (X̃

V
i )�

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)
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Fig. 5. Projection results of MPA under different numbers of views. Different colors denote different subjects, and different mark symbols represent different
views. (a) 2 views. (b) 3 views. (c) 4 views. (d) 5 views. (e) 6 views. (f) 7 views. (g) 8 views. (h) 9 views. (i) 10 views. (j) 11 views.

The obtained eigenvectors of Pv (v = 1, ..., V ) are then
called multi-dimensional-patch-alignment-gaits (MPAgaits).
In order to present the visualization of MPAgaits, the exam-
ples of the first 6 MPAgaits for each of the views
{0◦, 18◦, · · · , 180◦} are shown in Fig. 4a by simultaneously
training the GEIs of 11 views with MPA. We see that the
gait silhouette images generated by MPAgaits are quite clear.
Moreover, MPAgaits have a good performance on view sepa-
ration. The Eigengaits trained by multiple view GEIs together
and by each view [43] are respectively shown in Fig. 4b and 4c
for comparison. We find that the Eigengait generated by PCA
are confounded by multiple views. On the contrary, Eigengaits
trained by single view GEIs are distinct. They have the same
view orientation properties as MPAgaits, which further explain
that MPA can distinguish among different views.

To illustrate the effectiveness of MPA, we use five subjects
in the CASIA(B) gait database [44], and present the projection
results of MPA under different numbers of views (see Fig. 5).
We see that the MPA performs satisfactorily in distinguishing
different individuals with various views. This is consistent with
our initial anticipation, namely, MPA transforms the multi-
view gait feature data points such that the distance between
the projected nearest neighbors in the same class is minimized
while the distance between the projected nearest neighbors in
different classes can be maximized.

B. Cross-View Gaits Matching

The procedure for cross-view gait recognition using MPA
is very similar to the CPA illustrated in Algorithm 1 except
for the alignment matrix G. By using the common sub-
space of various views established by MPA, the iden-
tity of the query gait sample can be easily confirmed.
For a given gallery set

�
xv

i |i = 1, ..., NG , v = 2, ..., V
�

for
V − 1 views, the query gait sample x1

q for View 1 can

Fig. 6. GEIs from 11 distinct views from CASIA(B) gait database.

be assigned to the class πi∗ , where i∗ = arg min
i

di s
�
(P1)

�
x1

q , 1
V −1

�
(P2)

�
x2

i + (P3)
�

x3
i + ... + (PV )

�
xV

i

��
.

V. EXPERIMENTS

This section firstly studies some critical issues of the
proposed algorithm (Sections V-A ∼ V-D), and then eval-
uates our method on three popular gait recognition data-
bases including CASIA(B) [44], USF [27], and OU-ISIR [45]
(Sections V-E ∼ V-G). Finally, we analyze the results of
compared methods in Section V-H.

A. Impact of k1 and k2

We evaluated the impact of the numbers of intra-class
nearest neighbors k1 and inter-class nearest neighbors k2 on
the performance of CPA on the CASIA(B) database [44].
CASIA(B) gait database covers a wide range of observa-
tion angles {0◦, 18◦, ..., 180◦}. This database contains totally
124 subjects under 11 views. There are 6 gait sequences for
each subject under each view. In our experiments, the entire
database was randomly divided into two non-overlapped
groups: the first group, which contains 3 sequences covering
all views of subjects, was taken as the probe set, and the
remaining sequences form the second group that was treated
as the gallery set. In gallery set, 60 subjects were randomly
selected for training the CPA. We repeated these trials 10 times
and calculated the average recognition results. The sizes of
GEI in our experiments are 64 × 64 pixels, and Fig. 6 shows
the GEIs of 11 different views.
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Fig. 7. Impact of k1 and k2 to the recognition rate. (a) Probe view: 0◦; (b) Probe view: 18◦; (c) Probe view: 36◦; (d) Probe view: 54◦; (e) Probe view: 72◦;
(f) Probe view: 108◦; (g) Probe view: 126◦; (h) Probe view: 144◦ ; (i) Probe view: 162◦; (j) Probe view: 180◦.

TABLE III

THE OPTIMAL SELECTIONS OF k1 AND k2 FOR EACH PROBE VIEW

Note that k1 and k2 determine the size of local alignment
patches, which are important to improve the cross-view gait
recognition performance. Suppose that the view 90◦ was
gallery and other views {0◦, 18◦, ..., 72◦, 108◦, ..., 180◦} were
probe, then we reported the recognition rates w.r.t. the change
of k1 and k2 for the proposed CPA. Fig. 7a∼j present the
results. In these figures, we can see that the accuracy improves
with an increasing of k1, and reaches the highest record when
the number of k1 equals to 2. Differently, for the number
of inter-class nearest neighbors k2, the promising results can
be obtained when k2 is selected form {2, 3, 4, 5}, and the
accuracy may degenerate when the number of inter-class
nearest neighbors increases. The optimal k1 and k2 selections
are listed in Table III. These results suggest that CPA performs
well when the local alignment patches are constructed by a
certain number of intra-class samples and relatively few inter-
class nearest neighbors.

B. Impact of View Variance Between the Probe and Gallery

We also evaluated the impact of view variance between the
probe and gallery on our CPA on the CASIA(B) database.
We conducted the experiments under all pairs of views, and
Fig. 8a∼k show the recognition rates. From these figures,
we can see that the accuracy of the proposed CPA deteriorates
with the increasing of view difference between the probe and
gallery. CPA can obtain nearly 100% recognition rate when the
view difference between the probe and gallery is less than 18◦.

This is reasonable since the gait silhouettes in these view point
are very similar. The situation becomes quite challenging when
the view difference between the probe and gallery is 90◦.
Therefore, CPA obtains relatively low recognition accuracy
under this case.

C. Impact of the Number of Gallery Views

This section is to evaluate the impact of the number of
gallery views for multi-dimensional alignment patches on
the cross-view gait recognition performance. These experi-
ments were also carried out on the CASIA(B) gait database.
By leveraging lateral view, which is the most different
from other views, the regular pattern of the multi-view
coupling alignment can be explored. Therefore, the lateral
view (90◦) was selected as the probe view, and the views
from {0◦, 18◦, ..., 72◦, 108◦, ..., 180◦} were the gallery views.
It is worth noting that these gallery views are deliberately
chosen to be strictly adjacent, i.e., the interval between any
two views is 18◦. Although the recognition rate is as high
as 100% or close to 100%, the gallery views with more
coupled viewpoints do not bring about higher recognition
rate. The high rate is only achieved when the gallery view is
equal or close to 90◦. This is because the closer the views are,
the more shared information there will be. As a result, the gait
features projected into the common subspace can achieve good
performance. If the gait samples that are far away from 90◦
are introduced, such as 0◦ and 18◦, the performance of MPA
becomes worse when compared to the views that are close to
90◦(e.g. 72◦ and 108◦).

To further explain the impact of number of gallery views
for multi-dimensional alignment patches, we assume that
the gallery views are adjacent. In other words, when the
number of gallery views is equal to 2, only the follow-
ing 9 combinations are considered: {0◦, 18◦}, {18◦, 36◦},
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Fig. 8. Recognition rates under different Probe views. (a) Probe view: 0◦; (b) Probe view: 18◦; (c) Probe view: 36◦; (d) Probe view: 54◦; (e) Probe view: 72◦;
(f) Probe view: 90◦; (g) Probe view: 108◦; (h) Probe view: 126◦; (i) Probe view: 144◦; (j) Probe view: 162◦; (k) Probe view: 180◦.

Fig. 9. Impact of the number of gallery views to the recognition rate.

{36◦, 54◦}, {54◦, 72◦}, {72◦, 108◦}, {108◦, 126◦}, {126◦, 144◦},
{144◦, 162◦} and {162◦, 180◦}. Fig. 9 illustrates the average
recognition rates of MPA when different numbers of gallery
views are used. An extreme case is the probe view coupled
with 10 available gallery views for MPA, which yields a better
precision (an average of 9.3% increase) than the case that the
probe view coupled with only one gallery view for CPA. Due
to the fact that the most different representation of GEI under
0◦ is that from 90◦, we also visualize the recognition rates
of MPA under different numbers of gallery views including
0◦ (see Fig. 9). We can see that both curves ascend gradually
when the number of gallery views is not large. They reach
the top value under 7 views and then drop down. This result
is reasonable since the frontal viewpoints carry very limited
gait information. By contrast, the accuracy can be improved
when other oblique viewpoints close to 90◦ are added to

Fig. 10. Impact of the tuning parameter on CPA.

train MPA. Nonetheless, the recognition rate decreases when
the gait samples that are deviated from 90◦ are incorporated.

D. Impact of Tuning Parameter ζ
In this section, we evaluate the impact of tuning parameter ζ

to the performances of CPA and MPA. These experiments are
carried out on the CASIA(B) gait database. By tuning k1 and
k2 as mentioned in Table III, we run CPA when ζ changes
in the range [0, 1]. The best recognition rates are generally
yielded when ζ = 0.1. The performance decreases when ζ
gradually increases.

Since the penalized item contains k2 and ζ in the objective
function of CPA, we further investigate the correlation between
k2 and ζ . The performance of the CPA using different numbers
of k2 and ζ under the probe view of 54◦ is shown in Fig. 11.
We observe that better results can be obtained when ζ = 0.1.
By fixing k2, the selection of ζ has a strong influence on

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on July 20,2020 at 14:22:14 UTC from IEEE Xplore.  Restrictions apply. 



3152 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 6, JUNE 2019

Fig. 11. The recognition rate with respect to k2 and ζ .

Fig. 12. Impact of the tuning parameter on MPA.

the recognition rate. Instead, by fixing ζ , the selection of k2
has a minor effect on the recognition rate. When changing
k2 and ζ at the same time, the best performance can be
obtained by cross validation. As reported in Section V-A,
the best recognition rate is 96.5% when k2 = 4 and ζ = 0.1.
However, altering k2 can also obtain the best recognition rate
of 96.5% when ζ does not equal to 0.1, such as k2 = 4 and
ζ = 0.2, or k2 = 1 and ζ = 0.2. Therefore, in general the
results suggest that the tuning of k2 and ζ correlated.

As discussed in Section V-C, the performance of MPA with
7 gallery views is better than the one under other views.
To investigate the effect of different tuning parameter values
on the performance of MPA, we report the results for 7 gallery
views in Fig. 12. The optimal setting k1 and k2 is selected by
cross validation. The results shown in Fig. 12 indicate that
a large ζ leads to a drop of the performance, and the best
performance is obtained when ζ = 0.1. The finding is similar
to CPA.

E. Performance Evaluation on CASIA(B) Gait Database

In this section, we compare the performance of the pro-
posed CPA with GEI [44], MFA [26], C3A [41], CMCC [6],
VTM+QM [19], SVD [20], SVR [21], MvDA [36], and deep
CNNs [24] on CASIA(B) cross-view gait recognition database.
For a fair comparison, all the methods are evaluated under the
data splits as mentioned in Section V-A. The parameters are set
to the recommended values that are provided by the original
published work such as GEI [44], C3A [41], CMCC [6],

Fig. 13. GEIs of 2 views from USF gait database.

VTM+QM [19], SVD [20], SVR [21], MvDA [36], and deep
CNNs [24]. The number of GEI segments is set to 4 for
CMCC [6]. For SVR [21], the RBF kernel is adopted, and
other parameters are set as C = 1, ω = 0.01, b = 1, and
g = 0.001. For deep CNNs [24], the size of every mini-batch
is 128. The learning rate is determined as 0.01.

By varying the observation views from 0◦ to 180◦ with
an interval of 18◦ (totally 11 views), all the experimental
results are shown in Table IV. Different from most existing
papers [6], [20], [21], [24], [36] that only report the results on
several selected viewpoints, here we present the accuracies of
all methods under all the investigated views. From Table IV,
we observe that the proposed method significantly outperforms
other methods across a wide range of view changes.

F. Performance Evaluation on USF Gait Database

The USF gait database [27] is the most challenging
among the existing gait databases, because the gait samples
of 122 subjects are collected in a real-world outdoor scene.
Based on the official setting, this database includes one gallery
set and twelve probe sets (Probe A ∼ Probe L). In our
experiments, the gallery is identical to the official Gallery set-
ting. The proposed CPA requires to establish the relationship
between two different views, therefore, the first 3 sequences
of each subject from both the original Gallery set (left view)
and Probe A set (right view) were selected to train the CPA.
To verify the effectiveness of CPA for matching cross-view
gaits, the remaining samples in Probe A set were used as query
samples. The size of GEI in our experiments is 128 × 88, and
Fig. 13 shows the GEIs of 2 views.

The proposed CPA is also evaluated on the real-world
outdoor scene database, namely the USF gait database. We set
k1 = 2 and k2 = 4 via cross validation. We compare GEI [44],
MFA [26], C3A [41], CMCC [6], VTM+QM [19], SVD [20],
SVR [21], MvDA [36] and deep CNNs [24] with our CPA
by treating the cameras L and R as probe set and gallery
set, respectively. The experimental results in Table V confirm
the effectiveness of CPA when compared with other popular
cross-view gait recognition methods. Specifically, CPA obtains
a very impressive recognition rate of 94%. In this database
our method is slightly worse than deep CNNs; however, it is
significantly better than other methods that are not based on
deep learning. Specifically, CPA leads the third best method
(i.e. CMCC) with a noticeable margin of 5% on recognition
rate, which is a very impressive result.

G. Performance Evaluation on OU-ISIR Gait Database

In order to study the performance of our method on the
large population cases, we conducted the experiments under
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TABLE IV

COMPARISON OF VARIOUS METHODS ON CASIA(B) GAIT DATABASE (THE BEST RECORD UNDER EACH VIEW IS MARKED IN BOLD)
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TABLE IV

(Continued.) COMPARISON OF VARIOUS METHODS ON CASIA(B) GAIT DATABASE (THE BEST RECORD UNDER EACH VIEW IS MARKED IN BOLD)

all pairs of cross-view scenarios available in the OU-ISIR gait
database.

The OU-ISIR gait database [45] is the largest database
including 1912 subjects from 4 views {55◦, 65◦, 75◦, 85◦} up
to now. This database was randomly split into two sets with
equal size for five times. The gallery set and probe set are
the same as [46]. The cross-view data from 956 subjects were
used for training, and the data from one view of the remaining
956 subjects were used as the gallery samples, and the data
from the another view were regarded as query samples. Ten
cross validation experiments were performed, and we then

TABLE V

EXPERIMENTAL RESULTS ON THE USF GAIT DATABASE (THE BEST AND

SECOND BEST RESULTS ARE MARKED IN RED BOLD

AND BLUE BOLD, RESPECTIVELY)

reported its average recognition results. The sizes of GEI in
our experiments are 128 × 88 pixels. Fig. 14 shows the GEIs
of 4 views.
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TABLE VI

EXPERIMENTAL RESULTS ON THE OU-ISIR GAIT DATABASE (THE BEST RECORD UNDER EACH VIEW ANGLE IS MARKED IN BOLD)

Fig. 14. GEIs of 4 views from OU-ISIR gait database.

We set k1 = 1 since there is only 1 intra-class sample
for each training sample in this dataset. k2 is selected from
{2, 3, 4, 5} through the cross validation. Basically, these four
values would not hamper the performance. From Table VI,
we see that the proposed CPA achieves very promising
performance with approximately 99.6% accuracies for all
cross-views. It outperforms other methods including GEI [44],
MFA [26], C3A [41], CMCC [6], VTM+QM [19], SVD [20],
SVR [21], MvDA [36], and deep CNNs [24]. Even more,
the proposed CPA in cross-view cases yields slightly higher
accuracy than deep CNNs in the identical-view cases. This
is because the training samples for deep CNNs [24] are very
limited, so the trained classifier is not sufficiently powerful to
obtain satisfactory performance. As the view variation in the
OU-ISIR database is relatively small, our method obtains very
high recognition rates on this database.

H. Discussion

From above experimental results, we see that CMCC [6],
VTM+QM [19], SVD [20] and SVR [21] cannot well handle
the large cross-view gait recognition problem. CMCC [6]
linearly transforms the gait information from one view to
another. Unfortunately, the large view change may bring about
non-linear diversifications, and in this case the target feature
cannot be precisely constructed via linear transformation. Both
VTM+QM [19] and SVD [20] need an SVD factorization on
a high-dimensional matrix made up of the training samples
from all views. As a result, the view-independent information
and subject-independent gait information that are originally
correlated are isolated. Unfortunately, both VTM+QM and
SVD are sensitive to partial occlusion, and thus they are
unsuitable for solving the cross-view gait recognition problems
under large view changes. The accuracy of SVR [21] drops
drastically when the view change gradually increases. This is
because the gait information in the synthesized virtual view
appears differently from the reference due to the large view
variation.

TABLE VII

COMPUTATIONAL COMPLEXITY ANALYSIS

C3A and MvDA perform better than the above CMCC,
VTM+QM, SVD and SVR with significant improvements.
This is because C3A [41] projects the gait features from
two views into a unified subspace for achieving maximal
correlation. MvDA [36] also finds a unified but discriminative
subspace for bridging different views. Although C3A [41]
and MvDA [36] have achieved very encouraging performance,
the proposed CPA can still able to improve their recognition
results. The reason lies in that our CPA models the nonlinear
relationship between different views with a consideration of
local nearest neighbor measurements. Consequently, the CPA
is significantly better than C3A [41] and MvDA [36], and
especially the advantage of CPA becomes prominent when the
cross-view angle is large.

For simplicity, we assume that the feature dimensions for
two different views are both d . n and c are the numbers
of training samples and classes respectively. We analyze
the computational complexity of the proposed CPA. It takes
O((2d)3) for eigenvalue decomposition of the matrix with
the size of 2d × 2d . Further, general MPA takes O((V d)3)
for synchronously solving V multi-view gait recognition. The
number of view angles is limited in the real surveillance
environment so the complexity for MPA is not going to
increase a lot. We also compare the computational complexity
of the proposed CPA and MPA with MFA [26], C3A [41],
CMCC [6], VTM+QM [19], SVD [20] and MvDA [36].
Table VII lists their computational complexity. For CMCC [6],
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(21)

the computational complexity is related to the GEI segment
dimension (denoted as d �). The GEIs are first projected onto
the PCA subspace to control the feature vector dimension.
Thus, PCA is employed as a preprocessing step that makes d
less than n. In general, there is no significant computational
complexity difference among the above-mentioned methods.

VI. CONCLUSION

In this work, we have presented a novel Coupled Patch
Alignment (CPA) algorithm, which is further extended to
Multi-dimensional Patch Alignment (MPA), to perform cross-
view gait recognition. To the best of our knowledge, this is
the first devoted work on multi-dimensional patch alignment
across an arbitrary number of views for gait recognition.
By building local patches that consists of a sample and its
intra-class and inter-class nearest-neighbors, the local relation-
ship among training gait samples is revealed. Then, all the
local patches are combined to render a unified optimization
problem that can be easily solved. Thorough experiments on
the CASIA(B), USF, and OU-ISIR gait databases demonstrate
that our method produces favorable results to the state-of-the-
arts even the view difference between the gallery and the probe
is as large as 90◦.

As discussed in this paper, CPA and MPA can be used in
the monitoring scenes where GEIs under two or more known
views are available for training and meanwhile the target view
is also known. With the increasing demand for intelligent
human identification, much efforts have been made to solve the
fundamental problems in uncooperative gait recognition that
the view angle of gait images is unknown but the images from
one viewpoint are obtained [47], [48]. Under this situation,
the target view is unknown in the training stage, while only
the source view can be obtained. In the future, we will extend
MPA to the situations where some subjects do not have
full viewpoint images. In this case, a latent factor will be
introduced to uncover the underlying structure of the missing
view from the known data.

APPENDIX

In this appendix, we show how to build the objective func-
tion for MPA. The projection matrices Pv (v = 1, 2, · · · , V )
map multi-view gait samples {xv

i , i = 1, 2, · · · , N,

v = 1, 2, · · · , V } to V new feature vectors in the unified
subspace, which is

yv
i = (Pv )�xv

i , v = 1, 2, ..., V . (19)

The objective is to minimize the distance between the
projected nearest intra-class neighbors from different views,
and meanwhile maximize the distance between the projected
nearest inter-class neighbors from different views.

As in the CPA, the objective function becomes
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Eq. (20) can be further expressed as (21), as shown at

the top of this page, where X̄v
i =

�
xv

i , ..., xv
i� �� �

k1+k2

�
, X̃v

i =
�

(xv
i )1, (xv

i )2, ..., (xv
i )k1 , (x̄

v
i )1, (x̄v

i )2, ..., (x̄v
i )k2� �� �

k1+k2

�
. for v =

1, 2, . . . , V , and V represents the number of views.
Here, let P be a concatenation matrix P =�

(P1)� · · · (PV )�
��

, and define a local multi-dimensional
alignment matrix Gi (see (18)). Then (21) can be further
simplified as Ji (P) = tr

+
P�Gi P

,
.
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