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A Details of Neighborhood Routing Mechanism

Recall that we use the node u as an example to describe the disentangling process of DisenGCN.
By using Eq. (1) in the main manuscript, the obtained z** describes the aspect of node i that are
related with the k-th latent factor. However, z%* only denotes the information of the node ¢ itself.
Therefore, for the node u, we have to mine information from the neighborhoods, which are connected
with node u due to the k-th latent factor. Specifically, we aim to identify the latent factor that causes
the connection between node u and its neighbor node v, and accordingly extract features of v that are
specific to that factor. This is exactly the purpose of the neighborhood routing mechanism.

First, we define pU-*, which represents the probability that the latent factor k is the reason why the

node v reaches its neighbor v. Then, we can have p”* > 0, and 25:1 p”’k/ = 1. Moreover, p** is
also the probability that we should use the neighbor v to construct c***. The neighborhood routing
mechanism will infer p“=k and construct ¢** in an iterative manner. To initialize this process, we
make (pU*))  exp[(zV*)Tz%* /7,]. Then, it subsequently iterates to identify the largest cluster
within each subspace, ensuring that each neighbor is primarily associated with a single subspace

cluster: ) ) -
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where (c“’k )(t) denotes the center of each subspace cluster at the ¢-th iteration, ¢ = 2,3,--- , T, and
Tp is a hyperparameter that controls the hardness of the assignment. Here 7, is set to 1 according

to [[1]. After T times of iterations, the final output is c** = (c**)(T),

(prF) ") =

2

B Instantiations of Distributions

We summarize the family of distributions instantiated by our proposed FedIIH in Tab. [} Specifically,
the priors p(ca®) and p(HE,) are both centered isotropic multivariate Gaussian distributions. Besides,
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Table 1: Family of distributions instantiated by our proposed FedIIH.
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the prior over the local latent factor I:I’fn conditioned on a* (i.e., p(I:Iﬁl|ak)) is an isotropic multi-
variate Gaussian distribution centered at a*. Similarly, the marginal distribution of & (i.e., ¢(a*))
is a multivariate diagonal Gaussian distribution. As shown in Tab. |1}, &"* and aik denote the posterior
mean and variance of o, respectively. Moreover, ﬂﬁ’ﬁﬂ and &1211 . denote the variational mean and
variance evaluated at G,,, respectively. "

C Derivation of the ELBO

First, the ELBO for the marginal likelihood of Gi.ps (i.e., log p(G1.ar)) can be obtained by using the
Jensen inequality:
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Second, inspired by [2]], the ELBO can be derived as follows:
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Third, we compute the expected KL divergence of two Gaussian distributions (i.e., ¢ ﬁ%gm) and
H’ |a*)) over a Gaussian distribution (i.e., ¢(a*)) analytically. According to Tab. |1} we can have
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where J denotes the dimension of H’“ Moreover, af7, qu j ,and o0 a = denote the j-th element

of aF, ”Hf ,and 6 crﬁ . » respectively.

Fourth, the KL divergence between ¢(a*) and p(a*) can be computed analytically as
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where @*J denote the j-th element of &*.

Fifth, we substitute the result of Eq. (3)) and Eq. () into Eq. (@), respectively. Then, we can have
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Finally, since two constants in the above Eq. (7) can be omitted, we can have
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D Derivation of &*

Since estimating the exact Maximum A Posterior (MAP) of o is intractable, inspired by [2], we
approximate o* with the help of ELBO as follows:
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where f(a*)is a concave quadratic function with only one maximum point, and o7 denotes the
7-th element of a*. The closed-form solution of &* can be derived by differentiating Eq. (T0) with
respect to a®. Specifically, we let
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E Details of HVGAE

In this section, we introduce the detailed neural network architectures for our proposed HVGAE.
Since HVGAE is deployed in each client, we take the m-th client as an example. Recall that G,,, is
the subgraph on the m-th client, which contains the node feature matrix X,,, and adjacency matrix
A,,. We use two DisenGCNs (i.e., DisenGCN,,, (G,,) and DisenGCNy,, (G,)) as the encoder
and an inner product as the decoder of HVGAE, respectively. Note that DisenGCN,, (G,,) and
DisenGCNy,, (G,,) are used to infer the means and standard deviations of G,,, for K latent factors,
respectively. Moreover, DisenGCN,(G,,) and DisenGCN4(G,,) share the same node feature
projection layer.

Fig. [I] shows the architecture of our proposed HVGAE. First, we project the node feature to K
subspaces according to Eq. (1) in the main manuscript. Meanwhile, the node representations after the
node feature projection layer are used to train a local node classifier. Second, we use the neighborhood
routing mechanism to obtain H1:¥,  and HUE  respectively. Third, we use the reparameterization

m,o?

trick [3]] to sample H1 ‘K from H1 K and H1 ‘K (see Eq. (7) in the main manuscript). Fourth,
HVGAE decodes from H:X and then computes E .. (6.) [log p(gm|H,,,Lﬂ (see Eq. (8) in the

m

main manuscript). The implementations of two prior distributions p(&*) and p(H,|&*) are shown
in the Appendix
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Figure 1: The architecture of our proposed HVGAE. The dashed lines show the process of sampling
using the reparameterization trick [3].

F Additional Related Work

Here we review the typical works related to the FL via Bayesian methods. Recently, some methods [4}
5, 16] have tried to model the FL problem by using the Bayesian theories. Specifically, they take the
network weights as a whole entity and treat them as a single random variable shared by all clients.
For example, FedPA [4]] infers the global posterior by averaging the local posteriors. However, FedPA
targets a general FL setting, so it does not apply to the personalized FL, and its performance may
be degraded. Different from FedPA, pFedBayes [5] assigns a personalized Bayesian neural network
to each client. It infers the global posterior from individual posteriors under a regularizer based on
the KL divergence. However, it cannot model the posterior of each client from a global perspective.
To address this deficiency, Kim et. al propose a hierarchical Bayesian approach called FedHB [6],
which mitigates the heterogeneity problem in a personalized way. Specifically, it introduces two
types of latent random variables, one used as the network weights for each client’s backbone, and the
other used as a globally shared random variable to be associated with each client. Unlike FedHB, we
model the local subgraph data rather than the network weight, so that we can infer the subgraph data
distribution on each client.

G Analysis of Federated Parameters

According to the architecture of our proposed HVGAE, there are several components: a node feature
projection layer, two neighborhood routing mechanism layers, a node classifier, and a reconstruction
layer. First, recall that there are no learnable parameters in the neighborhood routing mechanism.
Second, the reconstruction layer is constructed by an inner product, so there are no learnable param-
eters. Third, although we use two DisenGCNS (i.e., DisenGCN,,, (G,,) and DisenGCNg., (Grn))
as the encoder of our proposed HVGAE, they share the same node feature projection layer (see
Appendix [E)). Consequently, according to the node feature projection layer defined by Eq. (1) in
the main manuscript, we can find that W1 W2 ... WZEK and bl b2 ... bE are learnable
parameters that should be federated. Last but not least, since we introduce a node classifier, which
is actually a Multi-Layer Perceptron (MLP), we can find that WS € R¢*dout and b¢'s € R® are
learnable parameters that should be federated.

In Eq. (6) of the main manuscript, although we have defined the learnable parameter &*, on each

client, &F, is only used to approximate the data distribution instead of a parameter in a neural network.
Consequently, &, does not participate in the federation.

H Pseudocode of FedIIH

In this section, we show the pseudocode of our proposed FedIIH for the clients and server in
Algorithm [T]and Algorithm 2] respectively. Moreover, the framework of our proposed FedIIH from
the perspective of the clients and the server is shown in Fig.[2|and Fig. 3] respectively. Inspired by [7],
we regard the posterior mean of o for the k-th global latent factor (i.e., &") in the last round as the
prior for the k-th local latent factor on each client in the current round.
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Figure 2: The framework of our proposed FedIIH from the perspective of the clients. Let us take the
client m as an example.
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Figure 3: The framework of our proposed FedITH from the perspective of the server, where S¥
denotes the similarity matrix with respect to the k-th latent factor. Here we use blue and orange to
represent the first and the K-th latent factors, respectively.

I Implementation Details

In this section, we provide the implementation details, including the experimental platform, the
dataset descriptions, the details of subgraph partitioning, the information on baseline methods,

training details, and the implementations of two prior distributions (i.e., p(&*) and p(H |&*)).

I.1 Experimental Platform

All the experiments in this work are conducted on a Linux server with a 2.90 GHz Intel Xeon Gold
6326 CPU, 64 GB of RAM, and two NVIDIA GeForce RTX 4090 GPUs with 48GB of memory. Our
proposed method is implemented via Python 3.8.8, PyTorch 1.12.0, and PyTorch Geometric (PyG)
2.3.0 with the Adam optimizer.

1.2 Datasets

To validate the effectiveness of our proposed FedIIH, we perform extensive experiments on eleven
widely used benchmark datasets, including six homophilic and five heterophilic graph datasets. In
the homophilic graph datasets, there are Cora, CiteSeer, PubMed, and ogbn-arxiv for the citation
graphs; Amazon-Computer and Amazon-Photo for Amazon product graphs. In the heterophilic graph
datasets [9]], there are Roman-empire, Amazon-ratings, Minesweeper, Tolokers, and Questions. The
statistical information of the above benchmark datasets is described in Tab.[2] Note that we use
the Area Under the ROC curve (AUC) as the evaluation metric (higher values are better) for the
Minesweeper, Tolokers, and Questions datasets, and use the accuracy as the evaluation metric (higher
values are better) for other datasets.
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Algorithm 1: FedITH Client Algorithm

Input: Number of local epochs E; number of latent factors K'; subgraph G,,, on client m; node
feature matrix X,,, on client m; label matrix Y, on client m; parameters of two

DisenGCNs W and bLX on client m; parameters of the node classifier W< and

m m 1 1 1K LK m
Cls 7CIS —=1: Tl
b,, ., W, ,andb,,

bf}f on client m; federated parameters Wm s from the server;
global latent factors &% from the server.

Output: Predicted label for each unlabeled graph node in subgraph G,,.

m?

——cls —cls ==1:K —1:K
Download federated parameters ans, bf,:, W, ,andb,, from the server;

Download the global latent factors &% from the server;
1 ~==cls 1 —cls 1K 1K 1K LK
Wes«— W, ,bés b, , W% W = b " Db

for each local epoch e from 1 to £ do
Project the node feature into K subspaces via Eq. (1) in the main manuscript;

Optimize WS and b® via the cross-entropy loss;
Disentangle projected node representations into K latent factors via the neighborhood

routing mechanism, and then obtain Hinfi and H}nlg, respectively;

m

Sample HEX from HL X, and HLE via Eq. (7) in the main manuscript so as to obtain
A(FLK (G, ~
Compute E, 77 15, [log p(Gm|H,y,)] via Eq. (8) in the main manuscript;

Approximate &''¥ by using &1:% so as to compute

S, {ogp(ad,) - Dict (p(ad,)lIp(@*) }s
Compute 32/, Dict (a(FE, |G, [[p(FLS, |G5)). where
p(HEF|GIR) ~ NG5, 02, 1)

UI:I 1:K
Optimize W

LK and b1K via Eq. (6) in the main manuscript;

m m
end
Upload Wl bﬁ,lf, W},LLK , b},iLK ,and H},;K to the server;

Predict labgfs based on the trained node classifier.

In order to facilitate the division of datasets, a random sample of 20% of nodes is selected for training
purposes, 40% for the purpose of validation, and 40% for testing, with the exception of the ogbn-arxiv
dataset. This is due to the fact that the ogbn-arxiv dataset comprises a relatively large number of
nodes in comparison to the other datasets, as reported in Tab.[2] Consequently, for the ogbn-arxiv
dataset, a random sample of 5% of the nodes is used for training, while the remaining half of the
nodes are used for validation and testing, respectively.

L3 Subgraph Partitioning

Inspired by real-world requirements and following [10], we consider two subgraph partitioning
settings: non-overlapping and overlapping. In the non-overlapping setting, UM_,V,, = V and
Vin NV = 0 forVm # n € {1,2,--- , M}, where V represents the node set of the global graph.
Partitioning without this property is called overlapping. Here we present the details of how to partition
the original graph into multiple subgraphs. It should be noted that the number of subgraphs is equal
to the number of clients. Both non-overlapping and overlapping subgraph partitioning settings are
used in the experiments for all datasets.

Non-overlapping partitioning First, if there are M clients, the number of non-overlapping sub-
graphs to be generated is specified as M. Second, the METIS graph partitioning algorithm, as
described in [[L1]], is used to divide the original graph into M subgraphs. In other words, the non-
overlapping partitioning subgraph for each client is directly obtained by the output of the METIS
algorithm.

Overlapping partitioning First, if there are M clients, the number of overlapping subgraphs to be
generated is specified as M. Second, the METIS [11] graph partitioning algorithm is used to divide
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Algorithm 2: FedIIH Server Algorithm
Input: Number of rounds R; number of clients M ; number of latent factors K'; parameters of
two DisenGCNs WK and b from client m; parameters of the node classifier W<

and bS!s from client m; approximate posterior distributions INI},;K from client m.
Output: Federated model parameters for client m.

—cls

Initialize parameters (WCIS)(I), (b )M, (WLK)(U, and (BLK)(U;
Initialize (&%)(1);
for ecach round r from 1 to R do

for client m € {1,2,---, M} in parallel do
if r = 1 then
Send (W), (b)), (W™ and (b)) to client m;
Send (&) to client m;
end
else
Receive WS, bels, W,an ,bLE and HEK from client m;
Compute S(m, j)V'¥ via Eq. (9) in the main manuscript, where j € {1,2,---, M};
Compute L5 i+ via Eq. (11) in the main manuscript, where j € {1,2,--- , M};
Perform the separate federation to obtain (Wis)(”), (Wi;K)(T), and (E;K)(T) via
Eq. (10) in the main manuscript;
Perform the FedAvg [8] to obtain (b, )(7');
74 1P
Sample (&)™) from N(—3r025— s
Send (WC ), (b:is)(r), (W},LK)( "), and (b )(’“) to client m;
Send (&%) (") to client m;
end
Perform Algorithm on client m;
end
end
Table 2: Statistical information of eleven used graph datasets.
Types Datasets #Nodes #Edges #Classes # Node Features
Cora 2,708 5,429 7 1,433
CiteSeer 3,327 4,732 6 3,703
homophilic graph PubMed 19,717 44,324 3 500
Amazon-Computer 13,752 491,722 10 767
Amazon-Photo 7,650 238,162 8 745
ogbn-arxiv 169,343 2,315,598 40 128
Roman-empire 22,662 32,927 18 300
Amazon-ratings 24,492 93,050 5 300
heterophilic graph Minesweeper 10,000 39,402 2 7
Tolokers 11,758 519,000 2 10
Questions 48,921 153,540 2 301

the original graph into L M | subgraphs. Third, in each subgraph generated by METIS, half of the
nodes and their assomated edges are randomly sampled. This procedure is performed five times to
generate five different yet overlapped subgraphs. By doing so, the number of overlapping subgraphs
is equal to the number of clients.

1.4 Baseline Methods

We compare our proposed FedIIH with the following baseline methods, which can be categorized
into two groups. The first group comprises general FL baseline methods, including FedAvg [8]],



FedProx [[12]], and FedPer [13]. The second group consists of six GFL baseline methods, namely
GCFL [14], FedGNN [15]], FedSage+ [16l], FED-PUB [10], FedGTA [17l], and AdaFGL [18]]. More-
over, we perform experiments with local training, that is, training each client without federated
aggregation. The detailed descriptions of these baseline methods are provided below.

FedAvg This method [8] represents one of the fundamental baseline methods in the field of FL.
First, each client independently trains a model, which is subsequently transmitted to a server. Then,
the server aggregates the locally updated models by averaging and transmits the aggregated model
back to the clients.

FedProx This method [12] is one of the personalized FL baseline methods. It customizes a
personalized model for each client by adding a proximal term as a subproblem that minimizes weight
differences between local and global models.

FedPer This method [13] is one of the personalized FL baseline methods. It only federates the
weights of the backbone while training the personalized classification layer in each client.

GCFL This method [14] is one of the basic GFL methods. Specifically, GCFL is designed for
vertical GFL (e.g., GFL for molecular graphs). In particular, it uses the bi-partitioning scheme, which
divides a set of clients into two disjoint groups of clients based on the similarity of their gradients.
This is similar to the mechanism proposed for image classification in clustered-FL [19]. Then, after
partitioning, the model weights are shared only among clustered clients with similar gradients.

FedGNN This method [15] is one of the GFL baseline methods. It extends local subgraphs by
exchanging node embeddings from other clients. Specifically, if two nodes in two different clients
have exactly the same neighbors, FedGNN transfers the nodes with the same neighbors from other
clients and expands them.

FedSage+ This method [16]] is one of the GFL baseline methods. It generates the missing edges
between subgraphs and the corresponding neighbor nodes by using the missing neighbor generator.
To train this neighbor generator, each client first receives node representations from other clients,
and then computes the gradient of the distances between the local node features and the node
representations of the other clients. After that, the gradient is sent back to the other clients, and this
gradient is then used to train the neighbor generator.

FED-PUB This method [10] is one of the personalized GFL baseline methods. It estimates the
similarities between the subgraphs based on the outputs of the local models that are given the same
test graph. Then, based on the similarities, it performs a weighted averaging of the local models
for each client. In addition, it learns a personalized sparse mask at each client in order to select and
update only the subgraph-relevant subset of the aggregated parameters.

FedGTA This method [[17] is one of the personalized GFL baseline methods. In this method, each
client first computes topology-aware local smoothing confidence and mixed moments of neighbor
features. They are then used to compute the inter-subgraph similarities, which are uploaded to the
server along with the model parameters. Finally, the server is able to perform a weighted federation
for each client.

AdaFGL This method [18] is one of the personalized GFL baseline methods. Actually, it is a
decoupled two-step personalized approach. First, it uses standard multi-client federated collaborative
training to acquire the federated knowledge extractor by aggregating uploaded models in the final
round at the server. Second, each client performs personalized training based on the local subgraph
and the federated knowledge extractor.

Local This method is the non-FL baseline, where the model is trained only locally for each client,
with no weight sharing.

10



LI.5 Training Details

Training rounds and epochs For the Cora, CiteSeer, PubMed, Roman-empire, Amazon-ratings,
Minesweeper, Tolokers, and Questions datasets, we set the number of local training epochs and total
rounds to 1 and 100, respectively. For larger datasets, such as Amazon-Computer, Amazon-Photo, and
ogbn-arxiv, we set the number of total rounds to 200. Note that the number of local epochs is set to 2
for the Amazon-Photo and ogbn-arxiv datasets, and to 3 for the Amazon-Computer dataset. Finally,
we report the test performance of all models at the best validation epoch, and the performance is
measured by averaging across all clients in terms of node classification accuracies (or AUCs).

Hyperparameters We report the detailed hyperparameters used to train our proposed FedIIH
in Tab. 3] and Tab. ] These hyperparameters are determined by grid search. Note that we set
the similarity scaling hyperparameter (i.e., 7 in Eq. (11) of the main manuscript) to 10 in both
non-overlapping and overlapping subgraph partitioning scenarios according to the recommendation
of FED-PUB [10]. We provide the detailed reasons in the Appendix [K.7] The search range of
hyperparameters is shown in Tab.[5] The code of our proposed FedIIH will be released on GitHub
upon acceptance of the paper. The detailed hyperparameter sensitivity analysis can be found in the

Appendix[M.2]

Hyperparameter tuning guidelines There are four vital hyperparameters (i.e., number of latent
factors, number of neighborhood routing layers, number of neighborhood routing iterations, and 7)
in our proposed FedIIH. First, the number of latent factors (i.e., K) is related to whether the graph
tends to be homophilic or heterophilic. If the graph dataset tends to be homophilic, a small K is
recommended. If the graph dataset tends to be heterophilic, a large K is recommended. Second, the
variations in performance under different numbers of neighborhood routing layers, different numbers
of neighborhood routing iterations, and different values of 7 are all small. Therefore, these three
hyperparameters can be tuned by grid search.

Network architectures For the experiments of all baseline methods, except FedSage+, FedGTA,
and our proposed FedIIH, we use two layers of the Graph Convolutional Network (GCN) [20] and a
linear classifier layer as their network architectures. For the hyperparameter settings of the baseline
methods, we use the default settings given in their original papers. Because of the inductive and
scalability advantages of GraphSAGE [21]], FedSage+ uses GraphSAGE as the encoder and then
trains a missing neighbor generator to handle missing links across local subgraphs. For our proposed
FedIIH, we use the node feature projection layer of DisenGCN [[1] to obtain the node representations
(see Fig.[l) and a linear classifier layer (i.e., MLP) to perform node classifications. In contrast,
FedGTA uses a Graph Attention Multi-Layer Perceptron (GAMLP) [22] as its backbone and a linear
classifier layer to classify nodes. Note that GAMLP [22] is one of the scalable Graph Neural Network
(GNN) models, which can capture the underlying correlations between different scales of graph
knowledge.

1.6 Implementations of Two Prior Distributions

Here we describe the detailed implementations of p(&*) and p(HE,|&*), respectively. Since
& denotes the posterior mean of o for the k-th global latent factor, we assume that p(&*) ~
N(a",o2,1), where &" is given in Eq. (I2). Moreover, o2, and U%k is set to 1 and 0.25,
Z%=1 ﬂﬁfﬁ

3025+ 1) According to Tab. p(HE |a¥) ~

respectively. In other words, p(&*) ~ N/(
N(aF, 0% T). Consequently, we can have

HY,
p(HE |&%) ~ N(&*,0.251)
M4 (13)

e i
LTH 0.951).

~ N M +0.25

J Additional Experiments

In this section, we provide the additional experiments related to the ablation studies and hyperparam-
eter analysis, respectively.
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Table 3: Hyperparameters used in our proposed FedIIH on the homophilic graph datasets in both the
non-overlapping and overlapping subgraph partitioning settings.

Cora CiteSeer PubMed
Hyperparameters non-overlapping | overlapping | non-overlapping | overlapping | non-overlapping | overlapping
# latent factors
learning rate 0.02 0.01 0.01 0.01 0.01 0.015
# hidden dimensions 128 256 256 256 256 256
dropout rate 0.3 0.35 0.35 0.35 0.25 0.4
weight decay 0.005 le-6 le-6 le-6 0.0045 le-6
# nelghborhood 4 5 5 5 1 )
routing layers
# neighborhood 6 6 6 6 6 6
routing iterations
Amazon-Computer Amazon-Photo ogbn-arxiv
Hyperparameters non-overlapping | overlapping | non-overlapping | overlapping | non-overlapping | overlapping
# latent factors 10
learning rate 0.015 0.015 0.015 0.01 0.01 0.01
# hidden dimensions 128 128 256 128 128 128
dropout rate 0.4 0.35 0.4 0.35 0.35 0.35
weight decay le-6 le-6 le-6 le-6 le-6 le-6
# nelghborhood 1 5 1 1 5 5
routing layers
# neighborhood 6 6 6 5 6 6
routing iterations

Table 4: Hyperparameters used in our proposed FedIIH on the heterophilic graph datasets in both
the non-overlapping and overlapping subgraph partitioning settings.

Roman-empire Amazon-ratings Minesweeper
Hyperparameters non-overlapping | overlapping | non-overlapping | overlapping | non-overlapping | overlapping
# latent factors
learning rate 0.015 0.015 0.01 0.01 0.01 0.01
# hidden dimensions 128 128 128 256 256 128
dropout rate 0.35 0.35 0.35 0.35 0.35 0.35
weight decay le-6 le-6 le-6 le-6 le-6 le-6
# nelghborhood | | 3 5 5 6
routing layers
# neighborhood 6 6 7 6 6 7
routing iterations
Tolokers Questions
Hyperparameters non-overlapping | overlapping | non-overlapping | overlapping
# latent factors 10 10
learning rate 0.0T 0.01 0.0T 0.01
# hidden dimensions 128 128 256 256
dropout rate 0.35 0.35 0.35 0.35
weight decay 0.0045 0.0045 le-6 le-6
# nelghborhood 1 1 5 5
routing layers
# m_elgh_borh(_)od 5 N 6 6
routing iterations

J.1 Ablation Studies on Other Datasets

To further analyze the contribution of each component, we conduct ablation studies on the remaining
datasets in both non-overlapping and overlapping partitioning settings with 10 clients. As shown in
Tab. [6] we can find that the performance of FedIIH is significantly better than the three variants. It
validates that each component indeed contributes a lot to the final performance.

J.2  Hyperparameter Sensitivity Analysis of K

The hyperparameter sensitivity analysis of & on the remaining datasets are shown in Fig. [} Fig.[6} ...,
to Fig.[I3] According to the experimental results, we have the following observations and insights:
1) In general, the performance variation under different K is small except for the Roman-empire
dataset (see Fig. [I0). The Roman-empire dataset has low homophily [9], which is based on the
Roman Empire article from the English Wikipedia. Each node in the graph corresponds to a (non-
unique) word in the text, and the node label is determined by the syntactic role of the word. Due to
the syntactic dependencies within neighboring words, there exists strong heterogeneity within the

Roman-empire graph. Consequently, if we ignore this intra-heterogeneity (i.e., without disentangling),
the performance will decrease significantly on the Roman-empire dataset. This is consistent with
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Table 5: The search range of the hyperparameters used in our proposed FedIIH.

Hyperparameters # latent factors learning rate # hidden dimensions ~ dropout rate
Range {1,2,4,6,8,10} {0.01,0.015, 0.02} {128, 256} [0.25,0.4]
H ioht d # neighborhood # neighborhood
yperparameters weight decay routing layers routing iterations
Range [1e-6, 5e-3] {1,2,3,4,5,6} {2,3,4,5,6,7}

Table 6: Ablation studies in both non-overlapping and overlapping partitioning settings on other

datasets with 10 clients.
CiteSeer PubMed Amazon-Computer
Methods non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
FedIIH (w/o HM) 74.91£0.27 (11.59) 72.2940.16 (10.87) 85.194+0.05 (]2.46) 85.16+0.17 (J0.71) 85.754+0.90 (5.11) 87.71£0.20 (12.44)
FedIIH (w/o VI) 72271216 (14.23)  72.60E0.16 (10.56) 81351020 (16.30)  84.5620.04 (J1.31)  69.161.15 (J21.70) 7490124 (115.25)
FedIIH (w/o Dis) 75.71£0.38 (10.79) 71.5440.12 (11.62) 85.71+0.12 (11.94) 84.30+0.03 (}1.57) 88.96+0.08 (1.90) 88.51+0.04 (11.64)

FedITH 76.5040.06 73.16+£0.18 87.65+£0.18 85.87:+£0.03 90.86-£0.23 90.1540.04
‘Amazon-Photo ogbn-arxiv Roman-empire
Methods non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping

FedIIH (w/o HM) 91.84+0.05 (12.38) 91.88+0.27 (11.50) 65.1840.41 (14.16) 63.5440.15 (13.15) 56.2840.20 (110.16) 60.90£0.21 (14.58)
FedIIH (w/o VI) 79.25£0.96 (114.97)  82.16%0.56(111.22)  49.26+0.74 (120.08)  46.2041.73 (120.49) 57.38+0.18 (19.06) 61.69+0.09 (13.79)
FedITH (w/o Dis) 92.43£0.01 (11.79) 92.0140.04(11.37) 61.51£0.15 (17.83) 60.64+0.16 (16.05) 40.51£0.27 (125.93)  42.8440.09 (122.64)
FedITH 94.2240.08 93.3840.00 69.3410.02 66.69£0.09 66.44+0.28 65.48+0.12
Minesweeper Tolokers Questions
Methods non-overlapping overlapping non-overlapping overlapping non-overlapping overlapping
FedIIH (w/o HM) 70.88+0.01 (12.35) 66.56£0.07 (12.79) 64.56+0.17 (16.76) 69.21£0.22 (]2.46) 65.902£0.09 (12.09) 67.77£0.10 (11.02)
FedIIH (w/o VI) 71.34+0.09 (11.89) 68.47+0.06 (10.88) 64.3440.12 (16.98) 68.03+£0.34 (13.64) 66.63£0.08 (11.36) 68.24£0.06 (10.55)
FedIIH (w/o Dis) 70.67+0.02 (12.56) 68.75+0.19 (10.60) 62.5340.29 (18.79) 68.10£0.12 (13.57) 66.42+0.01 (11.57) 67.52+0.17 (11.27)
FedIIH 73.2310.04 69.3540.25 71.3240.09 71.67£0.02 67.99+0.09 68.79+0.09

the experimental results in Tab. 3 and Tab. 4 in the main manuscript, where our FedIIH outperforms
other methods by a large margin. 2) As the value of K increases, the performance may increase or
decrease depending on the datasets. For example, on the Roman-empire (see Fig. and Tolokers
(see Fig. 4 in the main manuscript) datasets, their performances increase consistently as the value of
K increases. On the contrary, on the Cora dataset (see Fig. ), the accuracy reaches its highest value
when K = 2, and then it decreases as the value of K is further increased.

K Discussions

K.1 Similarity Heatmaps of FED-PUB and FedIIH over Three Independent Runs

As shown in Fig.[T4] Fig.[I5] Fig.[T6] and Fig.[T7} we present the similarity heatmaps of FED-PUB and
our FedIIH over three independent runs on the Cora and Amazon-ratings datasets in the overlapping
setting with 20 clients, respectively. We can find that our calculated similarities are fairly much
more stable than the similarities calculated by FED-PUB. This is because FED-PUB estimates the
similarities between subgraphs based on the outputs of local models given the same random test
graph. Since the random test graph varies over three independent runs, the outputs of the local models
also change. In contrast, our FedIIH successfully infers the whole distribution of subgraph data in a
multi-level global perspective, such that we can stably characterize the inter-subgraph similarities.
Note that the similarity ground truth of the Cora and Amazon-ratings datasets in the overlapping
setting with 20 clients are presented in Fig.[I8a]and Fig. 3a of the main manuscript, respectively.

K.2 Similarity Heatmaps on Other Datasets

The similarity heatmaps on other datasets are shown in Fig.[I8] Fig.[T9] ..., to Fig.[38] We present
the similarity heatmaps for each dataset (except the Cora dataset) in two settings, namely, non-
overlapping with 20 clients and overlapping with 30 clients. However, for the Cora dataset, we
present the similarity heatmaps in the overlapping setting with 20 clients. This is because in [10],
Baek et al. present the heatmaps on the Cora dataset in the overlapping setting with 20 clients, and
we specifically want to be consistent with that here. According to the experimental results on these
datasets, we can find that the similarity heatmaps of our FedIIH are always much closer to the ground
truth than FED-PUB and FedGTA, verifying the effectiveness of our similarity calculation scheme
based on the inferred subgraph data distribution.
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Figure 5: Sensitivity of the number of latent factors K on the CiteSeer dataset.

K.3 Case Study of Different Latent Factors

Since our proposed FedIIH disentangles the subgraph into several latent factors, one may ask what is
the difference between the similarity heatmaps under different latent factors. To illustrate this, we
take the Roman-empire dataset as an example to perform a case study. As demonstrated in Fig.[T0}
the accuracies of our FedIIH obviously increase as K changes from 1, to 2, to 4. Consequently, in
Fig.[39] we present the similarity heatmaps of FedIIH on the Roman-empire dataset when K is set to
1, 2, and 4, respectively. From Fig. it can be observed that there are indeed differences between
different similarity heatmaps. Although these differences may seem trivial, they have a very large
impact on the separate federation and thus on the final performance.

K.4 Disentangled Latent Factors

Here we provide some insights into the interpretability of the disentangled latent factors. Disentangled
latent factors, as widely explored in [1, 23 24], are used to explore the reasons why a node is
connected to others. In other words, the interpretability of the disentangled latent factors can be
considered as the relationship from a given node to one of its neighbors. For example, a user in a
social graph is connected to others for various different reasons, such as families, hobbies, studies,
and work. Each disentangled latent factor is capable of capturing mutually exclusive information. For
example, the correlation plot of DisenGCN on the eight-factor synthetic graph dataset (Figure 3 in [1]])
clearly shows eight diagonal blocks, verifying that the latent factors have indeed been successfully
disentangled.

One might ask: Is it possible that the parameter positions corresponding to the same disentangled latent
factor differ between clients? We would like to clarify that the parameter positions corresponding to
the same latent factor usually remain the same in the disentangled GNNs of different clients. Taking
the DisenGCN as an example, there are two crucial processes: node feature projection (Eq. (1) in
the main manuscript) and neighborhood routing mechanism (Eq. (I)) and Eq. ) in the Appendix [A]).
According to Eq. (1) in the main manuscript, we can find that the position of parameters corresponding
to the k-th latent factor (i.e., W¥) is determined and then fixed by the node feature x*. Since the
distributions of x are similar in different clients, the parameter positions corresponding to K latent
factors on each client are determined and then fixed in the same way. Moreover, the parameter
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positions corresponding to K latent factors are not changed by the neighborhood routing mechanism,
because there are no learnable parameters in the neighborhood routing mechanism. Therefore, the
parameter positions corresponding to the same latent factor usually remain the same. This can be
verified by the experiments, where the standard deviations of our FedIIH are quite small on different
datasets (see Tables 1, 2, 3, and 4 in the main manuscript).

K.5 Disentangled Graph Neural Networks

The current implementation of our proposed FedIIH is based on the existing method DisenGCN [[]],
which is used to instantiate the inference network in our HVGAE. Instantiation in variational inference
is very common in many existing approaches [25} 26} 27]. For example, [25] and [26] use the GCN
and Graph Attention neTworks (GAT) to instantiate their inference networks, respectively.

Although many disentangled graph neural networks [1} 23} 24] can be chosen flexibly, we directly
choose a simple but popular model (i.e., DisenGCN). This is because DisenGCN is a pioneering
work in the field. Moreover, our proposed FedIIH is flexible since other disentangled graph neural
networks [23} [24] can easily be used.

K.6 Differences Between FED-PUB and Our FedIIH

First, in FED-PUB [[10], each client simply feeds the randomly generated graph to the local model
and sends the output to the server. In stark contrast, our FedIIH differs noticeably in that it uses
HVGAE to disentangle the subgraph into multiple latent factors and accurately infer the distribution
of the subgraph data. Then, each client sends this inferred data distribution to the server.

Second, in FED-PUB, the server only measures the similarities of the clients by computing the cosine
similarities of the outputs of local models. Conversely, in our FedIIH, the server specifically measures
the similarities by computing the JS divergences of the inferred subgraph data distributions, therefore
providing a more accurate and stable measure of client similarities.

In summary, our FedIIH differs noticeably from FED-PUB, as FED-PUB mainly focuses on comput-
ing the cosine similarities based on the outputs of local models. Unlike FED-PUB, we measure the
similarities of clients by computing the JS divergences of the inferred subgraph data distribution.
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K.7 Reasons for Setting 7 to 10

On one hand, 7 is recommended by FED-PUB [10] to be set to 10. On the other hand, according to
the experimental results of grid search, the performance can achieve the best result when 7 is around
10. Tab.|/|provides the accuracies when using different values of 7.

K.8 Why do local model outputs not accurately reflect the distribution of subgraph?

Most existing methods [10, [17, 28] compute the inter-subgraph similarities based on the simplex
outputs of local models. However, we argue that the outputs of local models cannot accurately reveal
the whole distribution of subgraph data. Here we provide the reason.

According to the universal approximation theorem of neural networks [29], even if two neural
networks (e.g., two local models on different clients) have different inputs, they can still produce the
completely same output. Therefore, the outputs of local models cannot accurately reveal the whole
distribution of subgraph data. This can be verified by experiments. In Fig. 3 of the main manuscript,
the similarity heatmap of FED-PUB (Fig. 3b) is quite different from the ground truth (Fig. 3a), which
means that the calculated similarities based on the local model outputs cannot accurately reflect the
overall distribution of subgraph data.

L. Efficiency Analysis

In this section, we present the spatial and temporal complexity of our proposed FedIIH and that
of two baseline methods (i.e., FedAvg and FED-PUB) on the client and server sides, respectively.
Furthermore, we also compare the training time of our proposed FedIIH and that of two baseline
methods (i.e., FedAvg and FED-PUB).

L.1 Spatial Complexity

First, the spatial complexity of our FedIIH on each client side and that of two baseline methods
(i.e., FedAvg and FED-PUB) are both O(n,, x d + L x d?), where n,,, d, and L denote the node
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Figure 11: Sensitivity of the number of latent factors K on the Amazon-ratings dataset.

number, feature dimensionality, and layer number, respectively. Therefore, the spatial complexity of
our FedIIH on each client is the same as that of two baseline methods.

Second, the spatial complexity of our method on the server side is O(M xdx (L xd*+ K x

M )) , where M and K denote the number of clients and the number of disentangled latent factors,
respectively. The spatial complexity of the baseline method (i.e., FED-PUB) on each client is
O(M xdx (Lxd*+ M )) By comparing the spatial complexity of our FedIIH with that of the
baseline method (i.e., FED-PUB), we find that the only difference is that the third factor in FedIIH’s
spatial complexity is L x d? + K x M while the third factor in FED-PUB’s spatial complexity
is L x d? + M. Since K < 10 (as mentioned in the Appendix [I.5), we can find that the spatial
complexity of our FedIIH on the server side is similar to that of the baseline method.

L.2 Temporal Complexity

First, the temporal complexity of HVGAE on each client is O(nm X d X (L4 ng,+ d)) Since the
model deployed on each client is actually a HVGAE, the total temporal complexity of our FedIIH
on each client is O (nm X dx (L4 nm,+ d)) The temporal complexity of two baseline methods
(i.e., FedAvg and FED-PUB) on each client is (’)(nm xdx (L+Lxd+ d)) By comparing the
temporal complexity of our FedIIH with that of two baseline methods (i.e., FedAvg and FED-PUB),
the only difference is that the third factor in FedIIH’s temporal complexity is L + n,, + d while the
third factor in their temporal complexity is L + L x d 4 d. Since n,,, < L X d in most situations (can
be verified in the Appendix [[.5), we can find that the temporal complexity of our FedITH on the client
side is similar to that of two baseline methods (i.e., FedAvg and FED-PUB). Therefore, we can find
that the introduction of HVGAE does not increase too much computational overhead of our FedIIH.

Second, the temporal complexity of the divergence computation on the server is O(K x M? x d), and
the total temporal complexity of our FedIIH on the server side is O(M xdx (K xM+Lx d)) The
temporal complexity of the baseline method (i.e., FED-PUB) on the server side is O(M x dx (M +

L x d)) By comparing the temporal complexity of our FedIIH with that of the baseline method (i.e.,
FED-PUB), we find that the only difference is that the third factor in FedIIH’s temporal complexity is
K x M + L x d while the third factor in FED-PUB’s temporal complexity is M + L X d. Since
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K <10 (as mentioned in the Appendix [L.5)), we can find that the temporal complexity of our FedITH
on the server side is similar to that of the baseline method (i.e., FED-PUB).

L.3 Training Time

We report the training time of one communication round of our FedIIH and two baseline methods
(i.e., FedAvg and FED-PUB). The experimental platform is shown in the Appendix We conduct
experiments on a homophilic graph dataset (i.e., Cora) and a heterophilic graph dataset (i.e., Roman-
empire). As shown in Tab.[8] we can find that our FedIIH is more efficient in practice than the baseline
methods (i.e., FedAvg and FED-PUB).

M Robustness Analysis

In this section, we analyze the robustness of our FedIIH in terms of client sparsity and hyperparameter
sensitivity, respectively.

M.1 Client Sparsity Analysis

Robustness to client sparsity is a critical aspect in evaluating the effectiveness of a similarity-based
personalized federated optimization strategy. Here we conduct experiments on a homophilic graph
dataset (i.e., Cora) and a heterophilic graph dataset (i.e., Roman-empire) as the percentage of
participating clients increases from 10% to 100%. As shown in Fig.[40] the experimental results
clearly show that the performance of our FedIIH is more robust and stable than baseline methods,
and is not too affected when the number of participating clients decreases.

M.2 Hyperparameter Sensitivity Analysis

There are four vital hyperparameters (i.e., number of latent factors, number of neighborhood routing
layers, number of neighborhood routing iterations, and 7) in our proposed FedIIH. Here we perform
experiments to analyze the hyperparameter sensitivity.
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Figure 14: The similarity heatmaps of FED-PUB over three independent runs on the Cora dataset in
the overlapping setting with 20 clients.
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Figure 15: The similarity heatmaps of FedIIH over three independent runs on the Cora dataset in the
overlapping setting with 20 clients.

First, as shown in the Appendix[J.2] the variation in performance under different numbers of latent fac-
tors (i.e., K) is small. Second, as shown in Tab. E Tab.@ and Tab. @ the variations in performance
under different numbers of neighborhood routing layers, different numbers of neighborhood routing
iterations, and different values of 7 are all small. These experimental results clearly demonstrate that
the performances of our proposed FedIIH are very stable within a given range of hyperparameters,
therefore the hyperparameter of our FedIIH can be easily tuned in practical use.

N Broader Impact

Our work could have the following positive impacts: (1) We provide a new method for GFL to deal
with the inter-intra heterogeneity. (2) Our proposed method can greatly improve the performance of
GFL on homophilic and heterophilic graph datasets in both non-overlapping and overlapping settings.

The proposed method can be used for both good and bad, similar to many other FL. methods. Note
that most existing methods and our proposal are not immune to such misuse. We believe that such a
problem can be solved in the future, although we do not have an optimal solution.

In summary, we believe that our proposed method can benefit society because many important real-
world graphs face inter-intra heterogeneity when performing the GFL. Therefore, they can benefit
from our proposed FedIIH.
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Figure 16: The similarity heatmaps of FED-PUB over three independent runs on the Amazon-ratings
dataset in the overlapping setting with 20 clients.
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Figure 17: The similarity heatmaps of FedIIH over three independent runs on the Amazon-ratings
dataset in the overlapping setting with 20 clients.
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Figure 20: Similarity heatmaps on the CiteSeer dataset in the overlapping setting with 30 clients.
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Figure 22: Similarity heatmaps on the PubMed dataset in the overlapping setting with 30 clients.
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Figure 25: Similarity heatmaps on the Amazon-Photo dataset in the non-overlapping setting with 20

clients.
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Figure 26: Similarity heatmaps on the Amazon-Photo dataset in the overlapping setting with 30
clients.
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Figure 27: Similarity heatmaps on the ogbn-arxiv dataset in the non-overlapping setting with 20
clients.
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Figure 28: Similarity heatmaps on the ogbn-arxiv dataset in the overlapping setting with 30 clients.
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Figure 29: Similarity heatmaps on the Roman-empire dataset in the non-overlapping setting with 20
clients.
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Figure 30: Similarity heatmaps on the Roman-empire dataset in the overlapping setting with 30
clients.
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Figure 31: Similarity heatmaps on the Amazon-ratings dataset in the non-overlapping setting with 20
clients.
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Figure 32: Similarity heatmaps on the Amazon-ratings dataset in the overlapping setting with 30
clients.
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Figure 33: Similarity heatmaps on the Minesweeper dataset in the non-overlapping setting with 20
clients.
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Figure 34: Similarity heatmaps on the Minesweeper dataset in the overlapping setting with 30 clients.
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Figure 35: Similarity heatmaps on the Tolokers dataset in the non-overlapping setting with 20 clients.
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Figure 36: Similarity heatmaps on the Tolokers dataset in the overlapping setting with 30 clients.
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Figure 37: Similarity heatmaps on the Questions dataset in the non-overlapping setting with 20
clients.
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Figure 38: Similarity heatmaps on the Questions dataset in the overlapping setting with 30 clients.
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Figure 39: Similarity heatmaps on the Roman-empire dataset in the overlapping setting with 30

clients. There are indeed differences between different similarity heatmaps when K is set to 1, 2, and
4.

Table 7: The hyperparameter sensitivity analysis of 7. The best results are shown in bold.

Cora Non-overlapping ~ Cora Overlapping ~ Roman-empire Non-overlapping ~ Roman-empire Overlapping

T 10 Clients 30 Clients 10 Clients 30 Clients

1 81.58+0.15 76.74+0.34 66.12+0.25 63.15£0.15
2 81.61£0.12 76.52+0.16 66.41+0.34 63.23£0.12
3 81.76+0.16 76.69+0.20 66.34+0.32 63.1940.25
4 81.80+0.17 76.72+0.23 66.40+0.36 63.29+0.30
5 81.65+0.05 76.66+£0.31 66.36+0.27 63.26+0.31
6 81.82+0.10 76.75+0.26 66.21+0.19 63.28+0.24
7 81.75+0.11 76.80+0.15 66.37+£0.33 63.1340.15
8 81.81+0.18 76.79+0.25 66.36+0.40 63.2240.22
9 81.82+0.14 76.7440.26 66.34+0.21 63.30£0.15
10 81.85+0.09 76.82+0.24 66.44+0.28 63.32+0.06
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Table 8: The training time of one communication round of our FedIIH and two baseline methods.

Cora Nonoverlapping Cora Overlapping
Methods 5 Clients 10 Clients 20 Clients 10 Clients 30 Clients 50 Clients
FedAvg 20.81s 24.90s 59.58s 30.63s 72.55s 141.82s
FED-PUB 22.04s 27.34s 60.31s 33.46s 80.54s 147.84s
FedIIH (Ours) 19.57s 22.76s 56.09s 19.67s 65.49s 139.03s
Roman-empire Nonoverlapping Roman-empire Overlapping
Methods 5 Clients 10 Clients 20 Clients 10 Clients 30 Clients 50 Clients
FedAvg 18.25s 29.85s 55.21s 28.30s 79.12s 127.61s
FED-PUB 18.81s 28.03s 61.75s 28.45s 83.07s 133.05s
FedIIH (Ours) 17.45s 24.90s 47.01s 28.19s 61.17s 100.10s

Table 9: The hyperparameter sensitivity analysis of the number of neighborhood routing layers.
# neighborhood ~ Cora Non-overlapping ~ Cora Overlapping ~ Roman-empire Non-overlapping ~ Roman-empire Overlapping

routing layers 10 Clients 30 Clients 10 Clients 30 Clients
1 81.194£0.27 76.18+0.46 66.44+0.28 63.32£0.06
2 81.4110.15 76.34£0.31 66.160.41 63.15£0.15
3 81.46£0.12 76.48+0.15 66.23+0.36 63.12£0.21
4 81.85+0.09 76.67+0.18 66.15+£0.46 63.15+£0.42
5 81.62+0.08 76.824+0.24 66.11£0.55 63.10£0.24
6 81.37+0.24 76.46+0.45 66.08+0.39 63.04£0.38
max - min 0.66 0.64 0.36 0.28

Table 10: The hyperparameter sensitivity analysis of the number of neighborhood routing iterations.

# neighborhood Cora Non-overlapping ~ Cora Overlapping ~ Roman-empire Non-overlapping ~ Roman-empire Overlapping
routing iterations 10 Clients 30 Clients 10 Clients 30 Clients
2 81.24£0.50 76.2240.30 66.04+0.43 63.01£0.45
3 81.38+£0.45 76.31+£0.44 66.10£0.46 63.104+0.34
4 81.45+0.41 76.37+0.45 66.16+0.44 63.18+£0.29
5 81.57£0.35 76.45+0.41 66.15£0.35 63.2440.17
6 81.85£0.09 76.82+0.24 66.44£0.28 63.3240.06
7 81.36+£0.42 76.68+0.39 66.24£0.29 63.1240.22
max - min 0.61 0.60 0.40 0.31

Table 11: The hyperparameter sensitivity analysis of 7.
Cora Non-overlapping ~ Cora Overlapping ~ Roman-empire Non-overlapping ~ Roman-empire Overlapping

3

10 Clients 30 Clients 10 Clients 30 Clients
1 81.58+0.15 76.74£0.34 66.12+0.25 63.15+0.15
2 81.61+0.12 76.52+0.16 66.41+0.34 63.23+0.12
3 81.76+0.16 76.69+0.20 66.34+0.32 63.19+0.25
4 81.80+0.17 76.72+£0.23 66.40+0.36 63.2940.30
5 81.65+0.05 76.66+£0.31 66.36+0.27 63.26+0.31
6 81.82+0.10 76.75+0.26 66.211+0.19 63.284+0.24
7 81.75+0.11 76.80+0.15 66.37+0.33 63.13+0.15
8 81.81+0.18 76.79+0.25 66.361+0.40 63.224+0.22
9 81.82+0.14 76.74+0.26 66.34+0.21 63.30+0.15
10 81.85+0.09 76.82+0.24 66.44+0.28 63.321+0.06
max - min 0.27 0.30 0.32 0.19
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Figure 40: Performances with different percentages of participating clients.
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