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Coupled Bilinear Discriminant Projection
for Cross-View Gait Recognition

Xianye Ben , Member, IEEE, Chen Gong , Member, IEEE, Peng Zhang, Rui Yan,

Qiang Wu, Senior Member, IEEE, and Weixiao Meng , Senior Member, IEEE

Abstract— A problem that hinders good performance of gen-
eral gait recognition systems is that the appearance features of
gaits are more affected-prone by views than identities, especially
when the walking direction of the probe gait is different from
the register gait. This problem cannot be solved by traditional
projection learning methods because these methods can learn
only one projection matrix, and thus for the same subject,
it cannot transfer cross-view gait features into similar ones. This
paper presents an innovative method to overcome this problem
by aligning gait energy images (GEIs) across views with the
coupled bilinear discriminant projection (CBDP). Specifically,
the CBDP generates the aligned gait matrix features for two
views with two sets of bilinear transformation matrices, so that
the original GEIs’ spatial structure information can be preserved.
By iteratively maximizing the ratio of inter-class distance metric
to intra-class distance metric, the CBDP can learn the optimal
matrix subspace where the GEIs across views are aligned in both
horizontal and vertical coordinates. Therefore, the CBDP is also
able to avoid the under-sample problem. We also theoretically
prove that the upper and lower bounds of the objective func-
tion sequence of the CBDP are both monotonically increasing,
so the convergence of the CBDP is demonstrated. In the terms
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of accuracy, the comparative experiments on the CASIA (B)
and OU-ISIR gait databases show that our method is supe-
rior to the state-of-the-art cross-view gait recognition methods.
More impressively, encouraging performance is obtained by our
method even in matching a lateral-view gait with a frontal-view
gait.

Index Terms— Gait recognition, coupled bilinear discriminant
projection, image alignment, cross-view gait recognition.

I. INTRODUCTION

HUMAN gait is one of the well-known perceptible bio-
metrics at a distance. They can be captured from an

unconscious and uncooperative subject compared to other
biometrics (such as faces, fingerprints, palms, veins, etc), and
thus the research on gait recognition has been conducted exten-
sively during recent decades. There are two main categories
of the state-of-the-art gait recognition techniques, i.e. model-
based [1] and motion-based approaches [2]–[4]. Model-based
approaches extract the gait features robustly and avoid the
noise interference problem. Motion-based approaches charac-
terize the motion patterns of human body without fitted model
parameters.

However, their performances will drop due to the changes in
clothing, shoes, carrying condition, walking surface, walking
speed, and elapsed time [5]. More seriously, the view change
will lead to a dramatic change of the gait appearance, which
poses a great difficulty for accurate gait recognition. Therefore,
cross-view gait recognition is quite challenging which deserves
further study.

Cross-view gait recognition is tackled by feature
description methods [6]–[11] and machine learning-based
methods [12]–[20]. The difference is that the former focuses
on how to estimate a gait property that is robust to the
view change, and the latter investigates how to infer and
understand the underlying relationship between cross-view
gaits. According to the selection of former gait models, feature
description methods include 3D gait model and trajectories
estimation. 3D gait model needs high computational
complexity, and trajectories estimation is very difficult under
a frontal view. However, machine learning-based methods
can overcome these problems wonderfully well.

In this paper, we present a Coupled bilinear discriminant
projection (CBDP) for aligning gait images across views.
The method proposed in this paper belongs to the machine
learning-based methods, which has demonstrated the best
performance up to now. Although all the methods in the
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TABLE I

THE SUMMARY OF SPATIO-TEMPORAL GAIT REPRESENTATION APPROACHES

machine learning-based category can reduce the gap caused
by view difference to some extent, most of them [12]–[14],
[16]–[22] need concatenating gait energy image (GEI) into a
1D vector, which leads to a high-dimensional feature space for
gaits. They do not consider to directly deal with the matching
cross-view GEIs, so the underlying structure, such as the
correlations among the rows and columns, cannot be exploited
and the spatial information of GEIs have not been deployed
at the same time. To address this shortcoming, we propose to
use the CBDP for directly handling GEIs as 2D data, since
GEIs are intrinsically a second-order matrix. CBDP iteratively
maximizes the ratio of inter-class distance metric to intra-
class distance metric. Specifically, CBDP can learn the optimal
matrix subspace where GEIs across views are aligned in both
horizontal and vertical coordinates. In particular, we make the
following contributions:

(1) We formulate cross-view gait recognition as an image
alignment problem based on direct coupled bilinear dis-
criminant projection without losing the spatial informa-
tion of GEIs. Under the learnt coupled distance metric,
the intra-class local geometry and inter-class discrimi-
native information are preserved, which facilitates the
nearest neighbor classifier.

(2) By iteratively maximizing the ratio of inter-class
distance metric to intra-class distance metric, we the-
oretically prove that the upper and lower bounds of
the objective function sequence of CBDP are both
monotonically increasing, so the optimization process
is guaranteed to converge.

(3) We extensively compare the proposed method with
the state-of-the-art methods on the popular cross-view
gait recognition databases such as CASIA(B) [23] and
OU-ISIR [24]. Experimental results show the proposed
method outperforms other exiting approaches; more
impressively, the encouraging performance is obtained
even in matching a lateral-view gait with a frontal-view
gait (the most challenging case of the largest difference
between view points).

The rest of this paper is structured as follows: Section II
reviews related literature on spatio-temporal templates and
cross-view gait recognition. Section III describes the pro-
posed Coupled bilinear discriminant projection (CBDP).
In Section IV, the convergence analyses of CBDP are care-
fully discussed. Experimental results are given in Section V.
Section VI concludes the entire paper.

II. RELATED WORKS

In this section, the popular motion-based approaches for
gait recognition and the typical cross-view gait recognition
methods will be reviewed.

A. Motion-Based Approaches

The most popular motion-based methods are spatio-
temporal templates which are able to express the static,
dynamic or time-varying information of gaits, such as Motion
Energy Image (MEI) [25], Motion History Image (MHI) [25],
Gait History Image (GHI) [26], Moving Silhouette Image
(MSI) [27], Gait Energy Image (GEI) [28], Enhanced GEI
(EGEI) [29], Gait Entropy Image (GEnI) [30], Gait Flow
Image (GFI) [31], Shifted Energy Image (SEI) [32], and
Chrono-Gait Image (CGI) [33]. Table I summarizes their
technical details.

Reference [34] shows the quality of being a competitive
advantage of GEI. In particular, with the purpose of learning
a discriminative subspace for GEI data, Xu et al. [35] used
Coupled subspaces analysis (CSA) and Discriminant analysis
with tensor representation (DATER) to directly deal with the
gait energy images (GEIs). Li et al. [36] proposed a new
supervised manifold learning algorithm called Discriminant
locally linear embedding (DLLE) to extract the feature of the
GEI. Xu et al. [37] developed a matrix-based Marginal fisher
analysis (MFA) to directly handle the GEI, which aims to
characterize the intra-class compactness through the distance
between each positive sample and its neighboring positive
samples. Besides, sparse discriminant projection learning [38],
multilinear graph embedding [39], and patch distribution
compatible semi-supervised dimension reduction [40] were
proposed for gait feature extraction. However, the above-
mentioned dimension reduction methods are only suitable for
identical or approximately identical view gait recognition.

B. Cross-View Gait Recognition Methods

In recent years, several methods have been presented
for cross-view gait recognition. According to the differ-
ent approaches used to generate view-invariance features,
the cross-view gait recognition methods can be grouped into
two categories: feature description methods and machine
learning-based methods.
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TABLE II

KEY NOTATIONS USED IN THIS STUDY

Feature description methods usually describe a gait property
which is robust to the view change. Stemming from the 3D
gait model, Zhao et al. [6] successfully extracted the static
lengths of key segments features and the dynamic trajec-
tory features of lower limbs to achieve 3D gait recogni-
tion. Luo et al. [7] proposed a clothes-independent 3D human
pose and shape estimation method to extract 3D human
body parameters. Tang et al. [41] used of 3D human pose
estimation and shape deformation to reconstruct parametric
3D body. Chen et al. [8] estimated the real gravity center
trajectory (GCT) curve through the statistics of limb para-
meters, and then projected GCT based on the projection
principle between curve and plane. Other related works
inspired by gait feature extraction from 3D space for cross-
view gait recognition include 3D morphological analysis [9],
self-calibration [10] and view-normalized body part trajecto-
ries [11]. However, one disadvantage of 3D gait model is
that it needs a much more complicated setup environment;
in addition, the computational cost involved in this system is
very large. Trajectories estimation is very difficult under the
frontal view; therefore, it may limit the application of a certain
scenarios.

Most machine learning-based methods assume that the
target views can be generated from the registered views or the
target and the registered views share the common features
in the unified space. Zhang et al. [42] employed list-wise
constraints to learn a projection, which can map gait features
from different views into a common discriminative subspace.
The underlying relationship between gaits observed from
different views can be accurately approximated by radial
basis function (RBF) neural networks [12], multi-layer per-
ceptron [13], sparse reconstruction based metric learning [14],
deep CNNs [34], [43], and GEINet [15]. View transformation
model (VTM) is a well-known model that transfers the gait
feature from one view into another view. Recently, several
VTMs based on SVD have been proposed, for instance,
Kusakunniran et al. [16] presented a VTM by using Truncated
SVD. Incorporating quality measures, Muramatsu et al. [17]
proposed a VTM with analysis of part-dependent transfor-
mation bias. However, they are based on the assumption
that view-independence and individual-independent informa-
tion can be completely separated. In contrast, the regression
technologies such as support vector regression (SVR) [18],
sparse regression [19] and CCA regression [20] can learn
VTMs, and naturally avoid the problem above. However, these
kinds of VTMs can’t obtain reasonably good recognition rates
when the difference between the target view and the source

view is more than 54 degrees. Instead, common subspace
methods [21], [22] can learn the joint subspace where the
gait features across views for a certain subject are very
similar. However, References [21], and [22] take vectors as
input, which causes the missing of spatial information carried
by GEI.

In contrast, our CBDP follows the idea of CCA regression,
which maps GEIs across views into a common subspace
where the data biases caused by view variation are mit-
igated. Compared to the unsupervised CCA, the proposed
approach follows Fisher criterion which maximizes the inter-
class scatter and minimizes the intra-class scatter. Benefit
from specific graph embedding technique for both inter-class
and intra-class samples, our proposed approach significantly
outperforms CCA-based methods. Moreover, our proposed
approach maps the raw GEIs directly, rather than using
vectorized GEIs, so our method can completely preserve
the structure information of the GEIs. We utilize the bilin-
ear projection instead of the conventional linear projection,
therefore the transformation can be completed in higher-order
space. This is different from above projection-based methods
for gait recognition, i.e., VTM-like regression and CCA-like
regression.

III. COUPLED BILINEAR DISCRIMINANT PROJECTION FOR

CROSS-VIEW GAIT RECOGNITION

Unfortunately, traditional projection learning methods will
fail when the walking direction of the probe and registered
gaits significantly differ, since they can only deal with the
identical view gait recognition. In this section, a new Coupled
bilinear discriminant projection (CBDP) algorithm is devel-
oped as a solution for aligning the GEIs across different views
while preserving the spatial information.

A. Problem Statement

Considering two GEIs Xi , Y j from different views, the goal
of CBDP is to measure the similarity by directly calculating
the generalized Mahalanobis distance of two GEIs across
views, which can be denoted as

D(Xi , Y j ) = DC( fx (Xi ), fy(Y j ))

=
�

tr{[ fx(Xi ) − fy(Y j )]�C[ fx (Xi ) − fy(Y j )]},
(1)

where fx (·) and fy(·) are two bilinear transformations, which
map GEIs from different views, i.e., Xi and Y j , into a common
subspace, respectively. In the subspace, the data biases caused
by view variation are mitigated and the transformed features
can be directly compared by using distance measurement.
Since C is positive semi-definite, it can be decomposed by
C = WcW�

c . By defining the bilinear transforms fx (Xi ) =
U�

x Xi Qx , fy(Y j ) = U�
y Y j Qy and also using a pair of

mapping matrices Ux , Qx and Uy, Qy , the distance D(Xi , Y j )
can then be converted to (2), shown at the bottom of the next
page.
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Fig. 1. Alternative optimization procedure of the proposed CBDP. When fixing Qt−1
x and Qt−1

y at the t-th iteration, Pt
x and Pt

y can be obtained by solving
the SVD problem in Eq. 6, similarly, when fixing Pt

x and Pt
y , Qt

x and Qt
y can be obtained by solving the SVD problem in Eq. 8.

Then, by denoting Px = Ux Wc and Py = UyWc, (2) can be
further rewritten as

D(Xi , Y j )

=
�

tr{[P�
x Xi Qx − P�

y Y j Qy]�[P�
x Xi Qx −P�

y Y j Qy]}. (3)

CBDP aims to find two sets of bilinear transformation matrices
{Px , Qx} and {Py, Qy} respectively for GEIs across two
different views, and map them into a shared subspace in which
features can be directly measured. Therefore, (3) serves as the
CBDP for measuring the difference of two arbitrary cross-view
GEIs.

B. Coupled Bilinear Discriminant Projection (CBDP)

As shown in Fig. 1, the proposed CBDP learns the common
lower-dimensional discriminant matrix subspace that most effi-
ciently links gaits across views. It can directly deal with GEIs,
therefore the spatial structure of GEIs can be preserved, and
at the same time, the under-sample problem can be avoided.

For ease of representation, Table II lists
important notations defined in the paper. Two sets
of GEIs across views can be denoted as X =�

X(c)
i ∈ R

Dxm×Dxn , i = 1, . . . , Nc, c = 1, . . . , C
�

and

Y =
�

Y(c)
j ∈ R

Dym×Dyn , j = 1, . . . , Nc, c = 1, . . . , C
�

,
respectively, where Dxm × Dxn and Dym × Dyn denote the
size of GEIs.

To facilitate the subsequent discussion, mean matrices of
class c from views θ and ϑ are respectively given by

X̄(c) = 1
Nc

�Nc
i=1 X(c)

i , Ȳ(c) = 1
Nc

�Nc
j=1 Y(c)

j . In order to
preserve the inter-class local geometry and intra-class dis-
criminative information, the objective function of the proposed
CBDP can be defined as

arg max
Px ,Py ,Qx ,Qy

C�
i, j=1

���P�
x X̄(i)Qx − P�

y Ȳ( j )Qy

���2

F
S(i, j)

C�
c=1

Nc�
i, j=1

���P�
x X(c)

i Qx − P�
y Y(c)

j Qy

���2

F
W(c)(i, j)

,

(4)

where S is the inter-class similarity matrix weighted by
S(i, j) = exp

�
− ��X̄(i) − X̄( j )

��2
F/t

	
(t is a heat kernel para-

meter), W(c) is the intra-class similarity matrix for class c

weighted by W(c)(i, j) = exp
�
−
���X(c)

i − X(c)
j

���2

F



t
	

, and

�·�F denotes Frobenius norm.
Eq. (4) often has no closed-form solution, so an iterative

solution is adopted. When fixing Qx and Qy, Px and Py can
be optimized by

arg max
P

J (P) =
tr
�

P�Z̄QGbZ̄�
QP
	

tr
�

P�ZQGwZ�
QP
	 , (5)

where

P = �
P�

x P�
y

��
, Z̄Q =


ĀQ 0
0 B̄Q

�
,

D(Xi , Y j ) =
�

tr{[W�
c U�

x Xi Qx − W�
c U�

y Y j Qy]�[W�
c U�

x Xi Qx − W�
c U�

y Y j Qy]}. (2)
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ĀQ =
�
X̄(1)Qx , X̄(2)Qx , . . . , X̄(C)Qx

�
,

B̄Q =
�
Ȳ(1)Qy, Ȳ(2)Qy, . . . , Ȳ(C)Qy

�
,

Gb =


E1 ⊗ I −S ⊗ I
−S� ⊗ I E2 ⊗ I

�
,

E1(i, i) =
�

j
S(i, j), E2( j, j) =

�
i
S(i, j),

ZQ =
�

A(1)
Q 0 · · · A(C)

Q 0

0 B(1)
Q · · · 0 B(C)

Q

�
,

A(c)
Q =

�
X(c)

1 Qx , X(c)
2 Qx , . . . , X(c)

Nc
Qx

�
,

B(c)
Q =

�
Y(c)

1 Qy, Y(c)
2 Qy, . . . , Y(c)

Nc
Qy

�
,

for c = 1, . . . , C,

Gw = diag

��
D(1)

1 ⊗ I −W(1) ⊗ I
−(W(1))� ⊗ I D(1)

2 ⊗ I

�
, · · · ,

�
D(C)

1 ⊗ I −W(C) ⊗ I
−(W(C))� ⊗ I D(C)

2 ⊗ I

��
,

D(c)
1 (i, i) =

�
j

W(c)(i, j), D(c)
2 ( j, j) =

�
i
W(c)(i, j).

The constraint P�P = I is imposed on (5) to uniquely
determine the transformation matrices Px and Py . In addition,
to avoid overfitting, a regularization τ I is imposed on Gw,
where τ is a small positive number, such as τ = 10−6. The
objective function can be reformulated as a more tractable ratio
trace optimization problem as follows [44]

arg max
P�P=I

J (P)

= tr

�
P�ZQ (Gw + τ I) Z�

QP
	−1 �

P�Z̄QGbZ̄�
QP
	�

, (6)

which can be easily solved by Lagrangian multiplier method.
Similarly, when fixing Px and Py , Qx and Qy can be

optimized by

arg max
Q

J (Q) = tr
�
Q�Z̄PGbZ̄�

P Q
�

tr
�
Q�ZP GwZ�

PQ
� , (7)

where Q = �
Qx

� Qy
� ��, Z̄P =

�
ĀP 0
0 B̄P

�
,

ĀP = �
(X̄(1))�Px , (X̄(2))�Px , . . . , (X̄(C))�Px

�
,

B̄P =
�
(Ȳ(1))�Py, (Ȳ

(2))�Py, . . . , (Ȳ
(C))�Py

�
,

ZP =


A(1)
P 0 ··· A(C)

P 0

0 B(1)
P ··· 0 B(C)

P

�
, A(c)

P =�
(X(c)

1 )�Px , (X
(c)
2 )�Px , . . . , (X

(c)
Nc

)�Px

�
, B(c)

P =�
(Y(c)

1 )�Py, (Y
(c)
2 )�Py, . . . , (Y

(c)
Nc

)�Py

�
, for c = 1, . . . , C .

Also, by adding the constraint Q�Q = I and regularization
τ I to (7), the objective function can be rewritten as

arg max
Q�Q=I

J (Q)

= tr

�
Q�ZP (Gw + τ I) Z�

P Q
	−1 �

Q�Z̄P GbZ̄�
P Q
	�

. (8)

The entire alternating projection optimization procedure for
CBDP is summarized in Algorithm 1.

Fig. 2. Overview of the procedure for finding the potential common features
across views.

Denoting T as the number of iterations, the increase of the
time complexity is proportional to iterations, but the space
complexity is not altered with iterations. For convenience,
the size of GEI denotes L

2 × L
2 for both views. The time and

space complexities are O(T L3) and O(L2), respectively.

C. Classification

GEIs across views of the same individual are still bridged
closely by some potential common features. The overview of
the procedure to find the potential common features across
views for a certain individual is depicted in Fig. 2. As shown in
the upper part of Fig. 2, the goal of CBDP is to find an optimal
common matrix space for cross-view GEIs and generate the
aligned matrix features. In contrast, the improved metric
learning approach [45] can obtain the best common vector
space where the cross-view features used for classification are
similar.

In the training stage of CBDP, two sets of bilinear transfor-
mation matrices {Px , Qx } and {Py, Qy} are learnt respectively
for two different views θ and ϑ . The aligned matrix features
for cross-view gaits are expressed by

Fx = P�
x Xi Qx , Fy = P�

y Y j Qy . (9)

Then, the gait features extracted from the vectorized fea-
tures Fx and Fy by using the improved metric learning
approach [45] are denoted as fx and fy for two views θ and
ϑ . When a query GEI X� with view θ is received, its feature
can be denoted as fx

�, while GEIs with another view ϑ are
registered. The nearest neighbor classifier is used to determine
the class label of X�. If the distance between fy and fx

� is
minimum, X� belongs to the class of Y j .

IV. CONVERGENCE ANALYSES

Here we prove that the CBDP’s objective function sequence
is monotonically bounded at each iteration. Two sets of
bilinear transformation matrices {P0

x , Q0
x} and {P0

y, Q0
y} are

respectively initialized as mapping matrices at iteration 0 for
two different views. Suppose at iteration t , the concatenation
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Algorithm 1 Alternating Projection Optimization Procedure
for CBDP
Input:

Training sets of GEIs across views X =�
X(c)

i ∈ R
Dxm×Dxn , i = 1, . . . , Nc, c = 1, . . . , C

�
and

Y =
�

Y(c)
j ∈ R

Dym×Dyn , j = 1, . . . , Nc, c = 1, . . . , C
�

,
the dimensionality Dm × Dn of the aligned matrix features,
and the number of iterations T .

Output:
Two sets of bilinear transformation matrices {Px , Qx}
and {Py, Qy} , the aligned matrix features for cross-view

gaits
�

F(c)
xi ∈ R

Dm×Dn , c = 1, . . . , C, i = 1, . . . , Nc

�
and�

F(c)
y j ∈ R

Dm×Dn , c = 1, . . . , C, j = 1, . . . , Nc

�
.

1: Initialize Qx and Qy as Q0
x =

�
IDn

0(Dxn−Dn )×Dn

�
,Q0

y =�
IDn

0(Dyn−Dn)×Dn

�
, where IDn ∈ R

Dn×Dn is the identity

matrix, and 0(Dxn−Dn)×Dn ∈ R
(Dxn−Dn)×Dn is a matrix with

all zeros.
2: Calculate Gb =

�
E1⊗I −S⊗I

−S�⊗I E2⊗I

�
and Gw =

diag

�
D(1)

1 ⊗I −W(1)⊗I

−(W(1))�⊗I D(1)
2 ⊗I

�
, · · · ,


D(C)

1 ⊗I −W(C)⊗I

−(W(C))�⊗I D(C)
2 ⊗I

��
.

3: for t = 1 : T

Calculate Z̄t
Q =


Āt

Q 0

0 B̄t
Q

�
,

Āt
Q = �

X̄(1)Qt
x , X̄(2)Qt

x , . . . , X̄(C)Qt
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The detailed mathematical deductions are put into the Appen-
dix.
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Fig. 3. Convergence error on the CASIA(B) gait database. (Red broken
lines indicate upper and the lower bounds). (a) Dimension = 15 × 10,
(b) Dimension = 20 × 15.

satisfy that
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Therefore, the lower and upper bounds of the objective
function are respectively represented by (13) and (14), shown
at the bottom of the next page.
Absolutely, both J
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�upper are monotonically

increasing functions. With the increase of iteration times,
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(16)

As a result, when the difference of J between two successive
iterations is smaller than the threshold ε = J upper− J lower or J
reaches the peak, the iterative optimization procedure can be
stopped.

In order to empirically check the convergence of the CBDP,
we test the error mentioned in Fig. 3 under different reduced

Fig. 4. GEIs from the CASIA(B) database.

dimensions for GEI matrices on the CASIA(B) gait database.
{P0

x , Q0
x} and {P0

y, Q0
y} are initialized to be a concatenation

matrix composed of both an identity matrix and a matrix
with all zeros at iteration 0 for two views. Fig. 3a and 3b
show the error with respect to the number of iterations when
GEIs of view 90◦ and view 72◦ are aligned and respectively
transformed into matrices with the dimensions of 15 × 10 and
20 × 15. In both cases, CBDP converges over iterations, and
the convergence error sequence of CBDP is lower and upper
bounded by two monotonically decreasing sequences, which
is equivalent to increasing lower and upper bounded objective
function sequences.

V. EXPERIMENTS

In this paper, GEI is used as the feature representation
from gait silhouettes within a complete walking period [46].
In order to reduce the redundancy of GEIs, 2DPCA [47] can
be employed to project the GEIs into a lower 2D subspace.
Furthermore, the proposed CBDP method is used to align
GEIs across views. Finally, the classification is achieved
by using the improved metric learning approach. In this
section, we compare the proposed method with the state-of-
the-art cross-view gait recognition methods by using all the
sequences in a normal walking condition on both CASIA(B)
and OU-ISIR gait databases. Our experiments are conducted
using Matlab running on a desktop with Intel(R) Core(TM)
i5-6300U CPU@2.40Hz and 8GB RAM.

A. Experiments on CASIA(B) Database

CASIA(B) database is the largest multi-view gait dataset up
to now, and it contains 13640 sequences from 124 subjects in
total. For each subject, gaits are recorded by the cameras from
11 views. In our experiments, the size of GEI is normalized
to 64 × 64 pixels. The GEIs from 11 viewing angles for two
subjects are shown in Fig. 4. We repeat the experiments with
different data setup for 10 times and the average recognition
rate (performance of cross-view gait recognition) is recorded.
In each experiment, the data splits are as follows: we randomly
separate the database into two non-overlapped groups, i.e. the
first group, which contains 3 sequences covering all views
of subjects, is taken as the probe set, and the remaining
sequences form the second group that is treated as the gallery
set. In the gallery set, 60 subjects are randomly selected for
training. On average, it takes 9.7s to train the CBDP by using
360 training samples on the CASIA(B) database.

Fig. 5 shows the recognition performance of the proposed
method. The size of aligned cross-view gait matrix features
are determined by different settings of horizontal and vertical
reduced dimensionality. Fig. 5a and 5b correspond to the
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Fig. 5. The recognition performance with different settings of horizontal
reduced dimensionality and vertical reduced dimensionality. (a) Gallery view
is 90◦ and probe view is 18◦, (b) Gallery view is 90◦ and probe view is 72◦ .

results of the probe views 18◦ and 72◦ respectively, while the
registered view is 90◦. The results suggest that the selections
of horizontal reduced dimensionality and vertical reduced
dimensionality have a significant effect on the recognition
performance especially in the case of a large difference

Fig. 6. Performance comparisons of the proposed method and the improved
metric learning [45] when the gallery view is 90◦.

between the probe and gallery views, since the undulation of
the recognition rates is fierce. Therefore, the parameters of
horizontal reduced dimensionality and vertical reduced dimen-
sionality are chosen through the cross-validation. We also test
the accuracies of the proposed method with different selections
of reduced dimensionality for the preprocessing of 2DPCA,
and we can find that the results are generally satisfactory
when the reduced dimensionality is larger than 20 × 15.
Therefore, we empirically choose the reduced dimensionality
of 20×15 for 2DPCA to balance the computational efficiency
and computational accuracy.

We also assess the significance of cross-view GEIs align-
ment. That is, we testify the role of proposed method and the
improved metric learning [45]. Fig. 6 shows the comparisons
of recognition rates for each probe view of {0◦, 18◦, 36◦, 54◦,
72◦, 108◦, 126◦, 144◦, 162◦, 180◦} when the gallery view is
90◦.“Difference” means the difference between the recognition
rate of the proposed method and the improved metric learn-
ing [45]. The results demonstrate that GEIs alignment (with
CBDP) can greatly improve the recognition accuracy under a
larger view difference.
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TABLE III

RESULTS OF CROSS-VIEW GAIT RECOGNITION ON THE CASIA(B) DATABASE(%)

Table. III reports all the possible cross-view recognition
rates of the proposed method. The results suggest that large
view differences significantly decrease the accuracy of the
proposed method. This is because the GEI appearances have a
similar visual effect under a small view change, and when the
view difference turns large, their similarity becomes suddenly
low. The proposed method achieves very high recognition
rates when the view difference is small, i.e., less than 36◦.
Noticeably, the proposed method achieves the recognition rate
that is close to 100% in some cases when the view difference is
smaller than 18◦. Hence, we certainly assure that the proposed
method is robust when the view difference is not beyond
36◦. Another interesting fact is that good performances can
be achieved when the views of the gallery GEIs and probe
GEIs are under complementary angles, such as 0◦ versus
180◦ as well as 36◦ versus 144◦. Because we can clearly
capture more jointly discriminative information when gaits are
recorded under the complementary view.

We also compare the proposed method with several existing
methods for cross-view gait recognition task: 1) GEI [23],
2) Complete canonical correlation analysis (C3A) [21],
3) Correlated Motion Co-Clustering (CMCC) [20],
4) Truncated SVD (TSVD) [16], 5) VTM+Quality Measures
(VTMQ) [17], 6) SVR [18], 7) GEINet [15] and 8) Deep
CNNs [34]. For a fair comparison, all the methods are
evaluated under the data splits as the above-mentioned for
the proposed CBDP. Fig. 7 illustrates the recognition rates
for four probe views (0◦, 18◦, 162◦, and 180◦) by using
nine different methods. From the results, we can observe the
following facts:

1) The proposed method is the most robust method, and
always achieves higher recognition accuracies than oth-
ers under both small and large cross-view differences.
This indicates that learning direct coupled distance met-
ric for aligning GEIs is beneficial to extracting the
common feature from the cross-view GEIs.

2) The proposed method is better than C3A and CMCC.
This is because C3A can maximize the correlation of the
vectorized GEIs across views, and it ignores the missing
of spatial information carried by GEI. However, the pro-
posed method can make full use of this information
to align GEIs across different views. Although CMCC
considers the clustering relationship of sub-region of

Fig. 7. Performance comparisons on the CASIA(B) gait database. (a) Probe
view is 0◦, (b) Probe view is 18◦, (c) Probe view is 162◦ , (d) Probe view
is 180◦ .

GEIs across views, it is difficult to accurately estimate
the strict correspondence of optimal sub-regions across
views when the view difference is large.

3) The proposed method outperforms VTM methods,
such as TSVD, VTMQ and SVR, which are all
reconstruction-based methods. In addition, TSVD
and VTMQ only decompose view-independence and
individual-independent information, and they are lack
of discriminant analysis. As a result of that the gait
information of virtual view synthesized by another view
always appears differently from the reference, and the
performance of SVR is worse than the proposed.

4) The proposed method obviously outperforms
GEINet [15], and slightly outperforms Deep CNNs [34].
GEINet [15] is based on one of the simplest CNNs,
and it has one input GEI, and the number of nodes in
the final layer equals to the number of training samples.
In Deep CNNs [34], pairs of GEIs are fed into the
network to detect the most discriminative changes of
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TABLE IV

DETAILED GALLERY AND PROBE DATASETS

Fig. 8. GEIs with the resolutions of 64 × 64, 16 × 16 and 8 × 8.

Fig. 9. Comparison of cross-view gait recognition against different resolu-
tions on the CASIA(B) database.

gait features. Such deep learning methods are inferior
to the proposed method, and the reason is that the
limited labeled data in gait dataset easily lead to the
overfitting of CNN model.

In gait recognition, the image is usually captured without
targets’ cooperation, which usually leads to poor quality
samples. Here, we evaluate the robustness of our proposed
method to low resolution. We down-sample the GEIs from
CASIA(B) database into two low-resolutions, i.e. 64 × 64,
16×16 and 8×8 (see Fig. 8), and test the performances when
taking the samples from 0◦ as probe and the samples from
90◦ as gallery. Fig. 9 shows the performances. Our proposed
method achieves 60.5%, 58.3% and 52.7% accuracy on the
resolutions of 64 × 64, 16 × 16, 8 × 8, respectively. It is easy
to observe that the proposed method is robust to low resolution
scenarios.

B. Experiments on OU-ISIR Database
The OU-ISIR large population gait database contains

1912 subjects with ages ranging from 1 to 94 years old,
and each of them is captured from 4 different observation
angles of 55◦, 65◦, 75◦ and 85◦. This database is equally
divided into two sets randomly for 5 times. Thus, the cross-
view GEIs from 956 subjects are used for training, and the
remaining 956 subjects for testing. It averagely takes 1143.5s
to train the CBDP by using 3824 training samples on the

Fig. 10. GEIs from the OU-ISIR database.

TABLE V

RESULTS OF CROSS-VIEW GAIT RECOGNITION

ON THE OU-ISIR DATABASE(%)

OU-ISIR database. Each testing subject’s one angle view GEIs
are used as register samples, and other angle view GEIs are
used as query samples. Table IV lists the detailed gallery
and probe datasets used to reliably evaluate the accuracy
of the proposed method. For each pair of views, we test
the recognition rates for 10 times, and report the average
recognition rate over these 10 runs. In our experiments, the size
of GEIs is normalized to 64 × 44 pixels. The GEIs from
4 views for two subjects are shown in Fig. 10. Though the
variation of views in the OU-ISIR database is smaller than that
of the CASIA(B) database, this database allows us to compare
the recognition performance among related cross-view gait
recognition methods due to the large number of subjects and
its wide range of age variations.

We also empirically choose the reduced dimensionality of
20 × 15 for 2DPCA and the same aligned dimensionality of
20×15 for the proposed CBDP. Table V reports the recognition
rates of the proposed method under all the investigated pairs
of views. Noticeably, we obtain recognition accuracies higher
than 90%. There are two reasons for better performance in
OU-ISIR gait database: 1) OU-ISIR gait database consists of
a larger number of training samples which can help avoid
the over-fitting problem; 2) OU-ISIR gait database’s largest
view difference is not larger than 30◦(view changes range
from 55◦ to 85◦). However, there are some failure cases.
For example, the 2-nd sample of the 421-st person is mis-
identified as the 680-th person when the gallery view is 75◦
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and the probe view is 65◦. The root reasons for the failures
are 1) the view difference of positive pairs is slightly larger
than that of the negative pairs, though the view difference
of positive and negative samples from the same camera is
assumed to be same. This is because different people cannot
walk strictly along the same path. 2) Human is a non-rigid
object whose gait patterns are highly influenced by one’s pose.
3) The matching accuracy is highly influenced by the quality
of GEI, which is constructed by human silhouettes. Though
we can extract good silhouettes in most cases, there are some
failures, especially when the image is captured in occluded
scenarios.

We compare the proposed method with GEI [23], 2)
C3A [21], 3) CMCC [20], 4) TSVD [16], 5) VTMQ [17],
6) SVR [18], 7) GEINet [15] and 8) Deep CNNs [34]. Fig.
11 shows the recognition rates for four probe views (55◦,
65◦, 75◦, and 85◦) generated by all nine different methods.
From the results, we can observe that the proposed method
achieves the highest recognition accuracy in most cases, and
it achieves the recognition rate that is larger than 95% in

most cases. The proposed method is significantly superior to
GEI, CMCC, TSVD, VTMQ and SVR. However, the accuracy
of the proposed method is occasionally a little lower than
C3A. Because C3A is applicable to cross-view gait recognition
with small difference in views, and the advantage of GEIs
matrix alignment is less obvious when the cross-view differ-
ence is small. Moreover, the proposed approach outperforms
deep learning-based methods, i.e., GEINet [15] and Deep
CNNs [34], due to its benefits on small-size dataset when
compared with deep learning-based approaches.

We also evaluate the performance of the proposed method
against low resolution on OU-ISIR database. We down-sample
the image samples from OU-ISIR database into two scales:
16 × 11 and 8 × 5 (see Fig. 12). Fig. 13 shows the results
of which gallery view is 55◦ and probe view is 85◦. Our
proposed method achieves the accuracies of 92.1%, 90.9%
and 74.2% on the resolutions of 64 × 44, 16 × 11 and
8 × 5, respectively. It shows that our proposed method is
not sensitive to the variation of resolution to some extent.
However, the performances of all methods drop drastically
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Fig. 11. Performance comparisons of various methods on the OU-ISIR gait
database. (a) Probe view is 55◦, (b) Probe view is 65◦, (c) Probe view is 75◦,
(d) Probe view is 85◦.

Fig. 12. GEIs with the resolutions of 64 × 44, 16 × 11 and 8 × 5.

Fig. 13. Comparison of cross-view gait recognition against different
resolutions on the OU-ISIR database.

when the resolution is very low. This is because too much
useful information is missing in such low resolution GEIs.

VI. CONCLUSION

In this work, we propose a Coupled bilinear discriminant
projection (CBDP) method for aligning gait images across
different views. CBDP learns a common lower-dimensional
discriminant subspace that effectively links the gaits across
views. It can directly deal with GEIs, therefore the spatial
structure of GEIs can be preserved, and at the same time,
the under-sample problem can be avoided. The upper and
lower bounds of the objective function sequence of CBDP
are given, and to our best knowledge, this is the first detailed
analysis on the convergence of CBDP with a trace ratio and
four optimized transformation matrices. Through a series of
experiments on the CASIA(B) and OU-ISIR gait databases,

we can see that GEIs alignment by the CBDP can significantly
improve the results that are without alignment. Furthermore,
the proposed method is superior to other state-of-the-art cross-
view gait recognition methods. CBDP needs computing C2

n =
n!

2!(n−2)! projection matrices for n different views. When n =
11 in the CASIA(B), CBDP needs 11 × 10/2 = 55 projection
matrices. In the future, we will potentially extend the proposed
CBDP to deep learning-based models such as [43] to handle an
arbitrary number (n) of views with certain number projection
matrices.

APPENDIX

In this appendix, we show how to obtain the corresponding

optimal Pt =
�

Pt
x

Pt
y

�
at iteration t . The equation can be derived,

as shown at the top of the previous page.
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