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Abstract

With the rapid development of autonomous driving, LiDAR-
based 3D Human Pose Estimation (3D HPE) is becoming
a research focus. However, due to the noise and sparsity of
LiDAR-captured point clouds, robust human pose estimation
remains challenging. Most of the existing methods use tem-
poral information, multi-modal fusion, or SMPL optimiza-
tion to correct biased results. In this work, we try to ob-
tain sufficient information for 3D HPE only by modeling
the intrinsic properties of low-quality point clouds. Hence,
a simple yet powerful method is proposed, which provides
insights both on modeling and augmentation of point clouds.
Specifically, we first propose a concise and effective density-
aware pose transformer (DAPT) to get stable keypoint rep-
resentations. By using a set of joint anchors and a care-
fully designed exchange module, valid information is ex-
tracted from point clouds with different densities. Then 1D
heatmaps are utilized to represent the precise locations of the
keypoints. Secondly, a comprehensive LiDAR human syn-
thesis and augmentation method is proposed to pre-train the
model, enabling it to acquire a better human body prior. We
increase the diversity of point clouds by randomly sampling
human positions and orientations and by simulating occlu-
sions through the addition of laser-level masks. Extensive ex-
periments have been conducted on multiple datasets, includ-
ing IMU-annotated LidarHuman26M, SLOPER4D, and man-
ually annotated Waymo Open Dataset v2.0 (Waymo), Hu-
manM3. Our method demonstrates SOTA performance in all
scenarios. In particular, compared with LPFormer on Waymo,
we reduce the average MPJPE by 10.0mm. Compared with
PRN on SLOPER4D, we notably reduce the average MPJPE
by 20.7mm.

Code — https://github.com/AnxQ/dapt

1 Introduction
3D human pose estimation (3D HPE) is a fundamental com-
puter vision task with a wide range of downstream usages
such as human behavior understanding, trajectory predic-
tion, autonomous driving (Cong et al. 2022; Lian et al.
2022), etc. To implement 3D HPE, a simple and direct way
is to regress 3D keypoint coordinates directly from 2D HPE
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Figure 1: We propose a novel framework for LiDAR-based
3D HPE. With comprehensive LiDAR human synthesis &
augmentation for model pre-training as well as the learning
of stable joint representations, our method produces robust
results from low-quality point clouds.

results (Kang et al. 2023; Gong, Zhang, and Feng 2021).
However, these methods have difficulty predicting world co-
ordinates, and robust pose estimation in the real scenario re-
mains challenging.

To get global 3D keypoints, most traditional 3D HPE
methods are based on multi-view RGB images (Simon et al.
2017; Iskakov et al. 2019; Tu, Wang, and Zeng 2020; Ye
et al. 2022) or RGB-D images (Ying and Zhao 2021; Hong
and Kim 2018), which require in-door laboratory environ-
ments with complex calibrations (Su et al. 2020; Zheng et al.
2022). Alternatively, LiDAR sensors can obtain accurate
point-level depth in complex environments, which are more
adaptable to long-range 3D HPE in open-world scenes.

However, compared to clear and dense point clouds gen-
erated by RGB-D images (Fan et al. 2018; Ionescu et al.
2014), the LiDAR-captured point clouds have various in-
consistencies, making them difficult to learn directly with
existing methods. As shown in Fig.2, the samples in Waymo
Open Dataset (Sun et al. 2020) have various point densities,
and the noisy points from the environment may lead to am-
biguity and unstable predictions. Therefore, to achieve ro-
bust pose estimation, (Li et al. 2022a; Yan et al. 2024; Zhao
et al. 2024) integrate ST-GCNs to get stabilized pose results
from multiple LiDAR frames. (Cong et al. 2023; Fürst et al.
2021) perform multi-modal fusion to mitigate the lack of in-
formation in sparse point clouds, and (Li et al. 2022a; Yan
et al. 2024; Zhang et al. 2024) introduce SMPL (Loper et al.
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Figure 2: Difficulties of LiDAR-based 3D HPE, mainly lie
in samples with noisy, occluded, or sparse point clouds.
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Figure 3: Results of the segment-regression-based methods.
The color of the point indicates which joint it belongs to.
The wrong segmentation leads to a biased joint location.

2015) as a priori to further align human mesh with point
clouds. Despite the success of these methods, they inevitably
introduce additional data acquisition or time-consuming op-
timization processes which complicate the entire framework
and make it less suitable for practical applications.

In this paper, we propose a novel framework to learn sta-
ble representations for 3D HPE only using single-frame low-
quality LiDAR point clouds. Our method is simple yet effec-
tive. Specifically, We provide insights into both model de-
sign for accurate pose estimation and model pre-training for
effective body prior learning.

Firstly, we design a Density-Aware Pose Transformer
(DAPT) that provides stable and explicit representations of
joints. Most existing models attempt to regress the coor-
dinates of joints from global or clustered point-wise fea-
tures. This makes the model highly susceptible to the den-
sity and spatial distribution of the point cloud. As shown
in Fig.3, when the point cloud near the joint is sparse or
noisy, the network cannot correctly identify which body part
the point belongs to, resulting in a biased joint location. To
solve this problem, we introduce a set of learnable joint an-
chors. When extracting point cloud features, they can explic-
itly integrate the information across multiple density levels
through a carefully designed exchange module. Then, we
utilize 1D-heatmaps on the XYZ axes to represent joint po-
sitions, which allows the model to obtain a stable output.

Secondly, we introduce a comprehensive pre-training ap-
proach that conducts thorough LiDAR human synthesis and
augmentation. Since annotating LiDAR data is expensive,
inspired by (Weng et al. 2023a), we train on samples syn-
thesized by SMPL mesh under ray casting. To tackle noisy
and sparse point clouds in real scenarios, we add a square
surface that can be varied in small magnitudes, such as the

ground surface, and put the human mesh into the scene with
randomized poses and positions. On the other hand, since
the light beams are highly susceptible to occlusion by fore-
ground objects, we mask the range image with patches to
simulate the occlusion. Therefore, the model will learn prior
knowledge of the human body and mine important clues
about the pose in low-quality point clouds.

With the synergy of pre-training and DAPT, our approach
provides a robust way to understand human body config-
urations in outdoor environments. Although the proposed
method is optimization-free and does not use information
from any other modalities or time series, we still outper-
form SOTA methods on multiple datasets. Specifically, our
method compared with LPFormer (Ye et al. 2024) on the
manually annotated Waymo Open Dataset (Sun et al. 2020)
reduces the mean per joint position error (MPJPE) by 10mm
(↓16%). When compared with PRN (Fan et al. 2023b) on
the IMU-annotated SLOPER4D dataset (Dai et al. 2023), it
reduces the MPJPE by 20.7mm (↓58%).

In summary, our contribution lies in three main aspects:

• We propose a density-aware pose transformer that
steadily mines pose cues from sparse and noisy point
clouds.

• We thoroughly investigate the difficulties of estimating
human pose by LiDAR data and design a comprehensive
pre-training approach.

• Our method greatly improves the stability and accu-
racy of single-frame LiDAR-only human pose estima-
tion, achieving SOTA performance in multiple scenarios.

2 Related works
2.1 LiDAR-based 3D human pose estimation
In recent years, many LiDAR point cloud-based 3D HPE
methods have been proposed as the practical application
value of LiDAR has been explored. (Li et al. 2022a) pro-
vides the first LiDAR HPE dataset and proposes the first
fully supervised baseline for LiDAR-based motion capture.
The keypoint coordinates are obtained by a temporal en-
coder and optimized with inverse kinematics and SMPL.
(Yan et al. 2023) provides a climbing dataset with explicit
scene interactions and attempts to perform scene-aware hu-
man pose estimation, followed by (Zhang et al. 2024) which
uses environmental information of 3D neighbors sampled in
the background to enhance the pose learning. (Ren et al.
2024b,a) achieves accurate motion tracking by exploiting
temporal and spatial coherence. On the other hand, (Cong
et al. 2023; Zheng et al. 2022; Fürst et al. 2021; Hu et al.
2024) perform multi-modal fusion, which utilizes the key-
point cues and geometric constraints provided by the 2D
images for weakly-supervised 3D human pose learning. (Ye
et al. 2024) proposes a multitasking architecture that aug-
ments model learning with segmentation and object detec-
tion tasks, and uses a keypoint transformer for multi-person
3D HPE.

Despite the success of these approaches, most of them in-
evitably use information from other modalities or utilize the
priori of body structure provided by SMPL to compensate
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Figure 4: Overall structure of our method. It mainly consists of (a) a comprehensive LiDAR human synthesis and augmentation
framework to provide internal human priors, and (b) a Density Aware Pose Transformer that uses the multi-density exchange
(MDE) module to extract stable joint representations from point cloud features.

for unstable results on sparse or noisy LiDAR point clouds.
This can cause an increase in the complexity and latency
of the system. Therefore, we think that an optimization-free
approach based only on single-frame LiDAR is more practi-
cal. This leads us to learn a stable representation of joint for
LiDAR-based 3D HPE which increases the reliability of the
results and avoids cumbersome post-processing.

2.2 Pre-training for human pose estimation

Because pre-training allows models to learn generalized and
dataset-independent representations, it has become an im-
portant technique to improve the performance of down-
stream tasks (Devlin et al. 2019; He et al. 2020; Wang et al.
2021; Li et al. 2021, 2022b). On one hand, there have been
attempts to use existing data for augmented representation
learning. (Xu et al. 2022; An et al. 2024) enhances the ac-
curacy of Vision Transformer-based 2D pose estimation by
masked self-supervised pre-training (He et al. 2022). (Qiu
et al. 2023) utilizes physical constraints provided by com-
putational photography to conduct weakly supervised pre-
training of 3D poses and improve the model’s generaliza-
tion. (Shan et al. 2022) brings an accuracy increase to 2D-
to-3D lifting methods by applying a spatial-temporal mask
of the skeleton.

On the other hand, some methods try to use synthetic data
to make up for the lack of labeled pose data. (Lin et al.
2024) utilizes the multi-camera projection of SMPL models
to generate enough labeled samples for pre-training. (Weng
et al. 2023b) proposes a LiDAR scene generation approach
based on human mesh under ray casting. (Ren et al. 2023,
2024b,a) craft large-scale synthetic datasets based on (Mah-
mood et al. 2019) to obtain rich human priors. However, this
method is limited by not considering the relative positions
of bodies and LiDAR sensors and ignoring the diversity of
occlusions. In this paper, we perform a richer and more rea-
sonable sampling of spatial positions so that the model can
learn point cloud representations from more aspects. More-
over, we construct more complex occlusion and noise point
clouds to simulate the real environment.

3 Methodology
Our approach consists of two parts: a) a density-aware pose
transformer (DAPT) for stable joint representation learning,
b) a comprehensive LiDAR human synthesis & augmenta-
tion for model pre-training. We adopt a two-stage training
scheme, as shown in Fig.4, we first pre-train the model on
synthetic samples, which are generated by ray casting with
random augmentations and occlusions. When the samples
are fed into the proposed model, they are first encoded as
sparse point features, Then, the valid information is pro-
gressively extracted to a set of joint anchors through multi-
density exchange (MDE) modules and decoded into 1-D
heatmaps. Finally, we input real samples into the model for
fine-tuning. Note that the network architecture is shared be-
tween pre-training and fine-tuning with only slight differ-
ences in the loss functions.

In this section, we present the proposed method module
by module.

3.1 LiDAR human synthesis
The quality and diversity of samples used for pre-training
will directly affect the effect of downstream fine-tuning. In-
spired by (Weng et al. 2023b), we propose a more compre-
hensive strategy to sample and augment the scene.

Scene sampling Given shape parameters β⃗ ∈ R10 and
pose parameters θ⃗ ∈ R72 sampled from a real-world cap-
tured SMPL database (Li et al. 2022a), a human instance is
simply generated by the SMPL model:

{Mh, Ĵ} = SMPL(β⃗, θ⃗), (1)

where Mh = {Vh ∈ RNV ×3,Fh ∈ ZNF×3} is a human
mesh with NV vertices Vh and NF triangle faces Fh. Ĵ ∈
RK×3 are human joints.

To simulate real ground, a ground mesh Mg = {Vg,Fg}
is generated by a random normal vector n⃗ with size sg , lo-
cating at the point with a minimum value of Z axis in Vh.

Then, we randomly sample a polar coordinate with dis-
tance r ∈ [4m, 20m] and azimuth θ ∈ [−π, π], and convert



it to Cartesian transition t⃗. Finally, the transformation is ap-
plied to Mh and Mg to get the scene mesh:

M = {V = (Vh ∪Vg) + t⃗,F = Fh ∪ Fg}. (2)

Ray casting The LiDAR sensor obtains depth information
through 360◦ scans at different elevation angles. Thus, the
3D points it captured can be represented by polar coordi-
nates (r, θl, δl) within a laser grid G = {θi}Nθ

i=1 × {δj}Nδ
j=1.

Since the synthetic mesh only occupies a small angle range,
for faster sample generation and to facilitate the subsequent
application of laser-level masks, we only intercept the laser
within valid azimuth and elevation angles:

θ = [θmin(V), θmax(V)] ∩ {θi}Nθ
i=1,

δ = [δmin(V), δmax(V)] ∩ {δj}Nδ
j=1,

R = {(θl, δl)|θl ∈ θ, δl ∈ δ},
(3)

where θmin(·), θmax(·) take the minimum and maximum
azimuth angles of the vertices, and for the elevation an-
gles, the corresponding values are taken by δmin(·), δmax(·).
Then, ray casting is performed with the mesh to get the point
cloud P ∈ RN×3 and which faces the lasers hit H ∈ ZN :

(P,H) = RayCast(M;R). (4)

Note that a label map describing the joints to which trian-
gle faces belong is given by the SMLP model. Hence, the
ground truth segmentation Ŝ ∈ [0, 1]N×(K+1) of P can
be calculated by H, where Ŝi,j = 1 means the laser point
pi ∈ P belongs to the j th joint.

Laser-level masking To better simulate the occlusion in
the real environment, we divide the effective LiDAR laser
grid obtained in Eq.3 into patches with an empirical size
sp = ⌊min{maxθ−minθ,maxδ−minδ}/8⌋. Then,
1− rkeep ratio of the total patches are being masked, which
are denoted as M. Finally, the point cloud is filtered by:

Psyn = {pi|pi ∈ P, ri /∈ M} , (5)

where ri ∈ R is the ray producing hit point pi.

3.2 Density-aware pose transformer
We present a density-aware pose transformer based on
UNet-like point transformers (Wu et al. 2024) to obtain sta-
ble joint representations of different densities. Specifically,
the point cloud is firstly encoded into sparse point cloud fea-
tures, which are subsequently fed into a decoder to be recov-
ered to point-wise features. During the decoding process, we
utilize an MDE module to export valid information from dif-
ferent pooling hierarchies and use 1D heatmaps to represent
point locations, since heatmaps are generally more amenable
to neural networks than coordinate regression.

Point cloud feature deduction with MDE Given an input
point cloud P ∈ RN0×3, it was encoded into latent point fea-
tures fM by an encoder E : RN0×3 → RNM×DM . Where N0

is the initial point numbers, NM , DM are the pooled point
numbers and pooled point feature dimensions of M th pool-
ing level.

As shown in Fig.4 right, it can be seen that at deeper pool-
ing levels, the pooled point cloud shows a sparser spatial dis-
tribution, which inspires us to model joint-related features
at these levels. Therefore, a set of learnable joint anchors
AM ∈ RK×DM is introduced. As the spatial dimensions
of the features are expanded through the point transformer
blocks, MDE progressively exchanges information between
point features fm and joint anchors. Then, it updates the
joint features by:
Am−1 = MDEm(Am, fm),m = M,M − 1, · · · , 1. (6)

The MDE module first aligns the dimensions of joint fea-
tures Am to the dimensions of fm through an MLP, then
applies self-attention on it while shortcutting it with padded
fm for cross-attention.

Heatmap decoder for joints Two 1D heatmaps have been
proven to be effective in representing 2D keypoint coordi-
nates (Li et al. 2022c). Inspired by this, we extend it to the
representation of 3D coordinates of joints. Given the range
and number of bins N{x,y,z}, the heatmaps h{x,y,z};i of i th
joint can be predicted by MLPs on the corresponding axis.
To get the target coordinate, we decode the 1D heatmaps by
taking the peak location of h{x,y,z};i, and map them back to
the coordinate through the counted range and bins.

Pre-training The goal of pre-training is to allow the
model to obtain human priors in the LiDAR-captured point
clouds and understand the structure of the human body.
Therefore, at this stage, to avoid learning preferences caused
by differences in supervision intensity, following (Weng
et al. 2023a), we still use coordinate regression on joint fea-
tures and segmentation on point features for supervision.
The joint regression loss Lreg is defined by:

Lreg =

K∑
i=1

∥∥∥Ji − Ĵi

∥∥∥
2
· vi/

K∑
i=1

vi, (7)

where J are the decoded joints coordinate from A0 through
a shared decoder Dreg : RD0 → R3, and Ĵ are the corre-
sponding ground truth, vi is the joint visibility. The segmen-
tation loss Lseg is defined by:

Lseg = −
N0∑
i=1

K+1∑
j=1

Si,j log(Ŝi,j), (8)

where S are the decoded part segmentation of points from
f0 through a shared decoder Dseg : RD0 → RK+1. Overall,
we input synthetic data and minimize:

Lpre = λregLreg + λsegLseg, (9)
where λreg, λseg are loss weights.

Fine-tuning The goal of the fine-tuning phase is to adapt
the model to the joint annotations of different datasets and
their specific distribution. Therefore, in this stage, we only
enable the heatmap loss. We input real data and minimize:

Lft = Lhm =
∑

c∈{x,y,z}

K+1∑
j=1

DKL(hc;j∥ĥc;j), (10)

where DKL is the Kullback–Leibler divergence between GT
and predicted 1D heatmaps.
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Figure 5: Visualization results on common datasets with challenging samples. Our method demonstrates strong stability on
low-quality point clouds including occlusion, noise, and sparsity.

Dataset Waymo HumanM3 LiDARHuman26M SLOPER4D
Metrics MPJPE PCK3 PCK5 MPJPE PCK3 PCK5 MPJPE PA- PCK3 PCK5 MPJPE PA- PCK3 PCK5

LidarCap - - - - - - 79.31 66.72 86.00 95.00 101.89 78.93 78.15 89.77
NE - - - - - - 72.23 61.67 87.94 95.79 96.80 76.70 79.22 90.51
LPFormer 61.60 94.52 98.04 83.69 89.54 96.85 95.72 79.03 84.38 94.87 49.31 38.92 97.22 99.44
PRN 68.48 93.60 97.87 70.56 93.18 97.80 80.01 63.67 88.77 96.54 48.76 39.42 97.38 99.45
DAPT(ours) 51.59 97.34 98.98 59.76 95.39 98.30 73.47 58.40 90.54 97.06 28.01 21.52 99.30 99.87

Table 1: Comparison with other methods on IMU-annotated LidarHuman26M, SLOPER4D, and manually annotated Waymo
Open Dataset, HumanM3. PA- stands for PA-MPJPE, and the units of MPJPE and PA-MPJPE are mm.The best results are
highlighted in bold. For the same dataset, the skeleton structures are aligned to ensure fair comparison.

4 Experiment
4.1 Implementation Details
For the model specification, we follow the typical config-
uration of PTv3 (Wu et al. 2024), with a voxelization grid
size of 0.01. For data synthesis, the SMPL models are sam-
pled from (Li et al. 2022a), and a simulated LiDAR sensor
with 64 lines and 2650 angles is applied to perform ray cast-
ing, the rkeep is set to 0.6 for laser-level masking. For model
training, we perform 50 epochs in both pre-training and fine-
tuning with AdamW (Loshchilov and Hutter 2019) opti-
mizer on 2 RTX 4090. We set the batch size to 64 and apply
the cosine annealing decay strategy. For pre-training, we set
the learning rate to 3×10−4 and set λreg = 0.5, λseg = 1.0.
For fine-tuning, the learning rate is set to 5× 10−4.

4.2 Datasets
We use four datasets with different scenarios and annotation
methods to evaluate our method:
LiDARHuman26M (Li et al. 2022a) A multi-modal dataset
uses inertial measurement units (IMUs) captured human
poses in SMPL format. It uses a fixed LiDAR sensor to cap-
ture a variety of daily actions within a range of 12m to 24m.
The scenes are clear and ideal.
SLOPER4D (Dai et al. 2023) An IMU annotated dataset
captured within a more realistic environment. A mobile Li-

DAR sensor is utilized to track a walking person for cap-
turing point cloud data. Since the official train-test split is
unavailable, we utilize the same data split following (Zhang
et al. 2024).
HumanM3 (Fan et al. 2023a) A multi-person pose dataset
utilizing automatic annotation and manual review for ac-
curate ground truth poses. It mainly includes multi-person
scenes on sports fields, with point clouds and images cap-
tured by multiple sets of RGB-LiDAR units. Due to its large
size and the small differences between adjacent frames, we
only use 20% of the data for training.
Waymo Open Dataset v2 (Mei et al. 2022) A large-scale
multi-task autonomous driving dataset with manual 3D pose
annotations, contains 10K human instances.

4.3 Metrics
According to common practices, to evaluate model perfor-
mance, we report MPJPE↓ (Mean Per Joint Position Error),
PA-MPJPE↓ (Procrustes-Aligned Mean Per Joint Position
Error), PCK-3↑ (Percentage of Correct Keypoints with dis-
tance to GT lower than 30% of torsal length), PCK-5↑ (Per-
centage of Correct Keypoints with distance to GT lower than
50% of torsal length). Note that we do not evaluate PA-
MPJPE on Waymo and HumanM3, as their visibility labels
of joints will interfere with the rigid body alignment process.



Pre-training dataset Waymo LiDARH26M

w/o 59.2 76.5
LIPD (Ren et al. 2023) 58.7 75.6
FreeMotion (Ren et al. 2024b) 57.9 74.3
NoiseMotion (Ren et al. 2024a) 59.0 76.3
FreeMotion† 54.6 73.2
LiDARH26M† 51.6 73.4

Table 2: The effectiveness of our enhanced pre-training
method, † means applying our data synthesis pipeline rather
than the point cloud provided by the dataset.

Anchor MDE Heatmaps MPJPE (gain)

PRN Baseline 68.5
✓ 54.3 (-14.2)
✓ ✓ 52.3 (-16.2)
✓ ✓ 53.8 (-14.7)
✓ ✓ ✓ 51.7 (-16.8)

Table 3: Ablation study of progressively enabling our pro-
posed components.

4.4 Comparison methods
We compare our method with several state-of-the-art ap-
proaches. Specifically, we first evaluate against advanced
Transformer-based models, LPFormer (Ye et al. 2024) and
PRN (Fan et al. 2023b), both of which are capable of in-
ferring complete human body poses from single-frame Li-
DAR data. Additionally, we compare our method with Li-
DARCap (Li et al. 2022a), which leverages SMPL optimiza-
tion and temporal information. We also include the Neigh-
bor Enhanced (NE) 3HPE (Zhang et al. 2024), which incor-
porates information from the surrounding scene. To ensure
a consistent comparison, we replace the point cloud back-
bone in PRN with PTv3. We note that LiDARCap and NE
require consecutive frames and ground truth SMPL params,
this limits the evaluation process on Waymo and HumanM3
datasets. Therefore, the results are not included.

4.5 Quantitative Results
Tab.1 presents the comparison results, where our method
consistently achieves outstanding results across four
datasets. On LiDARHuman26M with clear scenes, our
method obtains comparable MPJPE to the current best NE
but with a reduced PA-MPJPE (−3.2mm), suggesting closer
alignment with GT. On the more challenging SLOPER4D,
our method gets a remarkable 28.01mm MPJPE, represent-
ing a significant improvement over the current best PRN
(−20.7mm). In the motion-focused dataset HumanM3, our
method records an MPJPE of 59.76mm, surpassing PRN
by 10.8mm. Finally, on the Waymo dataset, which cen-
ters on autonomous driving scenarios, our method achieves
an MPJPE of 51.59mm, improving by 10.0mm over the
SOTA method LPFormer. Overall, our method consistently
achieves higher PCK-30 and PCK-50 scores, indicating
greater robustness and value of practical usage.

Method MPJPE (gain)

scratch 59.2
+pre-training 52.9 (-6.3)

+scene sampling 52.4 (-6.8)
+laser masking 51.7 (-7.5)

(a) Influnce of augmentations

rkeep MPJPE

0.5 53.0
0.6 51.7
0.7 51.9
0.8 52.5
0.9 52.4

(b) Influnce of rkeep

Table 4: Ablation study of pre-training related components.

4.6 Statbility Evaluation
To evaluate the stability of our method, we introduce vari-
ous types of disturbance to the point cloud and re-evaluate
the model’s performance. Specifically, we apply clusters of
noise points at different locations and introduce positional
offsets to each point. Results are presented in Fig.7.

Point jittering We add point noise to each point coordi-
nate of the input and use different thresholds for clipping.
The results are shown in Fig.7a. It can be observed that
compared with baseline methods, our method has less per-
formance degradation, and the proposed MDE module also
plays a positive role in dealing with disturbances.

Noise clusters We simulate extreme input conditions by
adding clusters containing varying amounts of noise points
to the input point cloud. As shown in Fig.7b, as the num-
ber of noise points per cluster increases, our method yields
more stable results. Notably, our pre-training substantially
enhances the model’s ability to handle noisy point clouds.

Errors on end joints We evaluate the errors on the most
challenging end joints, and the results are shown in Fig.8.
Our method demonstrates smaller average error and variance
on these joints. Especially, the proposed pre-training method
effectively stabilizes the prediction of ankles and wrists.

4.7 Ablation study
Model components In Tab.3, we conduct ablation studies
on the Waymo dataset to evaluate the contributions of the
key components by incrementally enabling each proposed
module. Specifically, row 1 represents the PRN baseline.
Row 2 shows the results after introducing joint anchors and
a 4-layer Transformer on top of the off-the-shelf PTv3. Row
3 demonstrates the effect of enabling the proposed MDE
module on multi-scale point cloud features. In row 4, the
coordinate-based decoding is replaced with heatmap-based
decoding. The final row presents the results with all mod-
ules enabled. The combined effect of joint anchors and the
MDE module leads to a substantial 16.2mm improvement
in MPJPE over the baseline. Replacing the decoder with a
heatmap-based one results in an additional 0.6mm improve-
ment.

Pre-Training In Tab.4, we conduct ablation studies to
assess the impact of our proposed pre-training strategies.
Tab.4a evaluates the effectiveness of the enhancements: the
first row represents training without any pre-training, the
second row uses the same pre-training strategy as (Weng
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Figure 6: Visualization of synthesis samples. For the same SMPL human body, our method can produce diverse point clouds,
and the laser level mask introduces extreme cases, which equips the model with more robust human priors and the ability to
recover human pose from low-quality point clouds.

0 0.05 0.1 0.15
0.03

0.04

0.05

0.06

0.07

0.08

PRN LPFormer
w/o MDE w/o heatmaps
w/o pretrain ours

Max point movement

M
PJ

PE

(a) Point jittering

0 50 100 150
0.02

0.04

0.06

0.08

PRN LPFormer
w/o MDE w/o heatmaps
w/o pretrain ours

Num points/cluster

M
PJ

PE

(b) Noise point clusters

Figure 7: Stability evaluation of our method. We observe
that the performance degradation of the proposed method
is within a more acceptable range.
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Figure 8: Errors comparison of the most challenging human
end joints. The worst 600 instances of each method are in-
cluded in the statistics.

et al. 2023a), the third row implements scene resampling,
and the fourth row further incorporates the proposed laser
level masking. Comparing rows 1 and 2, the inclusion of
pre-training brings an MPJPE reduction of 6.3mm. Fur-
ther comparison of rows 1 and 4 shows that incorporating
both scene resampling and laser-level masking leads to an
even greater improvement of 7.5mm. Moreover, as shown
in Tab.4b, to strike a balance between providing sufficient
information for human pose reconstruction and enabling
the model to recover human structures from occluded point
clouds, we vary the proportion of the laser level mask rkeep
from 0.5 to 0.9 to determine the optimal parameter. In ad-
dition, as shown in Tab.2, we also compare our synthesis
pipeline with LIPD (Ren et al. 2023), FreeMotion (Ren et al.
2024b), and NoiseMotion (Ren et al. 2024a), which also use
synthetic data. Pre-training with data synthesized by the pro-
posed method can bring more performance improvements.

4.8 Visualization
Prediction results Fig.5 presents the visualization results
of our method. We select some challenging samples from the
dataset, and our method consistently produces more stable
results. Row 1 left shows a walking person from the Waymo
dataset, but the left-right symmetry of the body is unclear. A
segmentation-regression-based method produces wrong re-
sults, attempting to disregard the human body’s rigid struc-
ture to mitigate inference errors caused by left-right ambi-
guity. In contrast, our method penalizes such ambiguities
in the heatmap, effectively avoiding this issue. Row 2 il-
lustrates the detection results on sparse point clouds from
the LiDARHuman26M dataset. In this scenario, our method
effectively recognizes human body orientation from limited
clues. Lastly, as depicted in row 1 right and row 3 left, when
multiple human instances are unexpectedly introduced by
the human detector, our approach does not confuse the two
individuals. In summary, our method demonstrates strong
capability in robust inference.

Synthetic samples We present the synthesis samples of
our approach in Fig.6. It is evident that scene resampling
produces diverse synthetic samples, effectively generating
both sparse and dense point clouds of human instances. Ad-
ditionally, the laser-level masks introduce more complex oc-
clusions, which in turn equip the model with more robust
human priors and point cloud representations.

5 Conclution
We propose a novel method for robust LiDAR-based 3D hu-
man pose estimation, with two main contributions. First, we
introduce a density-aware pose transformer, which employs
joint anchors and special exchange modules to extract valid
features from point clouds of varying densities, enabling ex-
plicit learning of stable keypoint representations. Second,
we present a comprehensive LiDAR-based human synthesis
and augmentation approach for model pre-training. By in-
tegrating more randomized position sampling, ground mod-
eling, and laser-level masking, we generate highly realistic
and challenging samples. Qualitative and quantitative eval-
uations demonstrate that with the synergy of the proposed
model and pre-training strategies, our method achieves state-
of-the-art performance across multiple datasets.

Overall, our approach provides a comprehensive solution
for LiDAR-based 3D HPE. Future work can try to address
left-right reversal and multi-frame jitter in timing or perform
pose-based human behavior understanding tasks.
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